Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.285
Filter
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 286-293, 2024 Jun 17.
Article in Chinese | MEDLINE | ID: mdl-38952315

ABSTRACT

OBJECTIVE: To investigate the involvement of the high mobility group box protein B1 (HMGB1)-Toll-like receptor 2 (TLR2)/TLR4-nuclear factor κB (NF-κB) pathway in the intestinal mucosal injury induced by Cryptosporidium parvum infection, and to examine the effect of oxymatrine (OMT) on C. parvum infection in mice. METHODS: Forty SPF 4-week-old BALB/c mice were randomly divided into four groups, including the control group, infection group, glycyrrhizin (GA) group and OMT group. Each mouse was orally administered with 1 × 105 C. parvum oocysts one week in the infection, GA and OMT groups following dexamethasone-induced immunosuppression to model C. parvum intestinal infections in mice. Upon successful modeling, mice in the GA group were intraperitoneally injected with GA at a daily dose of 25.9 mL/kg for successive two weeks, and animals in the OMT group were orally administered OMT at a daily dose of 50 mg/kg for successive two weeks, while mice in the control group were given normal food and water. All mice were sacrificed two weeks post-treatment, and proximal jejunal tissues were sampled. The pathological changes of mouse intestinal mucosal specimens were observed using hematoxylin-eosin (HE) staining, and the mouse intestinal villous height, intestinal crypt depth and the ratio of intestinal villous height to intestinal crypt depth were measured. The occludin and zonula occludens protein 1 (ZO1) expression was determined in mouse intestinal epithelial cells using immunohistochemistry, and the relative expression of HMGB1, TLR2, TLR4, myeloid differentiation primary response gene 88 (MyD88) and NF-κB p65 mRNA was quantified in mouse jejunal tissues using quantitative real-time PCR (qPCR) assay. RESULTS: HE staining showed that the mouse intestinal villi were obviously atrophic, shortened, and detached, and the submucosal layer of the mouse intestine was edematous in the infection group as compared with the control group, while the mouse intestinal villi tended to be structurally intact and neatly arranged in the GA and OMT groups. There were significant differences among the four groups in terms of the mouse intestinal villous height (F = 6.207, P = 0.000 5), intestinal crypt depth (F = 6.903, P = 0.000 3) and the ratio of intestinal villous height to intestinal crypt depth (F = 37.190, P < 0.000 1). The mouse intestinal villous height was lower in the infection group than in the control group [(321.9 ± 41.1) µm vs. (399.5 ± 30.9) µm; t = 4.178, P < 0.01] and the GA group [(321.9 ± 41.1) µm vs. (383.7 ± 42.7) µm; t = 3.130, P < 0.01], and the mouse intestinal crypt depth was greater in the infection group [(185.0 ± 35.9) µm] than in the control group [(128.4 ± 23.6) µm] (t = 3.877, P < 0.01) and GA group [(143.3 ± 24.7) µm] (t = 2.710, P < 0.05). The mouse intestinal villous height was greater in the OMT group [(375.3 ± 22.9) µm] than in the infection group (t = 3.888, P < 0.01), and there was no significant difference in mouse intestinal villous height between the OMT group and the control group (t = 1.989, P > 0.05). The mouse intestinal crypt depth was significantly lower in the OMT group [(121.5 ± 27.3) µm] than in the infection group (t = 4.133, P < 0.01), and there was no significant difference in mouse intestinal crypt depth between the OMT group and the control group (t = 0.575, P > 0.05). The ratio of the mouse intestinal villous height to intestinal crypt depth was significantly lower in the infection group (1.8 ± 0.2) than in the control group (3.1 ± 0.3) (t = 10.540, P < 0.01) and the GA group (2.7 ± 0.3) (t = 7.370, P < 0.01), and the ratio of the mouse intestinal villous height to intestinal crypt depth was significantly higher in the OMT group (3.1 ± 0.2) than in the infection group (t = 15.020, P < 0.01); however, there was no significant difference in the ratio of the mouse intestinal villous height to intestinal crypt depth between the OMT group and the control group (t = 0.404, P > 0.05). Immunohistochemical staining showed significant differences among the four groups in terms of occludin (F = 28.031, P < 0.000 1) and ZO1 expression (F = 14.122, P < 0.000 1) in mouse intestinal epithelial cells. The proportion of positive occluding expression was significantly lower in mouse intestinal epithelial cells in the infection group than in the control group [(14.3 ± 4.5)% vs. (28.3 ± 0.5)%; t = 3.810, P < 0.01], and the proportions of positive occluding expression were significantly higher in mouse intestinal epithelial cells in the GA group [(30.3 ± 1.3)%] and OMT group [(25.8 ± 1.5)%] than in the infection group (t = 7.620 and 5.391, both P values < 0.01); however, there was no significant differences in the proportion of positive occluding expression in mouse intestinal epithelial cells between the GA or OMT groups and the control group (t = 1.791 and 2.033, both P values > 0.05). The proportion of positive ZO1 expression was significantly lower in mouse intestinal epithelial cells in the infection group than in the control group [(14.4 ± 1.8)% vs. (24.2 ± 2.8)%; t = 4.485, P < 0.01], and the proportions of positive ZO1 expression were significantly higher in mouse intestinal epithelial cells in the GA group [(24.1 ± 2.3)%] (t = 5.159, P < 0.01) and OMT group than in the infection group [(22.5 ± 1.9)%] (t = 4.441, P < 0.05); however, there were no significant differences in the proportion of positive ZO1 expression in mouse intestinal epithelial cells between the GA or OMT groups and the control group (t = 0.037 and 0.742, both P values > 0.05). qPCR assay showed significant differences among the four groups in terms of HMGB1 (F = 21.980, P < 0.000 1), TLR2 (F = 20.630, P < 0.000 1), TLR4 (F = 17.000, P = 0.000 6), MyD88 (F = 8.907, P = 0.000 5) and NF-κB p65 mRNA expression in mouse jejunal tissues (F = 8.889, P = 0.000 7). The relative expression of HMGB1 [(5.97 ± 1.07) vs. (1.05 ± 0.07); t = 6.482, P < 0.05] 、TLR2 [(5.92 ± 1.29) vs. (1.10 ± 0.14); t = 5.272, P < 0.05] 、TLR4 [(5.96 ± 1.50) vs. (1.02 ± 0.03); t = 4.644, P < 0.05] 、MyD88 [(3.00 ± 1.26) vs. (1.02 ± 0.05); t = 2.734, P < 0.05] and NF-κB p65 mRNA [(2.33 ± 0.72) vs. (1.04 ± 0.06); t = 2.665, P < 0.05] was all significantly higher in mouse jejunal tissues in the infection group than in the control group. A significant reduction was detected in the relative expression of HMGB1 (0.63 ± 0.01), TLR2 (0.42 ± 0.10), TLR4 (0.35 ± 0.07), MyD88 (0.70 ± 0.11) and NF-κB p65 mRNA (0.75 ± 0.01) in mouse jejunal tissues in the GA group relative to the control group (t = 8.629, 5.830, 11.500, 4.729 and 6.898, all P values < 0.05), and the relative expression of HMGB1, TLR2, TLR4, MyD88 and NF-κB p65 mRNA significantly reduced in mouse jejunal tissues in the GA group as compared to the infection group (t = 7.052, 6.035, 4.084, 3.165 and 3.274, all P values < 0.05). In addition, the relative expression of HMGB1 (1.14 ± 0.60), TLR2 (1.00 ± 0.24), TLR4 (1.14 ± 0.07), MyD88 (0.96 ± 0.25) and NF-κ B p65 mRNA (1.12 ± 0.17) was significantly lower in mouse jejunal tissues in the OMT group than in the infection group (t = 7.059, 5.320, 3.510, 3.466 and 3.273, all P values < 0.05); however, there were no significant differences between the OMT and control groups in terms of relative expression of HMGB1, TLR2, TLR4, MyD88 or NF-κB p65 mRNA in mouse jejunal tissues (t = 0.239, 0.518, 1.887, 0.427 and 0.641, all P values > 0.05). CONCLUSIONS: C. parvum infection causes intestinal inflammatory responses and destruction of intestinal mucosal barrier through up-regulating of the HMGB1-TLR2/TLR4-NF-κB pathway. OMT may suppress the intestinal inflammation and repair the intestinal mucosal barrier through inhibiting the activity of the HMGB1-TLR2/TLR4-NF-κB pathway.


Subject(s)
Alkaloids , Cryptosporidiosis , Cryptosporidium parvum , HMGB1 Protein , Mice, Inbred BALB C , NF-kappa B , Quinolizines , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , Cryptosporidiosis/drug therapy , Cryptosporidiosis/parasitology , Quinolizines/pharmacology , Cryptosporidium parvum/drug effects , Cryptosporidium parvum/physiology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Mice , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Alkaloids/pharmacology , Alkaloids/administration & dosage , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Signal Transduction/drug effects , Male , Intestinal Mucosa/drug effects , Intestinal Mucosa/parasitology , Intestinal Mucosa/metabolism , Matrines
2.
Virol J ; 21(1): 150, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965549

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is endemic worldwide, seriously affecting the development of the pig industry, but vaccines have limited protective effects against PRRSV transmission. The aim of this study was to identify potential anti-PRRSV drugs. We examined the cytotoxicity of seven compounds formulated based on the mass ratio of glycyrrhizic acid to matrine and calculated their inhibition rates against PRRSV in vitro. The results showed that the seven compounds all had direct killing and therapeutic effects on PRRSV, and the compounds inhibited PRRSV replication in a time- and dose-dependent manner. The compound with the strongest anti-PRRSV effect was selected for subsequent in vivo experiments. Pigs were divided into a control group and a medication group for the in vivo evaluation. The results showed that pigs treated with the 4:1 compound had 100% morbidity after PRRSV challenge, and the mortality rate reached 75% on the 8th day of the virus challenge. These results suggest that this compound has no practical anti-PRRSV effect in vivo and can actually accelerate the death of infected pigs. Next, we further analyzed the pigs that exhibited semiprotective effects following vaccination with the compound to determine whether the compound can synergize with the vaccine in vivo. The results indicated that pigs treated with the compound had higher mortality rates and more severe clinical reactions after PRRSV infection (p < 0.05). The levels of proinflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, and TNF-α) were significantly greater in the compound-treated pigs than in the positive control-treated pigs (p < 0.05), and there was no synergistic enhancement with the live attenuated PRRSV vaccine (p < 0.05). The compound enhanced the inflammatory response, prompted the body to produce excessive levels of inflammatory cytokines and caused body damage, preventing a therapeutic effect. In conclusion, the present study revealed that the in vitro effectiveness of these agents does not indicate that they are effective in vivo or useful for developing anti-PRRSV drugs. Our findings also showed that, to identify effective anti-PRRSV drugs, comprehensive drug screening is needed, for compounds with solid anti-inflammatory effects both in vitro and in vivo. Our study may aid in the development of new anti-PRRSV drugs.


Subject(s)
Alkaloids , Antiviral Agents , Glycyrrhizic Acid , Matrines , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Quinolizines , Virus Replication , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Alkaloids/pharmacology , Quinolizines/pharmacology , Quinolizines/therapeutic use , Swine , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Virus Replication/drug effects , Cytokines/metabolism , Survival Analysis
3.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930963

ABSTRACT

Ulcerative colitis (UC) is difficult to cure and easy to relapse, leading to poor quality of life for patients. Oxymatrine (OMT) is one of the main alkaloids of Sophora flavescens Aiton, which has many effects, such as anti-inflammation, anti-oxidative stress, and immunosuppression. This study aimed to investigate whether OMT could attenuate ulcerative colitis by inhibiting the NOD-like receptor family pyrin domain containing three (NLRP3) inflammasome-mediated pyroptosis. In this study, the UC rat models were established by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) in vivo, while RAW264.7 cells and peritoneal macrophages were stimulated with Lipopolysaccharides/Adenosine Triphosphate (LPS/ATP) in vitro to simulate pyroptosis models, and Western blotting (WB) and other detection techniques were applied to analyze proteins involved in the NLRP3 inflammasome pathway. Our results showed that OMT alleviated colitis ulcers and pathological damage in the TNBS-induced UC rats and exhibited an inhibitory effect on pyroptosis at the early stage of UC. In the model group, the pyroptosis reached the peak at 24 h after modeling with the contents of active-cysteine-aspartic proteases-1 (caspase-1), Gasdermin D (GSDMD)-N, and cleaved-interleukin-1 beta (IL-1ß) to the highest expression level. Meanwhile, we found that OMT (80 mg kg-1) remarkably decreased the expression levels of NLRP3, active-caspase-1, and cleaved-IL-1ß at 24 h in the lesion tissue from UC rats. Further experiments on cells demonstrated that OMT at concentrations of 100 and 250 µM significantly inhibited cell death caused by NLRP3 inflammasome activation (p < 0.05), downregulated caspase-1, GSDMD, and decreased the levels of active-caspase-1, GSDMD-N, cleaved-IL-1ß in RAW326.7 cells, and peritoneal macrophages. In summary, these results indicated that OMT could attenuate ulcerative colitis through inhibiting pyroptosis mediated by the NLRP3 inflammasome. The inhibition of the NLRP3 inflammasome may be a potential strategy for UC.


Subject(s)
Alkaloids , Colitis, Ulcerative , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Quinolizines , Animals , Quinolizines/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Alkaloids/pharmacology , Pyroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Rats , Inflammasomes/metabolism , Inflammasomes/drug effects , RAW 264.7 Cells , Male , Disease Models, Animal , Rats, Sprague-Dawley , Trinitrobenzenesulfonic Acid , Lipopolysaccharides , Matrines
4.
Sci Rep ; 14(1): 14469, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914662

ABSTRACT

Cryptosporidiosis is a worldwide zoonotic disease. Oxymatrine, an alkaloid extracted and isolated from the plant bitter ginseng, has been reported to have therapeutic effects on cryptosporidiosis. However, the underlying mechanism of its action remains unclear. In this study, we utilized network pharmacology and experimental validation to investigate the mechanism of oxymatrine in the treatment of cryptosporidiosis. First, the potential targets of drugs and diseases were predicted by TCMSP, Gene Cards, and other databases. Following the intersection of drug-disease targets, the DAVID database was used to implement the enrichment analysis of GO functions and KEGG pathways, and then the network diagram of "intersected target-KEGG" relationship was constructed. Autodock 4.2.6 software was used to carry out the molecular docking of core targets to drug components. Based on the establishment of a mouse model of cryptosporidiosis, the validity of the targets in the TNF/NF-κB signaling pathway was confirmed using Western blot analysis and Quantitative Rea-ltime-PCR. A total of 41 intersectional targets of oxymatrine and Cryptosporidium were generated from the results, and five core targets were screened out by network analysis, including RELA, AKT1, ESR1, TNF, and CASP3. The enrichment analysis showed that oxymatrine could regulate multiple gene targets, mediate TNF, Apoptpsis, IL-17, NF-κB and other signaling pathways. Molecular docking experiments revealed that oxymatrine was tightly bound to core targets with stable conformation. Furthermore, we found through animal experiments that oxymatrine could regulate the mRNA and protein expression of IL-6, NF-κB, and TNF-α in the intestinal tissues of post-infected mice through the TNF/NF-κB signaling pathway. Therefore, it can be concluded that oxymatrine can regulate the inflammatory factors TNF-α, NF-κB, and IL-6 through the TNF/NF-κB signaling pathway for the treatment of cryptosporidiosis. This prediction has also been validated by network pharmacology and animal experiments.


Subject(s)
Alkaloids , Cryptosporidiosis , Molecular Docking Simulation , NF-kappa B , Network Pharmacology , Quinolizines , Signal Transduction , Quinolizines/pharmacology , Quinolizines/chemistry , Quinolizines/therapeutic use , Cryptosporidiosis/drug therapy , Cryptosporidiosis/parasitology , Animals , Signal Transduction/drug effects , Alkaloids/pharmacology , Alkaloids/therapeutic use , Mice , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal , Humans , Matrines
5.
Drug Dev Res ; 85(4): e22219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845211

ABSTRACT

Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.


Subject(s)
Alkaloids , HMGB1 Protein , Inflammation , Lipopolysaccharides , NF-kappa B , Quinolizines , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , Alkaloids/pharmacology , Alkaloids/therapeutic use , Quinolizines/pharmacology , Quinolizines/therapeutic use , Animals , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , NF-kappa B/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/antagonists & inhibitors , Humans , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Mice , Inflammation/drug therapy , Inflammation/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , THP-1 Cells , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Matrines
6.
Bioorg Med Chem ; 108: 117776, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38852257

ABSTRACT

Myocardial ischemia/reperfusion (MI/R) is a common cardiovascular disease that seriously affects the quality of life and prognosis of patients. In recent years, matrine has attracted widespread attention in the treatment of cardiovascular diseases. This study designed, synthesized, and characterized 20 new matrine derivatives and studied their protective effects on ischemia-reperfusion injury through in vivo and in vitro experiments. Based on cellular assays, most newly synthesized derivatives have a certain protective effect on Hypoxia/Reoxygenation (H/R) induced H9C2 cell damage, with compound 22 having the best activity and effectively reducing cell apoptosis and necrosis. In vitro experimental data shows that compound 22 can significantly reduce the infarct size of rat myocardium and improve cardiac function after MI/R injury. In summary, compound 22 is a new potential cardioprotective agent that can promote angiogenesis and enhance antioxidant activity by activating ADCY5, CREB3l4, and VEGFA, thereby protecting myocardial cell apoptosis and necrosis induced by MI/R.


Subject(s)
Alkaloids , Apoptosis , Drug Design , Matrines , Myocardial Reperfusion Injury , Quinolizines , Rats, Sprague-Dawley , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Animals , Quinolizines/pharmacology , Quinolizines/chemical synthesis , Quinolizines/chemistry , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Rats , Apoptosis/drug effects , Male , Structure-Activity Relationship , Molecular Structure , Cardiotonic Agents/pharmacology , Cardiotonic Agents/chemical synthesis , Cardiotonic Agents/chemistry , Dose-Response Relationship, Drug , Cell Line , Neovascularization, Physiologic/drug effects , Angiogenesis
7.
Arch Microbiol ; 206(7): 292, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849633

ABSTRACT

In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Berberine , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Gentamicins , Matrines , Microbial Sensitivity Tests , Poultry Diseases , Quinolizines , Animals , Gentamicins/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Berberine/pharmacology , Anti-Bacterial Agents/pharmacology , Quinolizines/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Alkaloids/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Virulence/drug effects , Drug Synergism
8.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928319

ABSTRACT

Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.


Subject(s)
Alkaloids , Dextran Sulfate , Gastrointestinal Microbiome , Matrines , Oxidative Stress , Quinolizines , T-Lymphocytes, Regulatory , Animals , Alkaloids/pharmacology , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Quinolizines/pharmacology , Quinolizines/therapeutic use , Mice , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Male , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis/microbiology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Zonula Occludens-1 Protein/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Th17 Cells/drug effects , Th17 Cells/metabolism , Th17 Cells/immunology , Disease Models, Animal , Cytokines/metabolism , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Occludin/metabolism
9.
Acta Vet Scand ; 66(1): 23, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822394

ABSTRACT

BACKGROUND: Alpha2-adrenoceptor agonists (α2-agonists) are widely used in animals as sedatives and for pre-anaesthetic medication. Medetomidine has often been given subcutaneously (SC) to rats, although its absorption rate is slow and the individual variation in serum drug concentrations is high via this route. In addition, α2-agonists have various effects on metabolic and endocrine functions such as hypoinsulinaemia, hyperglycaemia and diuresis. Vatinoxan is a peripherally acting α2-adrenoceptor antagonist that, as a hydrophilic molecule, does not cross the blood-brain barrier in significant quantities and thus alleviates peripheral cardiovascular effects and adverse metabolic effects of α2-agonists. Aim of this study was to evaluate the effects of vatinoxan on sedation, blood glucose concentration, voiding and heart and respiratory rates and arterial oxygen saturation in rats sedated with subcutaneous medetomidine, midazolam and fentanyl. RESULTS: Onset of sedation and loss of righting reflex occurred significantly faster with vatinoxan [5.35 ± 1.08 (mean ± SD) versus 12.97 ± 6.18 min and 6.53 ± 2.18 versus 14.47 ± 7.28 min, respectively]. No significant differences were detected in heart and respiratory rates and arterial oxygen saturation between treatments. Blood glucose concentration (18.3 ± 3.6 versus 11.8 ± 1.2 mmol/L) and spontaneous urinary voiding [35.9 (15.1-41.6), range (median) versus 0.9 (0-8.0) mL /kg/min] were significantly higher without vatinoxan. CONCLUSIONS: Acceleration of induction of sedation, alleviation of hyperglycaemia and prevention of profuse diuresis by vatinoxan may be beneficial when sedating rats for clinical and experimental purposes with subcutaneous medetomidine, midazolam and fentanyl.


Subject(s)
Fentanyl , Hypnotics and Sedatives , Medetomidine , Midazolam , Animals , Medetomidine/pharmacology , Medetomidine/administration & dosage , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/administration & dosage , Fentanyl/pharmacology , Fentanyl/administration & dosage , Rats , Male , Midazolam/pharmacology , Midazolam/administration & dosage , Quinolizines/pharmacology , Quinolizines/administration & dosage , Blood Glucose/drug effects , Heart Rate/drug effects , Rats, Sprague-Dawley , Rats, Wistar
10.
Toxicol Lett ; 397: 11-22, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723914

ABSTRACT

Matrine (MT) has shown promising efficacy in various cancers and chronic hepatitis; however, its clinical application is limited because of its side effects. Our previous studies have indicated that MT can induce severe hepatotoxicity and nephrotoxicity. The current study aimed to investigate its cardiotoxicity and potential underlying mechanisms in H9c2 cells. Our results showed that MT induced H9c2 cell death and disrupted the cellular membrane integrity. Moreover, MT decreased glutathione (GSH) and cysteine (Cys) levels, and increased Fe2+, lipid peroxidation, reactive oxygen species (ROS), and MDA levels, ultimately leading to ferroptosis. Interestingly, these phenomena were alleviated by the ferroptosis inhibitor Fer-1, whereas MT-induced ferroptosis was exacerbated by the ferroptosis agonist RSL3. In addition, MT significantly reduced FTH, Nrf2, xCT, GPX4, and FSP1 protein levels and inhibited the transcriptional activity of Nrf2 while increasing TFR1 protein levels. Supplementation with Nrf2 agonist (Dimethyl fumarate, DMF) or selenium (Sodium selenite, SS) and CoQ10 alleviated MT-induced cytotoxic effects in H9c2 cells. These results suggest that ferroptosis, which is mediated by an imbalance in the Nrf2 antioxidant system, is involved in MT-induced cardiac toxicity.


Subject(s)
Alkaloids , Antioxidants , Cardiotoxicity , Ferroptosis , Matrines , NF-E2-Related Factor 2 , Quinolizines , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Quinolizines/pharmacology , Cell Line , Alkaloids/pharmacology , Rats , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Glutathione/metabolism , Signal Transduction/drug effects
11.
Biochem Pharmacol ; 225: 116263, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735444

ABSTRACT

Although α2 was the first neuronal nicotinic acetylcholine receptor (nAChR) receptor subunit to be cloned, due to its low level of expression in rodent brain, its study has largely been neglected. This study provides a comparison of the α2 and α4 structures and their functional similarities, especially in regard to the existence of low and high sensitivity forms based on subunit stoichiometry. We show that the pharmacological profiles of the low and high sensitivity forms of α2ß2 and α4ß2 receptors are very similar in their responses to nicotine, with high sensitivity receptors showing protracted responses. Sazetidine A, an agonist that is selective for the high sensitivity α4 receptors also selectively activates high sensitivity α2 receptors. Likewise, α2 receptors have similar responses as α4 receptors to the positive allosteric modulators (PAMs) desformylflustrabromine (dFBr) and NS9283. We show that the partial agonists for α4ß2 receptors, cytisine and varenicline are also partial agonists for α2ß2 receptors. Studies have shown that levels of α2 expression may be much higher in the brains of primates than those of rodents, suggesting a potential importance for human therapeutics. High-affinity nAChR have been studied in humans with PET ligands such as flubatine. We show that flubatine has similar activity with α2ß2 and α4ß2 receptors so that α2 receptors will also be detected in PET studies that have previously presumed to selectively detect α4ß2 receptors. Therefore, α2 receptors need more consideration in the development of therapeutics to manage nicotine addiction and declining cholinergic function in age and disease.


Subject(s)
Nicotinic Agonists , Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Animals , Nicotinic Agonists/pharmacology , Humans , Nicotine/pharmacology , Nicotine/metabolism , Xenopus laevis , Azetidines/pharmacology , Quinolizines/pharmacology , Varenicline/pharmacology , Azocines/pharmacology , Quinolizidine Alkaloids , Pyridines
12.
Toxicon ; 244: 107773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795848

ABSTRACT

Sophora flavescens Aiton, a traditional Chinese medicine that was supposed to predominantly play an anti-inflammatory role, has been used to treat multiple diseases, including cancer, for over two thousand years. Recently, it has attracted increasing attention due to the anti-tumor properties of Oxymatrine, one of the most active alkaloids extracted from S. flavescens. This study aims to explore it's anti-tumor effects in non-small cell lung cancer (NSCLC) and the underlying mechanisms. We first investigated the effects of oxymatrine on cell apoptosis in lung cancer cell lines A549 and PC9 as well as explored related genes in regulating the apoptosis by transcriptome analysis. Subsequently, to further study the role of TRIM46, we constructed two types of TRIM46 over-expression cells (A549TRIM46+ and PC9TRIM46+ cells) and then investigated the effect of TRIM46 on oxymatrine-induced apoptosis. Moreover, we explored the effect of TRIM46 on downstream signaling pathways. Transcriptome analysis suggested that shared differentially expressed genes (DEGs) in A549 and PC9 cells treated with oxymatrine were CACNA1I, PADI2, and TRIM46. According to TCGA database analysis, the abundance of TRIM46 expression was higher than CACNA1I, and PADI2 in lung cancer tissues, then was selected as the final DEG for subsequent studies. We observed that oxymatrine resulted in down-expression of TRIM46 as well as induced the apoptosis of the cancer cells in a dose- and time-dependent manner. Meanwhile, we found that apoptosis induced by oxymatrine was inhibited by over-expressing TRIM46. Furthermore, our study indicated that the NF-κB signaling pathway was involved in apoptosis suppressed by TRIM46. We conclude that TRIM46 is the direct target of oxymatrine to induce anti-tumor apoptosis and may activate the downstream NF-κB signaling pathway.


Subject(s)
Alkaloids , Apoptosis , Carcinoma, Non-Small-Cell Lung , Down-Regulation , Lung Neoplasms , Quinolizines , Quinolizines/pharmacology , Humans , Alkaloids/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Cell Line, Tumor , A549 Cells , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Signal Transduction/drug effects , Matrines
13.
J Ethnopharmacol ; 332: 118385, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38797379

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora flavescens is often used in traditional Chinese medicine for skin issues, diarrhea, and vaginal itching (Plant names have been checked with http://www.the/plant/list.org on Feb 22nd, 2024). Oxymatrine (OY), a major bioactive compound from Sophora flavescens, is commonly used in China to treat ulcerative colitis, but its mechanisms are still unclear. AIM OF THE STUDY: Recent studies have found that the crosstalk between ferroptosis and inflammation is an important mechanism in the pathogenesis of UC. The aim of this study was to investigate the potential underlying mechanisms of OY treatment on DSS-induced ulcerative colitis, specifically focusing on the processes of ferroptosis and inflammation. MATERIALS AND METHODS: Bioinformatics methods were used to identify key targets of OY for ferroptosis and inflammation in ulcerative colitis, based on GEO data and FerrDb database. Then, 4% DSS solution was used to induce UC model. OY's impact on morphological changes was assessed using colon views, Hematoxylin and eosin (HE) staining, and transmission electron microscopy (TEM). Ferroptosis phenotype index and inflammations factors were detected by ELISA or chem-bio detection kits. The screen out hub related genes about ferroptosis and inflammation were verified by RT-PCR, immunohistochemistry (IHC), and western blotting (WB) respectively. RESULTS: Bioinformatics results show that there are 16 key target genes involved in ferroptosis and inflammation interaction of OY treatment for UC, such as IL6, NOS2, IDO1, SOCS1, and DUOX. The results of animal experiments show that OY could depress inflammatory factors (IL-1ß, IL-6, TNF-α, HMGB1, and NLRP3) and reduce iron deposition (Fe2+, GSH). Additionally, OY suppressed the hub genes or proteins expression involved in ferroptosis and inflammation, including IL-1ß, IL-6, NOS2, HIF1A, IDO1, TIMP1, and DUOX2. CONCLUSION: This present study combines bioinformatics, molecular biology, and animal experimental research evidently demonstrated that OY attenuates UC by improving ferroptosis and inflammation, mainly target to the expression of IL-1ß, IL-6, NOS2, HIF1A, IDO1, TIMP1, and DUOX2.


Subject(s)
Alkaloids , Colitis, Ulcerative , Dextran Sulfate , Ferroptosis , Quinolizines , Sophora , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Quinolizines/pharmacology , Quinolizines/therapeutic use , Sophora/chemistry , Ferroptosis/drug effects , Animals , Alkaloids/pharmacology , Alkaloids/therapeutic use , Mice , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL , Male , Disease Models, Animal , Colon/drug effects , Colon/pathology , Colon/metabolism , Sophora flavescens , Matrines
14.
Int J Biol Macromol ; 270(Pt 2): 132408, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754683

ABSTRACT

Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious virus that causes Porcine Epidemic Diarrhea (PED). This enteric disease results in high mortality rates in piglets, leading to significant financial losses in the pig industry. However, vaccines cannot provide sufficient protection against epidemic strains. Spike (S) protein exposed on the surface of virion mediates PEDV entry into cells. Our findings imply that matrine (MT), a naturally occurring alkaloid, inhibits PEDV infection targeting S protein of virions and biological process of cells. The GLY434 residue in the autodocking site of the S protein and MT conserved based on sequence comparison. This study provides a comprehensive analysis of viral attachment, entry, and virucidal effects to investigate how that MT inhibits virus replication. MT inhibits PEDV attachment and entry by targeting S protein. MT was added to cells before, during, or after infection, it exhibits anti-PEDV activities and viricidal effects. Network pharmacology focuses on addressing causal mechanisms rather than just treating symptoms. We identified the key genes and screened the cell apoptosis involved in the inhibition of MT on PEDV infection in network pharmacology. MT significantly promotes cell apoptosis in PEDV-infected cells to inhibit PEDV infection by activating the MAPK signaling pathway. Collectively, we provide the biological foundations for the development of single components of traditional Chinese medicine to inhibit PEDV infection and spread.


Subject(s)
Alkaloids , Antiviral Agents , Apoptosis , MAP Kinase Signaling System , Matrines , Porcine epidemic diarrhea virus , Quinolizines , Spike Glycoprotein, Coronavirus , Quinolizines/pharmacology , Quinolizines/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Animals , Porcine epidemic diarrhea virus/drug effects , Apoptosis/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , MAP Kinase Signaling System/drug effects , Chlorocebus aethiops , Vero Cells , Swine , Virus Replication/drug effects , Virus Internalization/drug effects
15.
Biomed Pharmacother ; 175: 116738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759291

ABSTRACT

Despite significant advancements in multiple myeloma (MM) treatment in recent years, most patients will eventually develop resistance or experience relapse. Matrine, a primary active compound of traditional Chinese medicinal herb Sophora flavescens Ait, has been found to have anti-tumor properties in various types of malignant tumors. Whether autophagy plays a crucial role in the anti-MM effect of matrine remain unknown. Herein, we found that matrine could trigger apoptosis and cell cycle arrest, and meanwhile induce autophagy in MM cells in vitro. We further ascertained the role of autophagy by using ATG5 siRNA or the autophagy inhibitor spautin-1, which partially reversed matrine's inhibitory effect on MM cells. Conversely, the combination of matrine with the autophagy inducer rapamycin enhanced their anti-tumor activity. These findings suggest that autophagy induced by matrine can lead to cell death in MM cells. Further mechanism investigation revealed that matrine treatment increased the levels of reactive oxygen species (ROS) and AMPKα1 phosphorylation and decreased the phosphorylation of mTOR in MM cells. Additionally, co-treatment with AMPKα1 siRNA or the ROS scavenger N-acetyl-1-cysteine weakened the increase in autophagy that was induced by matrine. Finally, we demonstrated a synergistic inhibitory effect of matrine and rapamycin against MM in a xenograft mouse model. Collectively, our findings provided novel insights into the anti-MM efficacy of matrine and suggest that matrine induces autophagy by triggering ROS/AMPK/mTOR axis in MM cells, and combinatorial treatment of matrine and rapamycin may be a promising therapeutic strategy against MM.


Subject(s)
AMP-Activated Protein Kinases , Alkaloids , Apoptosis , Autophagic Cell Death , Matrines , Multiple Myeloma , Quinolizines , Reactive Oxygen Species , Signal Transduction , TOR Serine-Threonine Kinases , Quinolizines/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Alkaloids/pharmacology , Reactive Oxygen Species/metabolism , Humans , Apoptosis/drug effects , Animals , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , AMP-Activated Protein Kinases/metabolism , Autophagic Cell Death/drug effects , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Mice , Autophagy/drug effects
16.
Gene ; 920: 148530, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38703870

ABSTRACT

Daruqi is a Traditional Mongolian medicine with anti-inflammatory, anti-bacterial, and immune-regulatory effects. However, the mechanisms of its activity were unclear. In the present study, we confirmed the anti-inflammation effect of Daruqi on inflammation induced by LPS using animal models. Then, THP-1 cells treated with LPS was used as a positive control to explore the effective component of Daruqi on inflammation. We identified that Oxymatrine was the essential effector of Daruqi. Furthermore, the mechanism of Oxymatrine on inflammation was verified through proteomics analyses and validation assays. Our results demonstrated that Oxymatrine significantly reduced the levels of inflammatory cytokine, including IL-8, IL-1α, and IL-1ß, in LPS induced THP-1 cells. Based on tandem mass tag -labeled quantitative proteomics, 428 differentially expressed proteins were screened, involved in TNF signaling pathway, Ferroptosis, IL-17 signaling pathway, etc. Among these differential expressed proteins (DEPs), 23 proteins were verified with parallel reaction monitoring analysis. The results showed that LPS treatment potentiated the protein level of PLEK, ACSL5 and CYBB, which could be reversed by Oxymatrine. By contrast, the protein expression of SPRYD4 and EMR2 was suppressed after LPS treatment, which could be rescued by Oxymatrine. In summary, Oxymatrine has excellent protective effects in LPS induced THP-1 cells. The five proteins, including PLEK, ACSL5, CYBB, SPRYD4 and EMR2, might serve as the targets of Oxymatrine, and as candidates regulating inflammation in future therapies.


Subject(s)
Alkaloids , Anti-Inflammatory Agents , Inflammation , Lipopolysaccharides , Medicine, Mongolian Traditional , Quinolizines , Humans , Inflammation/drug therapy , Inflammation/metabolism , Animals , Lipopolysaccharides/pharmacology , Alkaloids/pharmacology , Anti-Inflammatory Agents/pharmacology , Quinolizines/pharmacology , THP-1 Cells , Proteomics/methods , Cytokines/metabolism , Mice , Male , Signal Transduction/drug effects , Matrines
17.
Pharm Dev Technol ; 29(5): 457-467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38629738

ABSTRACT

This experiment aimed to investigate the feasibility of cytisine (CYT) in treating eye diseases with ocular topical application. An in vitro cytotoxicity test, a hen's egg test-chorioallantoic membrane (HET-CAM), and a mouse eye tolerance test were used to fully reveal the ocular safety profiles of CYT. For the efficacy evaluations, CYT's effects on cell wound healing, against H2O2-induced oxidative stress damages on cells, and on benzalkonium chloride (BAC)-induced dry eye disease (DED) in mice were evaluated. Results showed that CYT did not show any cytotoxicities at concentrations no higher than 250 µg/ml, while lipoic acid (α-LA) at 250 µg/ml and BAC at 1.25 µg/ml showed significant cytotoxicities within 48 h incubation. The HET-CAM and mouse eye tolerance test confirmed that 0.5% CYT eye drops demonstrated good safety characteristics. Efficacy evaluations showed that CTY significantly promoted cell migration and wound healing. CYT significantly improved cell survival against H2O2-induced oxidative stress damage by reversing the imbalance between the reactive oxygen species (ROS) and antioxidant defense mechanisms. The animal evaluation of the BAC-induced dry eye model revealed that CYT demonstrated a strong treatment effect, including reversing ocular surface damages, recovering corneal sensitivity, and inhibiting neovascularization; HMGB1/NF-κB signaling was involved in this DED treatment by CTY. In conclusion, CYT had strong experimental treatment efficacy against DED with good ocular safety profiles, and it might be a novel and promising drug for DED.


Subject(s)
Alkaloids , Azocines , Benzalkonium Compounds , Dry Eye Syndromes , Ophthalmic Solutions , Oxidative Stress , Quinolizines , Animals , Quinolizines/administration & dosage , Quinolizines/pharmacology , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/chemically induced , Benzalkonium Compounds/administration & dosage , Mice , Ophthalmic Solutions/administration & dosage , Alkaloids/pharmacology , Alkaloids/administration & dosage , Oxidative Stress/drug effects , Azocines/administration & dosage , Azocines/pharmacology , Humans , Cell Survival/drug effects , Hydrogen Peroxide , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Female , Antioxidants/pharmacology , Antioxidants/administration & dosage , Chorioallantoic Membrane/drug effects , Male , Quinolizidine Alkaloids
18.
Fitoterapia ; 175: 105921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561052

ABSTRACT

Sophoridine, which is derived from the Leguminous plant Sophora alopecuroides L., has certain pharmacological activity as a new anticancer drug. Herein, a series of novel N-substituted sophoridine derivatives was designed, synthesized and evaluated with anticancer activity. Through QSAR prediction models, it was discovered that the introduction of a benzene ring as a main pharmacophore and reintroduced into a benzene in para position on the phenyl ring in the novel sophoridine derivatives improved the anticancer activity effectively. In vitro, 28 novel compounds were evaluated for anticancer activity against four human tumor cell lines (A549, CNE-2, HepG-2, and HEC-1-B). In particular, Compound 26 exhibited remarkable inhibitory effects, with an IC50 value of 15.6 µM against HepG-2 cells, surpassing cis-Dichlorodiamineplatinum (II). Molecular docking studies verified that the derivatives exhibit stronger binding affinity with DNA topoisomerase I compared to sophoridine. In addition, 26 demonstrated significant inhibition of DNA Topoisomerase I and could arrest cells in G0/G1 phase. This study provides valuable insights into the design and synthesis of N-substituted sophoridine derivatives with anticancer activity.


Subject(s)
Alkaloids , Matrines , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Quinolizines , Sophora , Topoisomerase I Inhibitors , Humans , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Quinolizines/pharmacology , Quinolizines/chemical synthesis , Quinolizines/chemistry , Molecular Structure , Sophora/chemistry , Alkaloids/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemical synthesis , Indolizines/pharmacology , Indolizines/chemistry , Indolizines/chemical synthesis , DNA Topoisomerases, Type I/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemical synthesis
19.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675664

ABSTRACT

The integration of a multidimensional treatment dominated by active ingredients of traditional Chinese medicine (TCM), including enhanced chemotherapy and synergistically amplification of oxidative damage, into a nanoplatform would be of great significance for furthering accurate and effective cancer treatment with the active ingredients of TCM. Herein, in this study, we designed and synthesized four matrine-proteolysis-targeting chimeras (PROTACs) (depending on different lengths of the chains named LST-1, LST-2, LST-3, and LST-4) based on PROTAC technology to overcome the limitations of matrine. LST-4, with better anti-tumor activity than matrine, still degrades p-Erk and p-Akt proteins. Moreover, LST-4 NPs formed via LST-4 self-assembly with stronger anti-tumor activity and glutathione (GSH) depletion ability could be enriched in lysosomes through their outstanding enhanced permeability and retention (EPR) effect. Then, we synthesized LST-4@ZnPc NPs with a low-pH-triggered drug release property that could release zinc(II) phthalocyanine (ZnPc) in tumor sites. LST-4@ZnPc NPs combine the application of chemotherapy and phototherapy, including both enhanced chemotherapy from LST-4 NPs and the synergistic amplification of oxidative damage, through increasing the reactive oxygen species (ROS) by photodynamic therapy (PDT), causing an GSH decrease via LST-4 mediation to effectively kill tumor cells. Therefore, multifunctional LST-4@ZnPc NPs are a promising method for killing cancer cells, which also provides a new paradigm for using natural products to kill tumors.


Subject(s)
Alkaloids , Glutathione , Indoles , Isoindoles , Matrines , Quinolizines , Reactive Oxygen Species , Alkaloids/chemistry , Alkaloids/pharmacology , Reactive Oxygen Species/metabolism , Quinolizines/chemistry , Quinolizines/pharmacology , Glutathione/metabolism , Humans , Animals , Indoles/chemistry , Indoles/pharmacology , Mice , Cell Line, Tumor , Zinc Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy/methods , Proteolysis , Nanoparticles/chemistry
20.
Vet Anaesth Analg ; 51(3): 253-265, 2024.
Article in English | MEDLINE | ID: mdl-38580536

ABSTRACT

OBJECTIVE: To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN: Prospective, placebo-controlled, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS: The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 µg kg-1 orally and placebo IV; TMP: tasipimidine 30 µg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 µg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by 1 µg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS: Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.


Subject(s)
Dexmedetomidine , Isoflurane , Methadone , Propofol , Pyrazoles , Animals , Dogs , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Methadone/administration & dosage , Methadone/pharmacology , Female , Isoflurane/administration & dosage , Isoflurane/pharmacology , Heart Rate/drug effects , Male , Blood Pressure/drug effects , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/administration & dosage , Quinolizines/pharmacology , Quinolizines/administration & dosage , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Premedication/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...