Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.896
Filter
1.
FASEB J ; 38(15): e23865, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39096136

ABSTRACT

A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.


Subject(s)
Mitochondria , Mitophagy , Osteoprotegerin , Periodontal Ligament , RANK Ligand , Tooth Movement Techniques , Animals , Mitophagy/physiology , Rats , RANK Ligand/metabolism , Periodontal Ligament/metabolism , Osteoprotegerin/metabolism , Mitochondria/metabolism , Male , Protein Kinases/metabolism , Rats, Sprague-Dawley , Adolescent , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Stem Cells/metabolism , Bone Remodeling/physiology , Cells, Cultured
2.
Clin Orthop Surg ; 16(4): 661-668, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092303

ABSTRACT

Background: Periprosthetic osteolysis is a prevalent complication following total ankle arthroplasty (TAA), implicating various cytokines in osteoclastogenesis as pivotal in this process. This study aimed to evaluate the relationship between osteolysis and the concentrations of osteoclastogenesis-related cytokines in synovial fluid and investigate its clinical value following TAA. Methods: Synovial fluid samples from 23 ankles that underwent revision surgery for osteolysis following TAA were analyzed as the osteolysis group. As a control group, we included synovial fluid samples obtained from 23 ankles during primary TAA for osteoarthritis. The receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio in these samples was quantified using sandwich enzyme-linked immunosorbent assay techniques, and a bead-based multiplex immunoassay facilitated the detection of specific osteoclastogenesis-related cytokines. Results: RANKL levels averaged 487.9 pg/mL in 14 of 23 patients in the osteolysis group, with no detection in the control group's synovial fluid. Conversely, a significant reduction in OPG levels was observed in the osteolysis group (p = 0.002), resulting in a markedly higher mean RANKL/OPG ratio (0.23) relative to controls (p = 0.020). Moreover, the osteolysis group had increased concentrations of various osteoclastogenesis-related cytokines (tumor necrosis factor-α, interleukin [IL]-1ß, IL-6, IL-8, IP-10, and monocyte chemotactic protein-1) in the synovial fluid relative to the control group. Conclusions: Our results demonstrated that periprosthetic osteolysis was associated with osteoclastogenesis activation through an elevated RANKL/OPG ratio following TAA. We assume that RANKL and other osteoclastogenesis-related cytokines in the synovial fluid have clinical value as a potential marker for the development and progression of osteolysis following TAA.


Subject(s)
Arthroplasty, Replacement, Ankle , Biomarkers , Osteolysis , Osteoprotegerin , RANK Ligand , Synovial Fluid , Humans , Synovial Fluid/metabolism , Synovial Fluid/chemistry , Osteolysis/metabolism , Osteolysis/etiology , Male , Female , RANK Ligand/metabolism , Aged , Middle Aged , Arthroplasty, Replacement, Ankle/adverse effects , Osteoprotegerin/metabolism , Osteoprotegerin/analysis , Biomarkers/metabolism , Biomarkers/analysis , Aged, 80 and over , Cytokines/metabolism , Cytokines/analysis , Reoperation
3.
Sci Adv ; 10(28): eadl4913, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985878

ABSTRACT

The pathophysiology of silicosis is poorly understood, limiting development of therapies for those who have been exposed to the respirable particle. We explored mechanisms of silica-induced pulmonary fibrosis in human lung samples collected from patients with occupational exposure to silica and in a longitudinal mouse model of silicosis using multiple modalities including whole-lung single-cell RNA sequencing and histological, biochemical, and physiologic assessments. In addition to pulmonary inflammation and fibrosis, intratracheal silica challenge induced osteoclast-like differentiation of alveolar macrophages and recruited monocytes, driven by induction of the osteoclastogenic cytokine, receptor activator of nuclear factor κΒ ligand (RANKL) in pulmonary lymphocytes, and alveolar type II cells. Anti-RANKL monoclonal antibody treatment suppressed silica-induced osteoclast-like differentiation in the lung and attenuated pulmonary fibrosis. We conclude that silica induces differentiation of pulmonary osteoclast-like cells leading to progressive lung injury, likely due to sustained elaboration of bone-resorbing proteases and hydrochloric acid. Interrupting osteoclast-like differentiation may therefore constitute a promising avenue for moderating lung damage in silicosis.


Subject(s)
Cell Differentiation , Osteoclasts , Pulmonary Fibrosis , Silicon Dioxide , Silicosis , Silicon Dioxide/toxicity , Animals , Humans , Osteoclasts/metabolism , Osteoclasts/drug effects , Osteoclasts/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Mice , Silicosis/pathology , Silicosis/metabolism , Silicosis/etiology , Cell Differentiation/drug effects , RANK Ligand/metabolism , Disease Models, Animal , Male , Lung/pathology , Lung/metabolism , Lung/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Macrophages, Alveolar/drug effects , Female
4.
Theriogenology ; 226: 277-285, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38954996

ABSTRACT

Tumour necrosis factor (TNF) superfamily member 11 (TNFSF11), also known as RANKL, plays a crucial role in regulating several physiological and pathological activities. Additionally, it is a vital factor in bone physiology, and the sex hormone progesterone regulates the expansion of stem cells and the proliferation of mammary epithelial cells. It is essential for animal growth and reproductive physiological processes. This study aimed to evaluate the tissue-specific expression characteristics and promoter activity of the TNFSF11 gene in pigs. As a result, the study examined the presence of TNFSF11 expression in the tissues of Xiangsu pigs at 0.6 and 12 months of age. Moreover, the core promoter region of TNFSF11 was also identified by utilizing a combination of bioinformatic prediction and dual-luciferase activity tests. Finally, the effect of transcription factors on the transcriptional activity of the core promoter region was determined using site-directed mutagenesis. TNFSF11 was uniformly expressed in all tissues; however, its expression in muscles was comparatively low. The core promoter region of TNFSF11 was located in the -555 to -1 region. The prediction of the transcription start site of TNFSF11 gene-2000 ∼ + 500bp showed that there was a CpG site in 17 ∼ + 487bp. Analysis of mutations in the transcription factor binding sites revealed that mutations in the Stat5b, Myog, Trl, and EN1 binding sites had significant effects on the transcriptional activity of the TNFSF11 gene, particularly following the EN1 binding site mutation (P < 0.001). This study provides insights into both the tissue-specific expression patterns of TNFSF11 in the tissues of Xiangsu pigs and the potential regulatory effects of transcription factors on its promoter activity. These results may be helpful for future research aimed at clarifying the expression and role of the porcine TNFSF11 gene.


Subject(s)
Gene Expression Regulation , Promoter Regions, Genetic , RANK Ligand , Animals , Swine/genetics , RANK Ligand/genetics , RANK Ligand/metabolism
5.
Stem Cell Res Ther ; 15(1): 203, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971808

ABSTRACT

BACKGROUND: Skeletal Stem Cells (SSCs) are required for skeletal development, homeostasis, and repair. The perspective of their wide application in regenerative medicine approaches has supported research in this field, even though so far results in the clinic have not reached expectations, possibly due also to partial knowledge of intrinsic, potentially actionable SSC regulatory factors. Among them, the pleiotropic cytokine RANKL, with essential roles also in bone biology, is a candidate deserving deep investigation. METHODS: To dissect the role of the RANKL cytokine in SSC biology, we performed ex vivo characterization of SSCs and downstream progenitors (SSPCs) in mice lacking Rankl (Rankl-/-) by means of cytofluorimetric sorting and analysis of SSC populations from different skeletal compartments, gene expression analysis, and in vitro osteogenic differentiation. In addition, we assessed the effect of the pharmacological treatment with the anti-RANKL blocking antibody Denosumab (approved for therapy in patients with pathological bone loss) on the osteogenic potential of bone marrow-derived stromal cells from human healthy subjects (hBMSCs). RESULTS: We found that, regardless of the ossification type of bone, osteochondral SSCs had a higher frequency and impaired differentiation along the osteochondrogenic lineage in Rankl-/- mice as compared to wild-type. Rankl-/- mice also had increased frequency of committed osteochondrogenic and adipogenic progenitor cells deriving from perivascular SSCs. These changes were not due to the peculiar bone phenotype of increased density caused by lack of osteoclast resorption (defined osteopetrosis); indeed, they were not found in another osteopetrotic mouse model, i.e., the oc/oc mouse, and were therefore not due to osteopetrosis per se. In addition, Rankl-/- SSCs and primary osteoblasts showed reduced mineralization capacity. Of note, hBMSCs treated in vitro with Denosumab had reduced osteogenic capacity compared to control cultures. CONCLUSIONS: We provide for the first time the characterization of SSPCs from mouse models of severe recessive osteopetrosis. We demonstrate that Rankl genetic deficiency in murine SSCs and functional blockade in hBMSCs reduce their osteogenic potential. Therefore, we propose that RANKL is an important regulatory factor of SSC features with translational relevance.


Subject(s)
Cell Differentiation , Osteogenesis , RANK Ligand , Animals , RANK Ligand/metabolism , RANK Ligand/genetics , Mice , Osteogenesis/genetics , Humans , Stem Cells/metabolism , Stem Cells/cytology , Mice, Knockout , Denosumab/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Mice, Inbred C57BL
6.
Bone Res ; 12(1): 40, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987568

ABSTRACT

Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.


Subject(s)
Caspase 8 , Cell Fusion , Osteoclasts , Phosphatidylserines , Phospholipid Transfer Proteins , Caspase 8/metabolism , Caspase 8/genetics , Animals , Osteoclasts/metabolism , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Mice , Mice, Inbred C57BL , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/genetics , Cell Differentiation , RANK Ligand/metabolism
7.
FASEB J ; 38(13): e23779, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967255

ABSTRACT

Epigenetic modifications affect cell differentiation via transcriptional regulation. G9a/EHMT2 is an important epigenetic modifier that catalyzes the methylation of histone 3 lysine 9 (H3K9) and interacts with various nuclear proteins. In this study, we investigated the role of G9a in osteoclast differentiation. When we deleted G9a by infection of Cre-expressing adenovirus into bone marrow macrophages (BMMs) from G9afl/fl (Ehmt2fl/fl) and induced osteoclastic differentiation by the addition of macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), the number of TRAP-positive multinucleated osteoclasts significantly increased compared with control. Furthermore, the mRNA expression of osteoclast markers, TRAP, and cathepsin K, and to a lesser extent, NFATc1, a critical transcription factor, increased in G9a KO cells. Infection of wild-type (WT) G9a-expressing adenovirus in G9a KO cells restored the number of TRAP-positive multinucleated cells. In G9a KO cells, increased nuclear accumulation of NFATc1 protein and decreased H3K9me2 accumulation were observed. Furthermore, ChIP experiments revealed that NFATc1 binding to its target, Ctsk promoter, was enhanced by G9a deletion. For in vivo experiments, we created G9a conditional knock-out (cKO) mice by crossing G9afl/fl mice with Rank Cre/+ (Tnfrsf11aCre/+) mice, in which G9a is deleted in osteoclast lineage cells. The trabecular bone volume was significantly reduced in female G9a cKO mice. The serum concentration of the C-terminal telopeptide of type I collagen (CTX), a bone-resorbing indicator, was higher in G9a cKO mice. In addition, osteoclasts differentiated from G9a cKO BMMs exhibited greater bone-resorbing activity. Our findings suggest that G9a plays a repressive role in osteoclastogenesis by modulating NFATc1 function.


Subject(s)
Bone Resorption , Cell Differentiation , Histone-Lysine N-Methyltransferase , NFATC Transcription Factors , Osteoclasts , Osteogenesis , Animals , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Mice , Osteoclasts/metabolism , Bone Resorption/metabolism , Osteogenesis/physiology , Mice, Knockout , RANK Ligand/metabolism , Mice, Inbred C57BL , Cells, Cultured
8.
Sci Rep ; 14(1): 15749, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977767

ABSTRACT

Although bone dehiscence may occur during orthodontic tooth movement into the narrow alveolar ridge, a non-invasive prevention method is yet to be fully established. We show for the first time prevention of bone dehiscence associated with orthodontic tooth movement by prophylactic injection of bone anabolic agents in mice. In this study, we established a bone dehiscence mouse model by applying force application and used the granular type of scaffold materials encapsulated with bone morphogenetic protein (BMP)-2 and OP3-4, the receptor activator of NF-κB ligand (RANKL)-binding peptide, for the prophylactic injection to the alveolar bone. In vivo micro-computed tomography revealed bone dehiscence with decreased buccal alveolar bone thickness and height after force application, whereas no bone dehiscence was observed with the prophylactic injection after force application, and alveolar bone thickness and height were kept at similar levels as those in the control group. Bone histomorphometry analyses revealed that both bone formation and resorption parameters were significantly higher in the injection with force application group than in the force application without the prophylactic injection group. These findings suggest that the prophylactic local delivery of bone anabolic reagents can prevent bone dehiscence with increased bone remodelling activity.


Subject(s)
Anabolic Agents , Bone Morphogenetic Protein 2 , Tooth Movement Techniques , X-Ray Microtomography , Animals , Mice , Tooth Movement Techniques/adverse effects , Anabolic Agents/pharmacology , Anabolic Agents/administration & dosage , Male , Osteogenesis/drug effects , Bone Remodeling/drug effects , RANK Ligand/metabolism , Alveolar Process/drug effects , Alveolar Process/diagnostic imaging , Alveolar Process/pathology , Disease Models, Animal
9.
Biomed Pharmacother ; 177: 117086, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39013222

ABSTRACT

Periodontitis causes an increase in several bioactive agents such as interleukins (IL), tumor necrosis factor (TNF)-α and receptor activator of NF-kB ligand (RANKL), which induce the osteoclast formation and activity. Since diacerein exerts anti-TNF-α and anti-IL-1 effects, alleviating bone destruction in osteoarthritis, we investigated whether this drug inhibits the formation and survival of osteoclast in the periodontitis. Rats were distributed into 3 groups: 1) group with periodontitis treated with 100 mg/kg diacerein (PDG), 2) group with periodontitis treated with saline (PSG) and group control (CG) without any treatment. After 7, 15 and 30 days, the maxillae were collected for light and transmission electron microscopy analyses. Gingiva samples were collected to evaluate the mRNA levels for Tnf, Il1b, Tnfsf11 and Tnfrsf11b by RT-qPCR. In PDG, the expression of Tnf and Il1b genes reduced significantly compared to PSG, except for Tnf expression at 7 days. The number of osteoclasts reduced significantly in the PDG in comparison with PSG at 7 and 15 days. In all periods, the IL-6 immunoexpression, RANKL/OPG immunoexpression and mRNA levels of Tnfsf11/Tnfrsf11b ratio were significantly lower in PDG than in PSG. PDG exhibited significantly higher frequency of TUNEL-positive osteoclasts than in PSG and CG at all time points. Osteoclasts with caspase-3-immunolabelled cytoplasm and nuclei with masses of condensed chromatin were observed in PDG, confirming osteoclast apoptosis. Diacerein inhibits osteoclastogenesis by decreasing Tnf and Il1b mRNA levels, resulting in decreased RANKL/OPG ratio, and induces apoptosis in osteoclasts of alveolar process of rat molars with periodontitis.


Subject(s)
Anthraquinones , Cytokines , Osteoclasts , Periodontitis , Animals , Osteoclasts/drug effects , Osteoclasts/metabolism , Periodontitis/drug therapy , Periodontitis/pathology , Periodontitis/metabolism , Anthraquinones/pharmacology , Male , Cytokines/metabolism , Rats, Wistar , Rats , RANK Ligand/metabolism , Cell Survival/drug effects , Tumor Necrosis Factor-alpha/metabolism , Gingiva/metabolism , Gingiva/pathology , Gingiva/drug effects , Apoptosis/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 777-782, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948285

ABSTRACT

As a member of the tumor necrosis factor receptor family, osteoprotegerin (OPG) is highly expressed in adults in the lung, heart, kidney, liver, spleen, thymus, prostate, ovary, small intestines, thyroid gland, lymph nodes, trachea, adrenal gland, the testis, and bone marrow. Together with the receptor activator of nuclear factor-κB (RANK) and the receptor activator of nuclear factor-κB ligand (RANKL), it forms the RANK/RANKL/OPG pathway, which plays an important role in the molecular mechanism of the development of various diseases. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs performing regulatory functions in eukaryotes, with a size of about 20-25 nucleotides. miRNA genes are transcribed into primary transcripts by RNA polymerase, bind to RNA-induced silencing complexes, identify target mRNAs through complementary base pairing, with a single miRNA being capable of targeting hundreds of mRNAs, and influence the expression of many genes through pathways involved in functional interactions. In recent years, a large number of studies have been done to explore the mechanism of action of miRNA in diseases through miRNA isolation, miRNA quantification, miRNA spectrum analysis, miRNA target detection, in vitro and in vivo regulation of miRNA levels, and other technologies. It was found that miRNA can play a key role in the pathogenesis of osteoporosis, rheumatoid arthritis, and other diseases by targeting OPG. The purpose of this review is to explore the interaction between miRNA and OPG in various diseases, and to propose new ideas for studying the mechanism of action of OPG in diseases.


Subject(s)
MicroRNAs , Osteoprotegerin , Receptor Activator of Nuclear Factor-kappa B , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/genetics , RANK Ligand/metabolism , RANK Ligand/genetics , Neoplasms/genetics , Neoplasms/metabolism , Animals , Signal Transduction , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism
11.
Chem Biol Drug Des ; 104(1): e14574, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958121

ABSTRACT

To develop novel bovine lactoferrin (bLF) peptides targeting bLF-tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6) binding sites, we identified two peptides that could target bLF-TRAF6 binding sites using structural analysis. Moreover, another peptide that could bind to the TRAF6 dimerization area was selected from the bLF sequence. The effects of each peptide on cytokine expression in lipopolysaccharide (LPS)-stimulated osteoblasts (ST2) and on osteoclastogenesis were examined using an LPS-treated co-culture of primary bone marrow cells (BMCs) with ST2 cells and a single culture of osteoclast precursor cells (RAW-D) treated with soluble receptor activator of NF-κB ligand. Finally, the effectiveness of these peptides against LPS-induced alveolar bone destruction was assessed. Two of the three peptides significantly suppressed LPS-induced TNF-α and interleukin-1ß expression in ST2 cells. Additionally, these peptides inhibited and reversed LPS-induced receptor activator of NF-κB ligand (RANKL) upregulation and osteoprotegerin (OPG) downregulation, respectively. Furthermore, both peptides significantly reduced LPS-induced osteoclastogenesis in the BMC-ST2 co-culture and RANKL-induced osteoclastogenesis in RAW-D cells. In vivo, topical application of these peptides significantly reduced the osteoclast number by downregulating RANKL and upregulating OPG in the periodontal ligament. It is indicated that the novel bLF peptides can be used to treat periodontitis-associated bone destruction.


Subject(s)
Lactoferrin , Lipopolysaccharides , Osteoclasts , Peptides , Animals , Lactoferrin/pharmacology , Lactoferrin/chemistry , Lactoferrin/metabolism , Lipopolysaccharides/pharmacology , Rats , Peptides/pharmacology , Peptides/chemistry , Osteoclasts/drug effects , Osteoclasts/metabolism , RANK Ligand/metabolism , Male , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/pathology , Cattle , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Rats, Sprague-Dawley , Osteogenesis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Binding Sites , Coculture Techniques , Osteoprotegerin/metabolism , Disease Models, Animal
12.
Cell Mol Biol Lett ; 29(1): 100, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977961

ABSTRACT

OBJECTIVE: Osteoporosis is a global health issue characterized by decreased bone mass and microstructural degradation, leading to an increased risk of fractures. This study aims to explore the molecular mechanism by which P2X7 receptors influence osteoclast formation and bone resorption through the PI3K-Akt-GSK3ß signaling pathway. METHODS: An osteoporosis mouse model was generated through ovariectomy (OVX) in normal C57BL/6 and P2X7f/f; LysM-cre mice. Osteoclasts were isolated for transcriptomic analysis, and differentially expressed genes were selected for functional enrichment analysis. Metabolite analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and multivariate statistical analysis and pattern recognition were used to identify differential lipid metabolism markers and their distribution. Bioinformatics analyses were conducted using the Encyclopedia of Genes and Genomes database and the MetaboAnalyst database to assess potential biomarkers and create a metabolic pathway map. Osteoclast precursor cells were used for in vitro cell experiments, evaluating cell viability and proliferation using the Cell Counting Kit 8 (CCK-8) assay. Osteoclast precursor cells were induced to differentiate into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-beta ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) staining was performed to compare differentiation morphology, size, and quantity between different groups. Western blot analysis was used to assess the expression of differentiation markers, fusion gene markers, and bone resorption ability markers in osteoclasts. Immunofluorescence staining was employed to examine the spatial distribution and quantity of osteoclast cell skeletons, P2X7 protein, and cell nuclei, while pit assay was used to evaluate osteoclast bone resorption ability. Finally, in vivo animal experiments, including micro computed tomography (micro-CT), hematoxylin and eosin (HE) staining, TRAP staining, and immunohistochemistry, were conducted to observe bone tissue morphology, osteoclast differentiation, and the phosphorylation level of the PI3K-Akt-GSK3ß signaling pathway. RESULTS: Transcriptomic and metabolomic data collectively reveal that the P2X7 receptor can impact the pathogenesis of osteoporosis through the PI3K-Akt-GSK3ß signaling pathway. Subsequent in vitro experiments showed that cells in the Sh-P2X7 + Recilisib group exhibited increased proliferative activity (1.15 versus 0.59), higher absorbance levels (0.68 versus 0.34), and a significant increase in resorption pit area (13.94 versus 3.50). Expression levels of osteoclast differentiation-related proteins MMP-9, CK, and NFATc1 were markedly elevated (MMP-9: 1.72 versus 0.96; CK: 2.54 versus 0.95; NFATc1: 3.05 versus 0.95), along with increased fluorescent intensity of F-actin rings. In contrast, the OE-P2X7 + LY294002 group showed decreased proliferative activity (0.64 versus 1.29), reduced absorbance (0.34 versus 0.82), and a significant decrease in resorption pit area (5.01 versus 14.96), accompanied by weakened expression of MMP-9, CK, and NFATc1 (MMP-9: 1.14 versus 1.79; CK: 1.26 versus 2.75; NFATc1: 1.17 versus 2.90) and decreased F-actin fluorescent intensity. Furthermore, in vivo animal experiments demonstrated that compared with the wild type (WT) + Sham group, mice in the WT + OVX group exhibited significantly increased levels of CTX and NTX in serum (CTX: 587.17 versus 129.33; NTX: 386.00 versus 98.83), a notable decrease in calcium deposition (19.67 versus 53.83), significant reduction in bone density, increased trabecular separation, and lowered bone mineral density (BMD). When compared with the KO + OVX group, mice in the KO + OVX + recilisib group showed a substantial increase in CTX and NTX levels in serum (CTX: 503.50 versus 209.83; NTX: 339.83 versus 127.00), further reduction in calcium deposition (29.67 versus 45.33), as well as decreased bone density, increased trabecular separation, and reduced BMD. CONCLUSION: P2X7 receptors positively regulate osteoclast formation and bone resorption by activating the PI3K-Akt-GSK3ß signaling pathway.


Subject(s)
Bone Resorption , Cell Differentiation , Glycogen Synthase Kinase 3 beta , Mice, Inbred C57BL , Osteoclasts , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, Purinergic P2X7 , Signal Transduction , Animals , Female , Mice , Bone Resorption/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Cell Differentiation/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Osteoclasts/metabolism , Osteoporosis/metabolism , Osteoporosis/genetics , Osteoporosis/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , RANK Ligand/metabolism , RANK Ligand/genetics , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics
13.
Chem Biol Interact ; 399: 111135, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38971422

ABSTRACT

Iron overload is a risk factor for osteoporosis due to its oxidative toxicity. Previous studies have demonstrated that an excessive amount of iron increases osteocyte apoptosis and receptor activator of nuclear factor κ-B ligand (RANKL) production, which stimulates osteoclast differentiation in vitro. However, the effects of exogenous iron supplementation-induced iron overload on osteocytes in vivo and its role in iron overload-induced bone loss are unknown. This work aimed to develop an iron overloaded murine model of C57BL/6 mice by intraperitoneal administration of iron dextran for two months. The iron levels in various organs, bone, and serum, as well as the microstructure and strength of bone, apoptosis of osteocytes, oxidative stress in bone tissue, and bone formation and resorption, were assessed. The results showed that 2 months of exogenous iron supplementation significantly increased iron levels in the liver, spleen, kidney, bone tissue, and serum. Iron overload negatively affected bone microstructure and strength. Osteocyte apoptosis and empty lacunae rate were elevated by exogenous iron. Iron overload upregulated RANKL expression but had no significant impact on osteoprotegerin (OPG) and sclerostin levels. Static and dynamic histologic analyses and serum biochemical assay showed that iron overload increased bone resorption without significantly affecting bone formation. Exogenous iron promoted oxidative stress in osteocytes in vivo and in vitro. Additional supplementation of iron chelator (deferoxamine) or N-acetyl-l-cysteine (NAC) partially alleviated bone loss, osteocyte apoptosis, osteoclast formation, and oxidative stress due to iron overload. These findings, in line with prior in vitro studies, suggest that exogenous iron supplementation induces osteoclastogenesis and osteoporosis by promoting osteocyte apoptosis and RANKL production via oxidative stress.


Subject(s)
Apoptosis , Bone Resorption , Iron , Mice, Inbred C57BL , Osteocytes , Oxidative Stress , RANK Ligand , Animals , Osteocytes/drug effects , Osteocytes/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , RANK Ligand/metabolism , Bone Resorption/metabolism , Bone Resorption/pathology , Mice , Iron/metabolism , Disease Models, Animal , Male , Iron Overload/metabolism , Iron Overload/pathology , Iron Overload/chemically induced , Osteoprotegerin/metabolism , Acetylcysteine/pharmacology , Adaptor Proteins, Signal Transducing
14.
Front Biosci (Landmark Ed) ; 29(7): 248, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39082340

ABSTRACT

We review the abnormal bone turnover that is the basis of idiopathic inflammatory or rheumatoid arthritis and bone loss, with emphasis on Tumor Necrosis Factor-alpha (TNFα)-related mechanisms. We review selected data on idiopathic arthritis in juvenile human disease, and discuss mouse models focusing on induction of bone resorbing cells by TNFα and Receptor Activator of Nuclear Factor kappa B Ligand (RANKL). In both humans and animal models, macrophage-derived cells in the joint, particularly in the synovium and periosteum, degrade bone and cartilage. Mouse models of rheumatoid arthritis share with human disease bone resorbing cells and strong relation to TNFα expression. In humans, differences in therapy and prognosis of arthritis vary with age, and results from early intervention for inflammatory cytokines in juvenile patients are particularly interesting. Mechanisms that contribute to inflammatory arthritis reflect, in large part, inflammatory cytokines that play minor roles in normal bone turnover. Changes in inflammatory cytokines, particularly TNFα, are many times larger, and presented in different locations, than cytokines that regulate normal bone turnover. Recent data from in vitro and mouse models include novel mechanisms described in differentiation of bone resorbing cells in inflammatory arthritis dependent on the Transient Receptor Potential Channel (TRPC) family of calcium channels. Low-molecular weight (MW) inhibitors of TRPC channels add to their potential importance. Associations with inflammatory arthritis unrelated to TNFα are briefly summarized as pointing to alternative mechanisms. We suggest that early detection and monoclonal antibodies targeting cytokines mediating disease progression deserves emphasis.


Subject(s)
Arthritis, Juvenile , Disease Models, Animal , Tumor Necrosis Factor-alpha , Animals , Arthritis, Juvenile/metabolism , Arthritis, Juvenile/immunology , Humans , Tumor Necrosis Factor-alpha/metabolism , Mice , Bone Remodeling , RANK Ligand/metabolism , Osteoclasts/metabolism
15.
Lasers Med Sci ; 39(1): 187, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031220

ABSTRACT

The purpose of this research was to investigate the effect of toluidine blue (TB) mediated photodynamic therapy (PDT) on the inhibition of lipopolysaccharide (LPS)-induced inflammation in rat gingival fibroblasts through in vitro experiments. Rat gingival fibroblasts were divided into five groups: (1) control, (2) LPS treatment, (3) laser treatment, (4) TB treatment (1.0 µg/mL), and (5) PDT treatment (TB plus laser irradiation at 320 mW/cm2 for 240 s). After 24 h, cell growth activity was measured using MTT assay. The levels of receptor activator for nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in the cell culture supernatant were measured using enzyme-linked immunosorbent assay (ELISA). Nuclear proteins were extracted and the phosphorylation levels of phosphorylated nuclear factor-κB/p65 (p-p65) and phosphorylated inhibitor of nuclear factor-κB (p-IκBα) were determined using Western Blot. MTT results showed no significant difference in cell viability between the groups (P > 0.05). After LPS induction, OPG expression decreased, RANKL expression increased, and the OPG/RANKL ratio decreased, which was different from the control group (P < 0.05). After PDT treatment, OPG expression increased, RANKL expression decreased (P < 0.05), and the OPG/RANKL ratio increased (P < 0.05). Compared to the control group, there was no significant difference in OPG and RANKL expression or the OPG/RANKL ratio (P > 0.05). The activation of NF-κB was closely related to the phosphorylation levels of p-p65 and p-IκBα. LPS significantly up-regulated p-p65 and p-IκBα expression (P < 0.05), while PDT treatment decreased their phosphorylation levels (P < 0.05). TB-PDT treatment can inhibit NF-κB signaling pathway activation, decrease RANKL and OPG expression, and reduce the OPG/RANKL ratio, thereby reducing inflammation and playing a role in periodontitis treatment.


Subject(s)
Fibroblasts , Gingiva , Lipopolysaccharides , Osteoprotegerin , Photochemotherapy , RANK Ligand , Tolonium Chloride , Animals , Photochemotherapy/methods , Rats , Gingiva/drug effects , Gingiva/cytology , Fibroblasts/drug effects , Fibroblasts/radiation effects , Fibroblasts/metabolism , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Cells, Cultured , Inflammation , NF-kappa B/metabolism , Cell Survival/drug effects , Cell Survival/radiation effects , Photosensitizing Agents/pharmacology , Phosphorylation
16.
BMC Oral Health ; 24(1): 859, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069630

ABSTRACT

BACKGROUND: This study was performed to determine the therapeutic effects of diosgenin (DG) which is a steroidal saponin, administered at different doses on alveolar bone loss (ABL) in rats with experimental periodontitis using immunohistochemical and cone-beam computed tomography (CBCT). METHODS: Thirty-two male Wistar rats divided into four equal groups: control (non-ligated), periodontitis (P), DG-48, and DG-96. Sutures were placed at the gingival margin of the lower first molars to induce experimental periodontitis. Then, 48 and 96 mg/kg of DG was administered to the study groups by oral gavage for 29 days. At day 30, the animals were sacrificed and ABL was determined via CBCT. The expression patterns of osteocalcin (OCN), alkaline phosphatase (ALP), type I collagen (Col-1), B cell lymphoma 2 (Bcl 2), Bcl 2-associated X protein (Bax), bone morphogenetic protein 2 (BMP-2), and receptor activator of NF κB ligand (RANKL) were examined immunohistochemically. RESULTS: Histopathologic examination showed all features of the advanced lesion in the P group. DG use decreased all these pathologic changes. It was observed that periodontitis pathology decreased as the dose increased. DG treatment increased the ALP, OCN, Bcl 2, Col-1, and BMP-2 levels in a dose-dependent manner, compared with the P group (p < 0.05). DG decreased the expression of RANKL and Bax in a dose-dependent manner (p < 0.05). ABL was significantly lower in the DG-48 and DG-96 groups than in the P group (p < 0.05). CONCLUSION: Collectively, our findings suggest that DG administration protects rats from periodontal tissue damage with a dose-dependent manner, provides an increase in markers of bone formation, decreases in Bax/Bcl-2 ratio and osteoclast activation.


Subject(s)
Alkaline Phosphatase , Alveolar Bone Loss , Bone Morphogenetic Protein 2 , Osteocalcin , Periodontitis , RANK Ligand , Rats, Wistar , Animals , Male , Periodontitis/drug therapy , Periodontitis/pathology , Rats , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Bone Morphogenetic Protein 2/metabolism , RANK Ligand/metabolism , RANK Ligand/analysis , Cone-Beam Computed Tomography , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/analysis , Collagen Type I/analysis , Collagen Type I/metabolism , Proto-Oncogene Proteins c-bcl-2/analysis , Proto-Oncogene Proteins c-bcl-2/metabolism , Immunohistochemistry , Disease Models, Animal , Dose-Response Relationship, Drug
17.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822942

ABSTRACT

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Subject(s)
Bone Regeneration , Graphite , Osteoprotegerin , RANK Ligand , Rats, Wistar , Graphite/pharmacology , Animals , Bone Regeneration/drug effects , Rats , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Humans , Biocompatible Materials/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Actinobacteria/metabolism , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Signal Transduction/drug effects
18.
Cell Commun Signal ; 22(1): 322, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863060

ABSTRACT

Bone resorption is driven through osteoclast differentiation by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-Β ligand (RANKL). We noted that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 are downregulated at the expression level during osteoclast differentiation of the murine monocytic cell line RAW264.7 in response to RANKL. Both proteinases are well known to shed a variety of single-pass transmembrane molecules from the cell surface. We further showed that inhibitors of ADAM10 or ADAM17 promote osteoclastic differentiation and furthermore enhance the surface expression of receptors for RANKL and M-CSF on RAW264.7 cells. Using murine bone marrow-derived monocytic cells (BMDMCs), we demonstrated that a genetic deficiency of ADAM17 or its required regulator iRhom2 leads to increased osteoclast development in response to M-CSF and RANKL stimulation. Moreover, ADAM17-deficient osteoclast precursor cells express increased levels of the receptors for RANKL and M-CSF. Thus, ADAM17 negatively regulates osteoclast differentiation, most likely through shedding of these receptors. To assess the time-dependent contribution of ADAM10, we blocked this proteinase by adding a specific inhibitor on day 0 of BMDMC stimulation with M-CSF or on day 7 of subsequent stimulation with RANKL. Only ADAM10 inhibition beginning on day 7 increased the size of developing osteoclasts indicating that ADAM10 suppresses osteoclast differentiation at a later stage. Finally, we could confirm our findings in human peripheral blood mononuclear cells (PBMCs). Thus, downregulation of either ADAM10 or ADAM17 during osteoclast differentiation may represent a novel regulatory mechanism to enhance their differentiation process. Enhanced bone resorption is a critical issue in osteoporosis and is driven through osteoclast differentiation by specific osteogenic mediators. The present study demonstrated that the metalloproteinases ADAM17 and ADAM10 critically suppress osteoclast development. This was observed for a murine cell line, for isolated murine bone marrow cells and for human blood cells by either preferential inhibition of the proteinases or by gene knockout. As a possible mechanism, we studied the surface expression of critical receptors for osteogenic mediators on developing osteoclasts. Our findings revealed that the suppressive effects of ADAM17 and ADAM10 on osteoclastogenesis can be explained in part by the proteolytic cleavage of surface receptors by ADAM10 and ADAM17, which reduces the sensitivity of these cells to osteogenic mediators. We also observed that osteoclast differentiation was associated with the downregulation of ADAM10 and ADAM17, which reduced their suppressive effects. We therefore propose that this downregulation serves as a feedback loop for enhancing osteoclast development.


Subject(s)
ADAM10 Protein , ADAM17 Protein , Amyloid Precursor Protein Secretases , Cell Differentiation , Down-Regulation , Membrane Proteins , Osteoclasts , RANK Ligand , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Osteoclasts/metabolism , Osteoclasts/cytology , Animals , Cell Differentiation/genetics , Mice , Down-Regulation/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , RANK Ligand/metabolism , RAW 264.7 Cells , Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/metabolism , Mice, Inbred C57BL
19.
Cell Death Dis ; 15(6): 437, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902257

ABSTRACT

TNF receptor superfamily member 11a (TNFRSF11a, RANK) and its ligand TNF superfamily member 11 (TNFRSF11, RANKL) are overexpressed in many malignancies. However, the clinical importance of RANKL/RANK in colorectal cancer (CRC) is mainly unknown. We examined CRC samples and found that RANKL/RANK was elevated in CRC tissues compared with nearby normal tissues. A higher RANKL/RANK expression was associated with a worse survival rate. Furthermore, RANKL was mostly produced by regulatory T cells (Tregs), which were able to promote CRC advancement. Overexpression of RANK or addition of RANKL significantly increased the stemness and migration of CRC cells. Furthermore, RANKL/RANK signaling stimulated C-C motif chemokine ligand 20 (CCL20) production by CRC cells, leading to Treg recruitment and boosting tumor stemness and malignant progression. This recruitment process was accomplished by CCL20-CCR6 interaction, demonstrating a connection between CRC cells and immune cells. These findings suggest an important role of RANKL/RANK in CRC progression, offering a potential target for CRC prevention and therapy.


Subject(s)
Chemokine CCL20 , Colorectal Neoplasms , Neoplastic Stem Cells , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Receptors, CCR6 , Signal Transduction , T-Lymphocytes, Regulatory , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , RANK Ligand/metabolism , Receptors, CCR6/metabolism , Receptors, CCR6/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Male , Mice , Female , Neoplasm Metastasis , Cell Line, Tumor , Middle Aged , Mice, Nude , Cell Movement
20.
Appl Microbiol Biotechnol ; 108(1): 397, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922350

ABSTRACT

Functional M cells are differentiated by receptor activator of NF-κB ligand (RANKL) and capture of luminal antigens to initiate immune responses. We aimed to use postbiotic-based recombinant chicken RANKL (cRANKL) to promote M cell differentiation and test the efficacy of oral vaccines. Chicks were divided into three groups that were administered phosphate-buffered saline (PBS), cell extracts of wild-type Lactococcus lactis subsp. lactis IL1403 (WT_CE), or cell extracts of recombinant L. lactis expressing cRANKL (cRANKL_CE). The expression of the M cell marker was measured, and the gut microbiome was profiled. The efficiency of the infectious bursal disease (IBD) vaccine was tested after 12 consecutive days of administering cRANKL_CE. The chickens that were administered cRANKL_CE (p = 0.038) had significantly higher Annexin A5 (ANXA5) mRNA expression levels than those in the PBS group (PBS vs. WT_CE, p = 0.657). In the gut microbiome analysis, no significant changes were observed. However, the relative abundance of Escherichia-Shigella was negatively correlated (r = - 0.43, p = 0.019) with ANXA5 mRNA expression in Peyer's patches. cRANKL_CE/IBD (p = 0.018) had significantly higher IBD-specific faecal IgA levels than PBS/IBD (PBS/IBD vs. WT_CE/IBD, p = 0.217). Postbiotic-based recombinant cRANKL effectively improved the expression of M cell markers and the efficiency of oral vaccines. No significant changes were observed in the gut microbiome after administration of postbiotic-based recombinant cRANKL. This strategy can be used for the development of feed additives and adjuvants. KEY POINTS: • Postbiotic-based recombinant cRANKL enhanced the expression of ANXA5 in chicken. • The relative abundance of Escherichia-Shigella was negatively correlated with ANXA5 expression. • Postbiotic-based recombinant cRANKL effectively improved the efficiency of oral vaccine.


Subject(s)
Chickens , Gastrointestinal Microbiome , Lactococcus lactis , RANK Ligand , Recombinant Proteins , Animals , Chickens/immunology , Administration, Oral , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactococcus lactis/immunology , RANK Ligand/immunology , RANK Ligand/genetics , RANK Ligand/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/administration & dosage , Birnaviridae Infections/prevention & control , Birnaviridae Infections/immunology , Birnaviridae Infections/veterinary , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/microbiology , Infectious bursal disease virus/immunology , Infectious bursal disease virus/genetics , Cell Differentiation , Peyer's Patches/immunology
SELECTION OF CITATIONS
SEARCH DETAIL