Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 583
Filter
1.
Front Immunol ; 15: 1376655, 2024.
Article in English | MEDLINE | ID: mdl-39328409

ABSTRACT

To further understand the impact of deficiency of the autoimmune regulator (Aire) gene during the adhesion of medullary thymic epithelial cells (mTECs) to thymocytes, we sequenced single-cell libraries (scRNA-seq) obtained from Aire wild-type (WT) (Airewt/wt ) or Aire-deficient (Airewt/mut ) mTECs cocultured with WT single-positive (SP) CD4+ thymocytes. Although the libraries differed in their mRNA and long noncoding RNA (lncRNA) profiles, indicating that mTECs were heterogeneous in terms of their transcriptome, UMAP clustering revealed that both mTEC lines expressed their specific markers, i.e., Epcam, Itgb4, Itga6, and Casp3 in resting mTECs and Ccna2, Pbk, and Birc5 in proliferative mTECs. Both cocultured SP CD4+ thymocytes remained in a homogeneous cluster expressing the Il7r and Ccr7 markers. Comparisons of the two types of cocultures revealed the differential expression of mRNAs that encode transcription factors (Zfpm2, Satb1, and Lef1), cell adhesion genes (Itgb1) in mTECs, and Themis in thymocytes, which is associated with the regulation of positive and negative selection. At the single-cell sequencing resolution, we observed that Aire acts on both Aire WT and Aire-deficient mTECs as an upstream controller of mRNAs, which encode transcription factors or adhesion proteins that, in turn, are posttranscriptionally controlled by lncRNAs, for example, Neat1, Malat1, Pvt1, and Dancr among others. Under Aire deficiency, mTECs dysregulate the expression of MHC-II, CD80, and CD326 (EPCAM) protein markers as well as metabolism and cell cycle-related mRNAs, which delay the cell cycle progression. Moreover, when adhered to mTECs, WT SP CD4+ or CD8+ thymocytes modulate the expression of cell activation proteins, including CD28 and CD152/CTLA4, and the expression of cellular metabolism mRNAs. These findings indicate a complex mechanism through which an imbalance in Aire expression can affect mTECs and thymocytes during adhesion.


Subject(s)
AIRE Protein , Cell Adhesion , Epithelial Cells , RNA, Long Noncoding , Thymocytes , Transcription Factors , Transcriptome , RNA, Long Noncoding/genetics , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Mice , Thymocytes/metabolism , Thymocytes/immunology , Thymocytes/cytology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/metabolism , Single-Cell Analysis , Gene Regulatory Networks , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Coculture Techniques , Gene Expression Profiling , Mice, Knockout
2.
Cells ; 13(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39273054

ABSTRACT

The mechanisms underlying the sustained activation of the PI3K/AKT and Wnt/ß-catenin pathways mediated by HOTAIR in cervical cancer (CC) have not been extensively described. To address this knowledge gap in the literature, we explored the interactions between these pathways by driving HOTAIR expression levels in HeLa cells. Our findings reveal that HOTAIR is a key regulator in sustaining the activation of both signaling pathways. Specifically, altering HOTAIR expression-either by knockdown or overexpression-significantly influenced the transcriptional activity of the PI3K/AKT and Wnt/ß-catenin pathways. Additionally, we discovered that HIF1α directly induces HOTAIR transcription, which in turn leads to the epigenetic silencing of the PTEN promoter via DNMT1. This process leads to the sustained activation of both pathways, highlighting a novel regulatory axis involving HOTAIR and HIF1α in cervical cancer. Our results suggest a new model in which HOTAIR sustains reciprocal activation of the PI3K/AKT and Wnt/ß-catenin pathways through the HOTAIR/HIF1α axis, thereby contributing to the oncogenic phenotype of cervical cancer.


Subject(s)
DNA Methylation , Hypoxia-Inducible Factor 1, alpha Subunit , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , Uterine Cervical Neoplasms , Wnt Signaling Pathway , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Female , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Wnt Signaling Pathway/genetics , HeLa Cells , DNA Methylation/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , beta Catenin/metabolism , beta Catenin/genetics , Promoter Regions, Genetic/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics
3.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273443

ABSTRACT

Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or "differentiated" phenotype and a "proliferative-dedifferentiated" phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the development of various lung and cardiovascular diseases such as Chronic Obstructive Pulmonary Disease (COPD). Long non-coding RNAs (lncRNAs) have emerged as key modulators of SMC differentiation and phenotypic changes. In this study, we examined the expression of lncRNAs in primary human pulmonary artery SMCs (hPASMCs) during cell-to-cell contact-induced SMC differentiation. We discovered a novel lncRNA, which we named Differentiation And Growth Arrest-Related lncRNA (DAGAR) that was significantly upregulated in the quiescent phenotype with respect to proliferative SMCs and in cell-cycle-arrested MRC5 lung fibroblasts. We demonstrated that DAGAR expression is essential for SMC quiescence and its knockdown hinders SMC differentiation. The treatment of quiescent SMCs with the pro-inflammatory cytokine Tumor Necrosis Factor (TNF), a known inducer of SMC dedifferentiation and proliferation, elicited DAGAR downregulation. Consistent with this, we observed diminished DAGAR expression in pulmonary arteries from COPD patients compared to non-smoker controls. Through pulldown experiments followed by mass spectrometry analysis, we identified several proteins that interact with DAGAR that are related to cell differentiation, the cell cycle, cytoskeleton organization, iron metabolism, and the N-6-Methyladenosine (m6A) machinery. In conclusion, our findings highlight DAGAR as a novel lncRNA that plays a crucial role in the regulation of cell proliferation and SMC differentiation. This paper underscores the potential significance of DAGAR in SMC and fibroblast physiology in health and disease.


Subject(s)
Cell Differentiation , Cell Proliferation , Fibroblasts , Myocytes, Smooth Muscle , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fibroblasts/metabolism , Cell Differentiation/genetics , Myocytes, Smooth Muscle/metabolism , Cell Proliferation/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Cells, Cultured
4.
Wiley Interdiscip Rev RNA ; 15(5): e1870, 2024.
Article in English | MEDLINE | ID: mdl-39268566

ABSTRACT

Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Animals , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/genetics
5.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125832

ABSTRACT

It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.


Subject(s)
DNA Damage , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , MicroRNAs , PTEN Phosphohydrolase , RNA, Long Noncoding , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Epithelial-Mesenchymal Transition/genetics , Drug Resistance, Neoplasm/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/genetics , Signal Transduction
6.
Clinics (Sao Paulo) ; 79: 100400, 2024.
Article in English | MEDLINE | ID: mdl-39089097

ABSTRACT

BACKGROUND: Aortic Dissection (AD) is a vascular disease with a high mortality rate and limited treatment strategies. The current research analyzed the function and regulatory mechanism of lncRNA HCG18 in AD. METHODS: HCG18, miR-103a-3p, and HMGA2 levels in the aortic tissue of AD patients were examined by RT-qPCR. After transfection with relevant plasmids, the proliferation of rat aortic Vascular Smoothing Muscle Cells (VSMCs) was detected by CCK-8 and colony formation assay, Bcl-2 and Bax was measured by Western blot, and apoptosis was checked by flow cytometry. Then, the targeting relationship between miR-103a-3p and HCG18 or HMGA2 was verified by bioinformation website analysis and dual luciferase reporter assay. Finally, the effect of HCG18 was verified in an AD rat model induced by ß-aminopropionitrile. RESULTS: HCG18 and HMGA2 were upregulated and miR-103a-3p was downregulated in the aortic tissues of AD patients. Downregulating HCG18 or upregulating miR-103a-3p enhanced the proliferation of VSMCs and limited cell apoptosis. HCG18 promoted HMGA2 expression by competing with miR-103a-3p and restoring HMGA2 could impair the effect of HCG18 downregulation or miR-103a-3p upregulation in mediating the proliferation and apoptosis of VSMCs. In addition, down-regulation of HCG18 could improve the pathological injury of the aorta in AD rats. CONCLUSION: HCG18 reduces proliferation and induces apoptosis of VSMCs through the miR-103a-3p/HMGA2 axis, thus aggravating AD.


Subject(s)
Aortic Dissection , Apoptosis , Cell Proliferation , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Aortic Dissection/genetics , Aortic Dissection/metabolism , Humans , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Male , Rats , Muscle, Smooth, Vascular/metabolism , Down-Regulation , Rats, Sprague-Dawley , Up-Regulation , Middle Aged , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
8.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125649

ABSTRACT

lncRNAs are noncoding transcripts with tissue and cancer specificity. Particularly, in breast cancer, lncRNAs exhibit subtype-specific expression; they are particularly upregulated in luminal tumors. However, no gene signature-based laboratory tests have been developed for luminal breast cancer identification or the differential diagnosis of luminal tumors, since no luminal A- or B-specific genes have been identified. Particularly, luminal B patients are of clinical interest, since they have the most variable response to neoadjuvant treatment; thus, it is necessary to develop diagnostic and predictive biomarkers for these patients to optimize treatment decision-making and improve treatment quality. In this study, we analyzed the lncRNA expression profiles of breast cancer cell lines and patient tumor samples from RNA-Seq data to identify an lncRNA signature specific for luminal phenotypes. We identified an lncRNA signature consisting of LINC01016, GATA3-AS1, MAPT-IT1, and DSCAM-AS1 that exhibits luminal subtype-specific expression; among these lncRNAs, GATA3-AS1 is associated with the presence of residual disease (Wilcoxon test, p < 0.05), which is related to neoadjuvant chemotherapy resistance in luminal B breast cancer patients. Furthermore, analysis of GATA3-AS1 expression using RNA in situ hybridization (RNA ISH) demonstrated that this lncRNA is detectable in histological slides. Similar to estrogen receptors and Ki67, both commonly detected biomarkers, GATA3-AS1 proves to be a suitable predictive biomarker for clinical application in breast cancer laboratory tests.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Neoadjuvant Therapy , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Gene Expression Profiling , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Transcriptome
9.
Sci Rep ; 14(1): 19797, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39187522

ABSTRACT

Long noncoding RNAs (lncRNAs) are versatile RNA molecules recently identified as key regulators of gene expression in response to environmental stress. Our primary focus in this study was to develop a robust computational pipeline for identifying structurally identical lncRNAs across replicates from publicly available bulk RNA-seq datasets. In order to demonstrate the effectiveness of the pipeline, we utilized the transcriptome of the thermophilic fungus Thermothelomyces thermophilus and assessed the expression pattern of lncRNAs in conjunction with Heat Shock Proteins (HSP), a well-known protein family critical for the cell's response to high temperatures. Our findings demonstrate that the identification of structurally identical transcripts among replicates in this thermophilic fungus ensures the reliability and accuracy of RNA studies, contributing to the validity of biological interpretations. Furthermore, the majority of lncRNAs exhibited a distinct expression pattern compared to HSPs. Our study contributes to advancing the understanding of the biological mechanisms comprising lncRNAs in thermophilic fungi.


Subject(s)
Computational Biology , RNA, Fungal , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Fungal/genetics , RNA, Fungal/metabolism , Computational Biology/methods , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Gene Expression Regulation, Fungal , Transcriptome , Hot Temperature , Gene Expression Profiling/methods
10.
Arq Bras Cardiol ; 121(6): e20230675, 2024.
Article in Portuguese, English | MEDLINE | ID: mdl-38958296

ABSTRACT

BACKGROUND: The anthracycline chemotherapeutic antibiotic doxorubicin (DOX) can induce cumulative cardiotoxicity and lead to cardiac dysfunction. Long non-coding RNAs (lncRNAs) can function as important regulators in DOX-induced myocardial injury. OBJECTIVE: This study aims to investigate the functional role and molecular mechanism of lncRNA OXCT1 antisense RNA 1 (OXCT1-AS1) in DOX-induced myocardial cell injury in vitro. METHODS: Human cardiomyocytes (AC16) were stimulated with DOX to induce a myocardial cell injury model. OXCT1-AS1, miR-874-3p, and BDH1 expression in AC16 cells were determined by RT-qPCR. AC16 cell viability was measured by XTT assay. Flow cytometry was employed to assess the apoptosis of AC16 cells. Western blotting was used to evaluate protein levels of apoptosis-related markers. Dual-luciferase reporter assay was conducted to verify the binding ability between miR-874-3p and OXCT1-AS1 and between miR-874-3p and BDH1. The value of p<0.05 indicated statistical significance. RESULTS: OXCT1-AS1 expression was decreased in DOX-treated AC16 cells. Overexpression of OXCT1-AS1 reversed the reduction of cell viability and promotion of cell apoptosis caused by DOX. OXCT1-AS1 is competitively bound to miR-874-3p to upregulate BDH1. BDH1 overexpression restored AC16 cell viability and suppressed cell apoptosis under DOX stimulation. Knocking down BDH1 reversed OXCT1-AS1-mediated attenuation of AC16 cell apoptosis under DOX treatment. CONCLUSION: LncRNA OXCT1-AS1 protects human myocardial cells AC16 from DOX-induced apoptosis via the miR-874-3p/BDH1 axis.


FUNDAMENTO: O antibiótico quimioterápico antraciclina doxorrubicina (DOX) pode induzir cardiotoxicidade cumulativa e levar à disfunção cardíaca. RNAs não codificantes longos (lncRNAs) podem funcionar como importantes reguladores na lesão miocárdica induzida por DOX. OBJETIVO: Este estudo tem como objetivo investigar o papel funcional e o mecanismo molecular do RNA antisense lncRNA OXCT1 1 (OXCT1-AS1) na lesão celular miocárdica induzida por DOX in vitro. MÉTODOS: Cardiomiócitos humanos (AC16) foram estimulados com DOX para induzir um modelo de lesão celular miocárdica. A expressão de OXCT1-AS1, miR-874-3p e BDH1 em células AC16 foi determinada por RT-qPCR. A viabilidade das células AC16 foi medida pelo ensaio XTT. A citometria de fluxo foi empregada para avaliar a apoptose de células AC16. Western blotting foi utilizado para avaliar os níveis proteicos de marcadores relacionados à apoptose. O ensaio repórter de luciferase dupla foi conduzido para verificar a capacidade de ligação entre miR-874-3p e OXCT1-AS1 e entre miR-874-3p e BDH1. O valor de p<0,05 indicou significância estatística. RESULTADOS: A expressão de OXCT1-AS1 foi diminuída em células AC16 tratadas com DOX. A superexpressão de OXCT1-AS1 reverteu a redução da viabilidade celular e a promoção da apoptose celular causada pela DOX. OXCT1-AS1 está ligado competitivamente ao miR-874-3p para regular positivamente o BDH1. A superexpressão de BDH1 restaurou a viabilidade das células AC16 e suprimiu a apoptose celular sob estimulação com DOX. A derrubada do BDH1 reverteu a atenuação da apoptose de células AC16 mediada por OXCT1-AS1 sob tratamento com DOX. CONCLUSÃO: LncRNA OXCT1-AS1 protege células miocárdicas humanas AC16 da apoptose induzida por DOX através do eixo miR-874-3p/BDH1.


Subject(s)
Apoptosis , Doxorubicin , MicroRNAs , Myocytes, Cardiac , RNA, Long Noncoding , Humans , Doxorubicin/pharmacology , RNA, Long Noncoding/genetics , Apoptosis/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Antibiotics, Antineoplastic/pharmacology , Cell Survival/drug effects , Reproducibility of Results , Blotting, Western , Flow Cytometry , RNA, Competitive Endogenous
11.
PLoS Negl Trop Dis ; 18(7): e0012318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39028711

ABSTRACT

In the Americas, L. infantum (syn. chagasi) is the main cause of human visceral leishmaniasis. The role of neutrophils as part of the innate response to Leishmania spp. infection is dubious and varies according to the species causing the infection. Global expression of coding RNAs, microRNAs and long non-coding RNAs changes as part of the immune response against pathogens. Changes in mRNA and non-coding RNA expression resulting from infection by Leishmania spp. are widely studied in macrophages, but scarce in neutrophils, the first cell to encounter the trypanosomatid, especially following infection by L. infantum. Herein, we aimed to understand the expression patterns of coding and non-coding transcripts during acute in vitro infection of human neutrophils by L. infantum. We isolated neutrophils from whole blood of healthy male donors (n = 5) and split into groups: 1) infected with L. infantum (MOI = 5:1), and 2) uninfected controls. After 3 hours of exposure of infected group to promastigotes of L. infantum, followed by 17 hours of incubation, total RNA was extracted and total RNA-Seq and miRNA microarray were performed. A total of 212 genes were differentially expressed in neutrophils following RNA-Seq analysis (log2(FC)±0.58, FDR≤0.05). In vitro infection with L. infantum upregulated the expression of 197 and reduced the expression of 92 miRNAs in human neutrophils (FC±2, FDR≤0.01). Lastly, 5 downregulated genes were classified as lncRNA, and of the 10 upregulated genes, there was only 1 lncRNA. Further bioinformatic analysis indicated that changes in the transcriptome and microtranscriptome of neutrophils, following in vitro infection with L. infantum, may impair phagocytosis, apoptosis and decrease nitric oxide production. Our work sheds light on several mechanisms used by L. infantum to control neutrophil-mediated immune response and identifies several targets for future functional studies, aiming at the development of preventive or curative treatments for this prevalent zoonosis.


Subject(s)
Leishmania infantum , MicroRNAs , Neutrophils , RNA, Long Noncoding , RNA, Messenger , Humans , Neutrophils/immunology , Neutrophils/metabolism , Leishmania infantum/genetics , Leishmania infantum/immunology , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/genetics , Adult , Gene Expression Profiling
12.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062884

ABSTRACT

Alzheimer's disease (AD), a neurodegenerative disorder characterized by progressive cognitive decline, is the most common form of dementia. Currently, there is no single test that can diagnose AD, especially in understudied populations and developing countries. Instead, diagnosis is based on a combination of medical history, physical examination, cognitive testing, and brain imaging. Exosomes are extracellular nanovesicles, primarily composed of RNA, that participate in physiological processes related to AD pathogenesis such as cell proliferation, immune response, and neuronal and cardiovascular function. However, the identification and understanding of the potential role of long non-coding RNAs (lncRNAs) in AD diagnosis remain largely unexplored. Here, we clinically, cognitively, and genetically characterized a sample of 15 individuals diagnosed with AD (cases) and 15 controls from Barranquilla, Colombia. Advanced bioinformatics, analytics and Machine Learning (ML) techniques were used to identify lncRNAs differentially expressed between cases and controls. The expression of 28,909 lncRNAs was quantified. Of these, 18 were found to be differentially expressed and harbored in pivotal genes related to AD. Two lncRNAs, ENST00000608936 and ENST00000433747, show promise as diagnostic markers for AD, with ML models achieving > 95% sensitivity, specificity, and accuracy in both the training and testing datasets. These findings suggest that the expression profiles of lncRNAs could significantly contribute to advancing personalized AD diagnosis in this community, offering promising avenues for early detection and follow-up.


Subject(s)
Alzheimer Disease , RNA, Long Noncoding , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Humans , RNA, Long Noncoding/genetics , Female , Male , Aged , Precision Medicine/methods , Biomarkers , Machine Learning , Aged, 80 and over , Case-Control Studies , Gene Expression Profiling/methods , Computational Biology/methods
13.
Int J Obes (Lond) ; 48(10): 1414-1420, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38898229

ABSTRACT

BACKGROUND: Human Adenovirus D-36 (HAdV-D36) promotes adipogenesis in cellular and animal models and may contribute to the development of human obesity. Induction of PPARγ by HAdV-D36 seems to have a central role in the maintenance of adipogenic status. There is limited information about epigenetic mechanisms contributing to this process in human adipose tissue. This study evaluated the expression of lncRNAs (ADINR, GAS5 and MEG3) and miRNAs (miR-18a and miR-140) involved in the adipogenic process in visceral adipose tissue (VAT) of subjects with obesity with previous HAdV-D36 infection (seropositive) and unexposed (seronegative) subjects with obesity. METHODS: Individuals with obesity were grouped according to the presence of antibodies against HAdV-D36 (Seropositive: HAdV-D36[+], n = 29; and Seronegative: HAdV-D36[-], n = 28). Additionally, a group of individuals without obesity (n = 17) was selected as a control group. The HAdV-D36 serology was carried out by ELISA. Biopsies of VAT were obtained during an elective and clinically indicated surgery (bariatric or cholecystectomy). RNA extraction from VAT was performed and the expression of PPARG and non-coding RNAs was evaluated by qPCR. RESULTS: HAdV-D36[+] individuals had lower expression of anti-adipogenic lncRNAs GAS5 (p = 0.016) and MEG3 (p = 0.035) compared with HAdV-D36[-] subjects with obesity. HAdV-D36[+] subjects also presented increased expression of the adipogenic miRNA miR-18a (p = 0.042), which has been reported to be modulated by GAS5 through a RNA sponging mechanism during adipogenic differentiation. Additionally, an inverse correlation of GAS5 with PPARG expression was observed (r = -0.917, p = 0.01). CONCLUSION: Our results suggest that HAdV-D36 is related to non-coding RNAs implicated in adipogenesis, representing a potential mechanism by which previous HAdV-D36 infection could be associated with the long-term maintenance of adipogenic status, probably through the GAS5/miR-18a axis.


Subject(s)
Adipogenesis , Obesity , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , Male , Female , Obesity/metabolism , Obesity/genetics , Adult , Middle Aged , Adipogenesis/genetics , Adenoviruses, Human/genetics , Adipose Tissue/metabolism , Intra-Abdominal Fat/metabolism , Adenovirus Infections, Human/metabolism
14.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928426

ABSTRACT

Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.


Subject(s)
Biomarkers, Tumor , DNA, Mitochondrial , Mitochondria , Thyroid Neoplasms , Humans , Biomarkers, Tumor/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Mitochondria/genetics , RNA, Untranslated/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Prognosis
15.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38832821

ABSTRACT

LncRNA is a group of transcripts with a length exceeding 200 nucleotides that contribute to tumour development. Our research group found that LINC00052 expression was repressed during the formation of breast cancer (BC) multicellular spheroids. Intriguingly, LINC00052 precise role in BC remains uncertain. We explored LINC00052 expression in BC patients` RNA samples (TCGA) in silico, as well as in an in-house patient cohort, and inferred its cellular and molecular mechanisms. In vitro studies evaluated LINC00052 relevance in BC cells viability, cell cycle and DNA damage. Results. Bioinformatic RNAseq analysis of BC patients showed that LINC00052 is overexpressed in samples from all BC molecular subtypes. A similar LINC00052 expression pattern was observed in an in-house patient cohort. In addition, higher LINC00052 levels are related to better BC patient´s overall survival. Remarkably, MCF-7 and ZR-75-1 cells treated with estradiol showed increased LINC00052 expression compared to control, while these changes were not observed in MDA-MB-231 cells. In parallel, bioinformatic analyses indicated that LINC00052 influences DNA damage and cell cycle. MCF-7 cells with low LINC00052 levels exhibited increased cellular protection against DNA damage and diminished growth capacity. Furthermore, in cisplatin-resistant MCF-7 cells, LINC00052 expression was downregulated. Conclusion. This work shows that LINC00052 expression is associated with better BC patient survival. Remarkably, LINC00052 expression can be regulated by Estradiol. Additionally, assays suggest that LINC00052 could modulate MCF-7 cells growth and DNA damage repair. Overall, this study highlights the need for further research to unravel LINC00052 molecular mechanisms and potential clinical applications in BC.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Female , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Computational Biology/methods , DNA Damage , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , MCF-7 Cells , Prognosis , RNA, Long Noncoding/genetics
16.
Sci Rep ; 14(1): 13436, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862721

ABSTRACT

Cartilage-hair hypoplasia syndrome (CHH) is an autosomal recessive disorder frequently linked to n.72A>G (previously known as n.70A>G and n.71A>G), the most common RMRP variant worldwide. More than 130 pathogenic variants in this gene have already been described associated with CHH, and founder alterations were reported in the Finnish and Japanese populations. Our previous study in Brazilian CHH patients showed a high prevalence of n.197C>T variant (former n.195C>T and n.196C>T) when compared to other populations. The aim of this study was to investigate a possible founder effect of the n.197C>T variant in the RMRP gene in a series of CHH Brazilian patients. We have selected four TAG SNPs within chromosome 9 and genotyped the probands and their parents (23 patients previously described and nine novel). A common haplotype to the n.197C>T variant carriers was identified. Patients were also characterized for 46 autosomal Ancestry Informative Markers (AIMs). European ancestry was the most prevalent (58%), followed by African (24%) and Native American (18%). Our results strengthen the hypothesis of a founder effect for the n.197C>T variant in Brazil and indicate that this variant in the RMRP gene originated from a single event on chromosome 9 with a possible European origin.


Subject(s)
Founder Effect , Hair , Hirschsprung Disease , Osteochondrodysplasias , Polymorphism, Single Nucleotide , Humans , Brazil , Hirschsprung Disease/genetics , Male , Osteochondrodysplasias/genetics , Osteochondrodysplasias/congenital , Female , Hair/abnormalities , RNA, Long Noncoding/genetics , Haplotypes , Primary Immunodeficiency Diseases/genetics , Hypotrichosis/genetics , Chromosomes, Human, Pair 9/genetics , Child
17.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913688

ABSTRACT

The outstanding human cognitive capacities are computed in the cerebral cortex, a mammalian-specific brain region and the place of massive biological innovation. Long noncoding RNAs have emerged as gene regulatory elements with higher evolutionary turnover than mRNAs. The many long noncoding RNAs identified in neural tissues make them candidates for molecular sources of cerebral cortex evolution and disease. Here, we characterized the genomic and cellular shifts that occurred during the evolution of the long noncoding RNA repertoire expressed in the developing cerebral cortex and explored putative roles for these long noncoding RNAs in the evolution of the human brain. Using transcriptomics and comparative genomics, we comprehensively annotated the cortical transcriptomes of humans, rhesus macaques, mice, and chickens and classified human cortical long noncoding RNAs into evolutionary groups as a function of their predicted minimal ages. Long noncoding RNA evolutionary groups showed differences in expression levels, splicing efficiencies, transposable element contents, genomic distributions, and transcription factor binding to their promoters. Furthermore, older long noncoding RNAs showed preferential expression in germinative zones, outer radial glial cells, and cortical inhibitory (GABAergic) neurons. In comparison, younger long noncoding RNAs showed preferential expression in cortical excitatory (glutamatergic) neurons, were enriched in primate and human-specific gene co-expression modules, and were dysregulated in neurodevelopmental disorders. These results suggest different evolutionary routes for older and younger cortical long noncoding RNAs, highlighting old long noncoding RNAs as a possible source of molecular evolution of conserved developmental programs; conversely, we propose that the de novo expression of primate- and human-specific young long noncoding RNAs is a putative source of molecular evolution and dysfunction of cortical excitatory neurons, warranting further investigation.


Subject(s)
Cerebral Cortex , Macaca mulatta , Neurons , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Cerebral Cortex/metabolism , Animals , Mice , Neurons/metabolism , Chickens/genetics , Evolution, Molecular , Transcriptome
18.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928444

ABSTRACT

Long non-coding RNAs (lncRNAs) are nucleotide sequences that participate in different biological processes and are associated with different pathologies, including cancer. Long intergenic non-protein-coding RNA 662 (LINC00662) has been reported to be involved in different cancers, including colorectal, prostate, and breast cancer. However, its role in gallbladder cancer has not yet been described. In this article, we hypothesize that LINC00662 has an important role in the acquisition of aggressiveness traits such as a stem-like phenotype, invasion, and chemoresistance in gallbladder cancer. Here, we show that LINC00662 is associated with larger tumor size and lymph node metastasis in patients with gallbladder cancer. Furthermore, we show that the overexpression of LINC00662 promotes an increase in CD133+/CD44+ cell populations and the expression of stemness-associated genes. LINC00662 promotes greater invasive capacity and the expression of genes associated with epithelial-mesenchymal transition. In addition, the expression of LINC00662 promotes resistance to cisplatin and 5-fluorouracil, associated with increased expression of chemoresistance-related ATP-binding cassette (ABC) transporters in gallbladder cancer (GBC) cell lines. Finally, we show that the mechanism by which LINC00662 exerts its function is through a decrease in microRNA 335-5p (miR-335-5p) and an increase in octamer-binding transcription factor 4 (OCT4) in GBC cells. Thus, our data allow us to propose LINC00662 as a biomarker of poor prognosis and a potential therapeutic target for patients with GBC.


Subject(s)
Gallbladder Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , Octamer Transcription Factor-3 , RNA, Long Noncoding , Humans , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Female , Epithelial-Mesenchymal Transition/genetics , Drug Resistance, Neoplasm/genetics , Male , Neoplasm Invasiveness , Cisplatin/pharmacology , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Fluorouracil/pharmacology , Lymphatic Metastasis
19.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920678

ABSTRACT

Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.


Subject(s)
Cell Differentiation , Heart , Homeostasis , Myocytes, Cardiac , RNA, Long Noncoding , Humans , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental , Heart/embryology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Organogenesis/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
20.
JBRA Assist Reprod ; 28(3): 503-510, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38875127

ABSTRACT

The development of endometrial receptivity is crucial for successful embryo implantation and the initiation of pregnancy. Understanding the molecular regulatory processes that transform the endometrium into a receptive phase is essential for enhancing implantation rates in fertility treatments, such as in vitro fertilization (IVF). Long non-coding RNAs (lncRNAs) play a pivotal role as gene regulators and have been examined in the endometrium. This review offers current insights into the role of lncRNAs in regulating endometrial receptivity. Considering the significant variation in endometrial remodeling among species, we summarize the key events in the human endometrial cycle and discuss the identified lncRNAs in both humans and other species, which may play a crucial role in establishing receptivity. Notably, there are 742 lncRNAs in humans and 4438 lncRNAs that have the potential to modulate endometrial receptivity. Additionally, lncRNAs regulating matrix metalloproteinases (MMPs) and Let-7 have been observed in both species. Future investigations should explore the potential of lncRNAs as therapeutic targets and/or biomarkers for diagnosing and improving endometrial receptivity in human fertility therapy.


Subject(s)
Embryo Implantation , Endometrium , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Endometrium/physiology , Endometrium/metabolism , Embryo Implantation/physiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL