ABSTRACT
Computers are able to systematically exploit RNA-seq data allowing us to efficiently detect RNA editing sites in a genome-wide scale. This chapter introduces a very flexible computational framework for detecting RNA editing sites in plant organelles. This framework comprises three major steps: RNA-seq data processing, RNA read alignment, and RNA editing site detection. Each step is discussed in sufficient detail to be implemented by the reader. As a study case, the framework will be used with publicly available sequencing data to detect C-to-U RNA editing sites in the coding sequences of the mitochondrial genome of Nicotiana tabacum.
Subject(s)
Computational Biology/methods , Genome, Mitochondrial , Mitochondria/genetics , Nicotiana/genetics , RNA Editing/genetics , RNA, Mitochondrial/genetics , Cytidine/chemistry , Cytidine/genetics , High-Throughput Nucleotide Sequencing , Mitochondria/metabolism , RNA, Mitochondrial/metabolism , Software , Nicotiana/metabolism , Transcriptome , Uridine/chemistry , Uridine/geneticsABSTRACT
Human and mouse cells display a differential expression pattern of a family of mitochondrial noncoding RNAs (ncmtRNAs), according to proliferative status. Normal proliferating and cancer cells express a sense ncmtRNA (SncmtRNA), which seems to be required for cell proliferation, and two antisense transcripts referred to as ASncmtRNA-1 and -2. Remarkably however, the ASncmtRNAs are downregulated in human and mouse cancer cells, including HeLa and SiHa cells, transformed with HPV-18 and HPV-16, respectively. HPV E2 protein is considered a tumor suppressor in the context of high-risk HPV-induced transformation and therefore, to explore the mechanisms involved in the downregulation of ASncmtRNAs during tumorigenesis, we studied human foreskin keratinocytes (HFK) transduced with lentiviral-encoded HPV-18 E2. Transduced cells displayed a significantly extended replicative lifespan of up to 23 population doublings, compared to 8 in control cells, together with downregulation of the ASncmtRNAs. At 26 population doublings, cells transduced with E2 were arrested at G2/M, together with downregulation of E2 and SncmtRNA and upregulation of ASncmtRNA-2. Our results suggest a role for high-risk HPV E2 protein in cellular immortalization. Additionally, we propose a new cellular phenotype according to the expression of the SncmtRNA and the ASncmtRNAs.