Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.415
Filter
1.
Commun Biol ; 7(1): 1030, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169207

ABSTRACT

Alcoholic liver disease (ALD) is a disease with high incidence, limited therapies, and poor prognosis. The present study aims to investigate the effect of riboflavin on ALD and explore its potential therapeutic mechanisms. C57BL/6 mice were divided into the control, alcohol, and alcohol+ riboflavin groups. 16S rRNA-seq and RNA-seq analysis were utilized to analyze the polymorphism of intestinal microbiota and the transcriptome heterogeneity respectively. KEGG and GO enrichment analysis were performed. CIBERSORTx was applied to evaluate the immune cell infiltration level. Publicly available transcriptome data of ALD was enrolled and combined with the RNA-seq data to identify the immune subtypes of ALD. Pathological and histology analysis demonstrated that riboflavin reversed the progression of ALD. 16S rRNA-seq results showed that riboflavin could regulate alcohol-induced intestinal microbiota alteration. Intestinal microbiota polymorphism analysis indicated that VLIDP may contribute to the progression of ALD. Based on the VLIDP pathway, two subtypes were identified. Immune microenvironment analysis indicated that the upregulated inflammatory factors may be important regulators of ALD. In conclusion, intestinal microbiota homeostasis was associated with the protective effect of riboflavin against ALD, which was likely mediated by modulating inflammatory cell infiltration. Riboflavin emerges as a promising therapeutic candidate for the management of ALD.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Riboflavin , Riboflavin/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Liver Diseases, Alcoholic/microbiology , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Mice , Homeostasis/drug effects , Male , RNA, Ribosomal, 16S/genetics , Transcriptome/drug effects , Disease Models, Animal
2.
PLoS One ; 19(8): e0308914, 2024.
Article in English | MEDLINE | ID: mdl-39172818

ABSTRACT

Recently, research has investigated the role of the ruminant native microbiome, and the role microbes play in methane (CH4) production and mitigation. However, the variation across microbiome studies makes implementing impactful strategies difficult. The first objective of this study is to identify, summarize, compile, and discuss the current literature on CH4 mitigation strategies and how they interact with the native ruminant microbiome. The second objective is to perform a meta-analysis on the identified16S rRNA sequencing data. A literature search using Web of Science, Scopus, AGRIS, and Google Scholar will be implemented. Eligible criteria will be defined using PICO (population, intervention, comparator, and outcomes) elements. Two independent reviewers will be utilized for both the literature search and data compilation. Risk of bias will be assessed using the Cochrane Risk Bias 2.0 tool. Publicly available 16S rRNA amplicon gene sequencing data will be downloaded from NCBI Sequence Read Archive, European Nucleotide Archive or similar database using appropriate extraction methods. Data processing will be performed using QIIME2 following a standardized protocol. Meta-analyses will be performed on both alpha and beta diversity as well as taxonomic analyses. Alpha diversity metrics will be tested using a Kruskal-Wallis test with a Benjamini-Hochberg multiple testing correction. Beta diversity will be statistically tested using PERMANOVA testing with multiple test corrections. Hedge's g standardized mean difference statistic will be used to calculate fixed and random effects model estimates using a 95% confidence interval. Heterogeneity between studies will be assessed using the I2 statistic. Potential publication bias will be further assessed using Begg's correlation test and Egger's regression test. The GRADE approach will be used to assess the certainty of evidence. The following protocol will be used to guide future research and meta-analyses for investigating CH4 mitigation strategies and ruminant microbial ecology. The future work could be used to enhance livestock management techniques for GHG control. This protocol is registered in Open Science Framework (https://osf.io/vt56c) and available in the Systematic Reviews for Animals and Food (https://www.syreaf.org/contact).


Subject(s)
Meta-Analysis as Topic , Methane , Microbiota , RNA, Ribosomal, 16S , Ruminants , Systematic Reviews as Topic , Methane/metabolism , Ruminants/microbiology , Animals , RNA, Ribosomal, 16S/genetics
3.
PLoS One ; 19(8): e0307299, 2024.
Article in English | MEDLINE | ID: mdl-39173039

ABSTRACT

The classification of Microbispora, a bacterial genus of significant ecological, agricultural, biotechnological, and clinical importance, has traditionally been carried out based on 16S rRNA gene sequences or phenotypic characteristics, which may lead to equivocal conclusions and it is not in line with the current standards. Moreover, some of the recent species descriptions have not been made using whole genome sequences (WGS), or when used, not all the species were included in the analyses. Consequently, some of the taxonomic conclusions drawn are equivocal, and therefore some currently accepted species should be synonymized. In this study, we revised the taxonomy of the genus Microbispora using digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values, and by reconstructing phylogenetic relationships using whole genome sequences. Based on the clear phylogenomic separations and on the sequence divergence values, we propose to elevate Microbispora rosea subsp. rosea and Microbispora rosea subsp. aerata to the species level, and therefore to create Microbispora aerata sp. nov. with JCM 3076T (= DSM 43176T = ATCC 15448T = IFO 14624T = NBRC 14624T = VKM Ac-1507T) as the type strain. Hence, with this proposition, the correct name for Microbispora rosea subsp. rosea is M. rosea. Furthermore, we propose to reclassify M. camponoti as a subspecies within M. bryophytorum. Consequently, we propose the creation of the following two subspecies: Microbispora bryophytorum subsp. bryophytorum subsp. nov. with DSM 46710T (= CGMCC 4.7138T = NEAU TX2-2T) as the type strain, and Microbispora bryophytorum subsp. camponoti subsp. nov., comb. nov. with DSM 2C-HV3T (= DSM 100527T = CGMCC 4.7281T) as the type strain. In addition, we propose to reinstate M. amethystogenes as an independent species and not as a M. rosea synonym, and reclassify "M. cellulosiformans" as a subspecies within M. amethystogenes. Hence, we propose the creation of the following two subspecies: Microbispora amethystogenes subsp. amethystogenes subsp. nov. with NBRC 101907T (= DSM 43164T = JCM 3021T = NRRL B-2637T) as the type strain, and Microbispora amethystogenes subsp. cellulosiformans subsp. nov., comb. nov. with Gxj-6T (= DSM 109712T = CGMCC 4.7605T) as the type strain. Lastly, we propose M. fusca NEAU-HEGS1-5T and "M. tritici" MT50T as later homotypic synonyms of M. triticiradicis NEAU-HRDPA2-9T.


Subject(s)
Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Whole Genome Sequencing , Nucleic Acid Hybridization
4.
Sci Rep ; 14(1): 18802, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138329

ABSTRACT

The presence of bacteria from the Dickeya spp. and Pectobacterium spp. in farmlands leads to global crop losses of over $420 million annually. Since 1982, the scientists have started to suspect that the development of disease symptoms in crops might be inhibited by bacteria present in the soil. Here, we characterized in terms of physicochemical properties and the composition of bacterial soil microbiota two fields differing, on the basis of long-term studies, in the occurrence of Dickeya spp.- and Pectobacterium spp.-triggered infections. Majority, i.e. 17 of the investigated physicochemical features of the soils collected from two fields of either low or high potato blackleg and soft rot diseases incidences turned out to be similar, in contrast to the observed 4 deviations in relation to Mg, Mn, organic C and organic substance contents. By performing microbial cultures and molecular diagnostics-based identification, 20 Pectobacterium spp. strains were acquired from the field showing high blackleg and soft rot incidences. In addition, 16S rRNA gene amplicon sequencing followed by bioinformatic analysis revealed differences at various taxonomic levels in the soil bacterial microbiota of the studied fields. We observed that bacteria from the genera Bacillus, Rumeliibacillus, Acidobacterium and Gaiella turned out to be more abundant in the soil samples originating from the field of low comparing to high frequency of pectinolytic bacterial infections. In the herein presented case study, it is shown for the first time that the composition of bacterial soil microbiota varies between two fields differing in the incidences of soft rot and blackleg infections.


Subject(s)
Microbiota , Plant Diseases , RNA, Ribosomal, 16S , Soil Microbiology , Solanum tuberosum , Solanum tuberosum/microbiology , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics , Pectobacterium/genetics , Pectobacterium/isolation & purification , Soil/chemistry , Phylogeny , Dickeya/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
5.
Ann Clin Microbiol Antimicrob ; 23(1): 72, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138497

ABSTRACT

BACKGROUND: Alongside microbiota development, the evolution of the resistome is crucial in understanding the early-life acquisition and persistence of Antibiotic Resistance Genes (ARGs). Therefore, the aim of this study is to provide a comprehensive view of the evolution and dynamics of the neonatal resistome from 7 days to 4 months of age using a high-throughput qPCR platform. METHODS: In the initial phase, a massive screening of 384 ARGs using a high-throughput qPCR in pooled healthy mother-infant pairs feces from the MAMI cohort was carried out to identify the most abundant and prevalent ARGs in infants and in mothers. This pre-analysis allowed for later targeted profiling in a large number of infants in a longitudinal manner during the first 4 months of life. 16S rRNA V3-V4 amplicon sequencing was performed to asses microbial composition longitudinally. Potential factors influencing the microbiota and ARGs in this period were also considered, such as mode of birth and breastfeeding type. RESULTS: Following the massive screening, the top 45 abundant ARGs and mobile genetic elements were identified and studied in 72 infants during their first months of life (7 days, 1, 2, and 4 months). These genes were associated with resistance to aminoglycosides, beta-lactams and tetracyclines, among others, as well as integrons, and other mobile genetic elements. Changes in both ARG composition and quantity were observed during the first 4 months of life: most ARGs abundance increased over time, but mobile genetic elements decreased significantly. Further exploration of modulating factors highlighted the effect on ARG composition of specific microbial genus, and the impact of mode of birth at 7 days and 4 months. The influence of infant formula feeding was observed at 4-month-old infants, who exhibited a distinctive resistome composition. CONCLUSIONS: This study illustrates the ARG evolution and dynamics in the infant gut by use of a targeted, high-throughput, quantitative PCR-based method. An increase in antibiotic resistance over the first months of life were observed with a fundamental role of delivery mode in shaping resistance profiles. Further, we highlighted the influence of feeding methods on the resistome development. These findings offer pivotal insights into dynamics of and factors influencing early-life resistome, with potential avenues for intervention strategies.


Subject(s)
Anti-Bacterial Agents , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Infant , Infant, Newborn , Feces/microbiology , Female , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Male , Breast Feeding , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Genes, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Evolution, Molecular , Drug Resistance, Microbial/genetics , Longitudinal Studies
6.
Article in English | MEDLINE | ID: mdl-39140846

ABSTRACT

Two Gram-negative, obligately aerobic, rod-shaped bacteria, strains G1-22T and G1-23T, were isolated from the phycosphere of a marine brown alga. Both strains exhibited catalase- and oxidase-positive activities. Strain G1-22T displayed optimal growth at 25 °C, pH 8.0, and 2.0-3.0% (w/v) NaCl, while strain G1-23T exhibited optimal growth at 25 °C, pH 8.0, and 4.0% NaCl. Ubiquinone-8 was identified as the sole isoprenoid quinone in both strains. As major fatty acids (> 5%), strain G1-22T contained C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C12 : 1 3-OH, and C10 : 0 3-OH, while strain G1-23T contained C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), and C14 : 0. Phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol were major polar lipids in both strains. Strains G1-22T and G1-23T had DNA G+C contents of 40.2 and 38.9 mol%, respectively. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains G1-22T and G1-23T formed distinct phylogenetic lineages within the genera Psychrosphaera and Paraglaciecola, respectively. Strain G1-22T showed closest relatedness to Psychrosphaera ytuae MTZ26T with 97.8% 16S rRNA gene sequence similarity, 70.2% average nucleotide identity (ANI), and a 21.5% digital DNA-DNA hybridization (dDDH) value, while strain G1-23T was most closely related to Paraglaciecola aquimarina KCTC 32108T with 95.6% 16S rRNA gene sequence similarity, 74.6% ANI, and a 20.1% dDDH value. Based on phenotypic and molecular characteristics, strains G1-22T and G1-23T are proposed to represent two novel species, namely Psychrosphaera algicola sp. nov. (type strain G1-22T=KACC 22486T=JCM 34971T) and Paraglaciecola algarum sp. nov. (type strain G1-23T=KACC 22490T=JCM 34972T), respectively. Additionally, based on the comparison of whole genome sequences, it is proposed that Pseudoalteromonas elyakovii, Pseudoalteromonas flavipulchra, and Pseudoalteromonas profundi are reclassified as later heterotypic synonyms of Pseudoalteromonas distincta, Pseudoalteromonas maricaloris, and Pseudoalteromonas gelatinilytica, respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , Pseudoalteromonas , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ubiquinone , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Pseudoalteromonas/genetics , Pseudoalteromonas/classification , Pseudoalteromonas/isolation & purification , Phaeophyceae/microbiology
7.
Article in English | MEDLINE | ID: mdl-39141420

ABSTRACT

In Florida, angular leaf spot, caused by Xanthomonas fragariae, was the only known bacterial disease in strawberry, which is sporadic and affects the foliage and calyx. However, from the 2019-2020 to 2023-2024 Florida strawberry seasons, unusual bacterial-like symptoms were observed in commercial farms, with reports of up to 30 % disease incidence. Typical lesions were water-soaked and angular in early stages that later became necrotic with a circular-ellipsoidal purple halo, and consistently yielded colonies resembling Pseudomonas on culture media. Strains were pathogenic on strawberry, fluorescent, oxidase- and arginine-dihydrolase-negative, elicited a hypersensitive reaction on tobacco, and lacked pectolytic activity. Although phenotypic assays, such as fatty acid methyl profiles and Biolog protocols, placed the strains into the Pseudomonas group, there was a low similarity at the species level. Further analysis using 16S rRNA genes, housekeeping genes, and whole genome sequencing showed that the strains cluster into the Pseudomonas group but do not share more than 95 % average nucleotide identity compared to representative members. Therefore, the genomic and phenotypic analysis confirm that the strains causing bacterial spot in strawberry represent a new plant pathogenic bacterial species for which we propose the name Pseudomonas fragariae sp. nov. with 20-417T (17T=LMG 32456T=DSM 113340 T) as the type strain, in relation to Fragaria×ananassa, the plant species from which the pathogen was first isolated. Future work is needed to assess the epidemiology, cultivar susceptibility, chemical sensitivity, and disease management of this possible new emerging strawberry pathogen.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fragaria , Phylogeny , Plant Diseases , Plant Leaves , Pseudomonas , RNA, Ribosomal, 16S , Fragaria/microbiology , RNA, Ribosomal, 16S/genetics , Plant Diseases/microbiology , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/classification , DNA, Bacterial/genetics , Plant Leaves/microbiology , Florida , Sequence Analysis, DNA , Whole Genome Sequencing , Fatty Acids , Genes, Essential/genetics
8.
Environ Microbiol ; 26(8): e16685, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39147372

ABSTRACT

Solirubrobacter, though widespread in soils and rhizospheres, has been relatively unexplored despite its ubiquity. Previously acknowledged as a common soil bacterium, our research explores its phylogenomics, pangenomics, environmental diversity, and interactions within bacterial communities. By analysing seven genomic sequences, we have identified a pangenome consisting of 19,645 protein families, of which 2644 are shared across all studied genomes, forming the core genome. Interestingly, despite the non-motility of reported isolates, we discovered genes for flagellin and a partial flagellum assembly pathway. Examining the 16S ribosomal RNA genes of Solirubrobacter revealed substantial diversity, with 3166 operational taxonomic units identified in Mexican soils. Co-occurrence network analysis further demonstrated its significant integration within bacterial communities. Through phylogenomic scrutiny, we conclusively excluded the NCBI's GCA_009993245.1 genome from being classified as a Solirubrobacter. Our research into the metagenomic diversity of Solirubrobacter across various environments confirmed its presence in rhizospheres and certain soils, underscoring its adaptability. The geographical ubiquity of Solirubrobacter in rhizospheres raises intriguing questions regarding its potential interactions with plant hosts and the biotic and abiotic factors influencing its presence in soil. Given its ecological significance and genetic diversity, Solirubrobacter warrants further investigation as a potentially crucial yet underappreciated keystone species.


Subject(s)
Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Genomics , Metagenomics , Genetic Variation
9.
J Med Primatol ; 53(5): e12730, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39148344

ABSTRACT

BACKGROUND: The gut morphology of Symphalangus syndactylus exhibits an intermediate structure that aligns with its consumption of fruit and ability to supplement its diet with leaves. The Siamang relies on its gut microbiome for energy extraction, immune system development, and the synthesis of micronutrients. Gut microbiome composition may be structured based on several factors such as age, sex, and habitat. No study has yet been carried out on the gut microbiota of the Hylobatidae members in Malaysia especially S. syndactylus. METHODS: This study aims to resolve the gut microbiome composition of S. syndactylus by using a fecal sample as DNA source, adapting high-throughput sequencing, and 16S rRNA as the targeted region. RESULTS: A total of 1 272 903 operational taxonomic units (OTUs) reads were assigned to 22 phyla, 139 families, and 210 genera of microbes. The {Unknown Phylum} Bacteria-2 is the dominant phyla found across all samples. Meanwhile, {Unknown Phylum} Bacteria-2 and Firmicutes are genera that have the highest relative abundance found in the Siamang gut. CONCLUSIONS: This study yields nonsignificance relationship between Siamang gut microbiome composition with these three factors: group, sex, and age.


Subject(s)
Gastrointestinal Microbiome , Animals , Male , Female , Malaysia , RNA, Ribosomal, 16S/genetics , Age Factors , Sex Factors , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Hylobatidae , Endangered Species , Feces/microbiology , RNA, Bacterial/analysis , RNA, Bacterial/genetics
10.
Sci Rep ; 14(1): 19525, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174555

ABSTRACT

Change in mucosal microbiome is associated with various types of cancer in digestive tract. We hypothesized that microbial communities in the esophageal endoscopic wash fluids reflects resident flora in esophageal mucosa that is associated with esophageal carcinoma (EC) risk and/or directly correlates microbiome derived from EC tumor tissue. Studying microbial communities in esophageal endoscopic wash samples would be therefore useful to predict the incidence or risk of EC. We examined microbial communities of the endoscopic wash samples from 45 primary EC and 20 respective non-EC controls using 16S rRNA V3-V4 amplicon sequencing. The result was also compared with microbial communities in matched endoscopic biopsies from EC and non-cancerous esophageal mucosa. Compared with non-EC controls, 6 discriminative bacterial genera were detected in EC patients. Among them, relative abundance ratio of Prevotella and Shuttlewarthia, as well as decrease of genus Prevotella presented good prognostic performance to discriminate EC from controls (area under curve, 0.86, 0.82, respectively). Multivariate analysis showed occurrence of EC was an independent factor associated with decrease of this bacteria. Abundance of genus Prevotella in the esophageal endoscopic wash samples was significantly correlated with the abundance of this bacteria in the matched endoscopic biopsies from non-cancerous esophageal mucosa but not in the EC tissues. Our findings suggest that microbiome composition in the esophageal endoscopic wash samples reflects resident flora in the esophagus and significantly correlates with the incidence of EC.


Subject(s)
Esophageal Neoplasms , Esophagus , RNA, Ribosomal, 16S , Humans , Esophageal Neoplasms/microbiology , Male , Female , Middle Aged , Aged , Incidence , RNA, Ribosomal, 16S/genetics , Esophagus/microbiology , Esophagus/pathology , Microbiota , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Esophageal Mucosa/microbiology , Esophageal Mucosa/pathology , Biopsy
11.
BMC Microbiol ; 24(1): 310, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174931

ABSTRACT

BACKGROUND: Bovine mastitis results in significant economic losses for the dairy industry globally due to milk production losses and decreased herd efficiency. This research aimed to isolate, select, and characterize indigenous lactobacilli with probiotic properties. A total of 40 lactobacilli were isolated from healthy milk samples of cattle and identified at the species level through 16S rDNA sequencing. All isolates were initially screened for antimicrobial activity, and selected isolates underwent in vitro assessment of probiotic properties. RESULTS: Among the lactobacilli isolates, varying levels of activity (9 to 19 mm) against cattle mastitogens; Stapylococcus aureus (Staph. aureus), Escherichia coli (E. coli) and Streptococcus dysgalactiae (Strep. dysgalactiae) were observed in the well diffusion assay. These isolates demonstrated auto-aggregation (ranging from 14.29 ± 0.96% to 62.11 ± 1.09%) and co-aggregate (ranging from 9.21 ± 0.14% to 55.74 ± 0.74%) with mastitogens after 2 h. Lactobacillus (Lb.) plantarum CM49 showed sensitivity to most antibiotics tested and exhibited strong inhibitory effects, with mean log10 reductions of 3.46 for Staph. aureus, 2.82 for E. coli, and 1.45 for Strep. dysgalactiae in co-culture experiments. Furthermore, Lb. plantarum CM49 significantly decreased the adhesion rate of mastitogens on the bovine mammary cell line and mouse model, demonstrating its potential effectiveness in preventing mastitis. CONCLUSION: It is concluded that Lb. plantarum CM49 has remarkable probiotic potential with activity against cattle mastitogens in the laboratory and cell culture and competitively excludes mastitogens from bovine mammary cells and ameliorates Staph. aureus-induced mastitis in mice.


Subject(s)
Escherichia coli , Lactobacillus plantarum , Mastitis, Bovine , Milk , Probiotics , Staphylococcus aureus , Animals , Cattle , Probiotics/pharmacology , Mastitis, Bovine/microbiology , Mastitis, Bovine/prevention & control , Lactobacillus plantarum/physiology , Lactobacillus plantarum/isolation & purification , Lactobacillus plantarum/genetics , Female , Milk/microbiology , Staphylococcus aureus/drug effects , Mice , Escherichia coli/drug effects , Escherichia coli/genetics , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Streptococcus/drug effects , Streptococcus/genetics , Streptococcus/physiology , Microbial Sensitivity Tests
12.
Ann Clin Microbiol Antimicrob ; 23(1): 74, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175010

ABSTRACT

BACKGROUND: Tuberculosis (TB), a major cause of disease and antimicrobial resistance, is spread via aerosols. Aerosols have diagnostic potential and airborne-microbes other than Mycobacterium tuberculosis complex (MTBC) may influence transmission. We evaluated whether PneumoniaCheck (PMC), a commercial aerosol collection device, captures MTBC and the aeromicrobiome of people with TB. METHODS: PMC was done in sputum culture-positive people (≥ 30 forced coughs each, n = 16) pre-treatment and PMC air reservoir (bag, corresponding to upper airways) and filter (lower airways) washes underwent Xpert MTB/RIF Ultra (Ultra) and 16S rRNA gene sequencing (sequencing also done on sputum). In a subset (n = 6), PMC microbiota (bag, filter) was compared to oral washes and bronchoalveolar lavage fluid (BALF). FINDINGS: 54% (7/13) bags and 46% (6/14) filters were Ultra-positive. Sequencing read counts and microbial diversity did not differ across bags, filters, and sputum. However, microbial composition in bags (Sphingobium-, Corynebacterium-, Novosphingobium-enriched) and filters (Mycobacterium-, Sphingobium-, Corynebacterium-enriched) each differed vs. sputum. Furthermore, sequencing only detected Mycobacterium in bags and filters but not sputum. In the subset, bag and filter microbial diversity did not differ vs. oral washes or BALF but microbial composition differed. Bags vs. BALF were Sphingobium-enriched and Mycobacterium-, Streptococcus-, and Anaerosinus-depleted (Anaerosinus also depleted in filters vs. BALF). Compared to BALF, none of the aerosol-enriched taxa were enriched in oral washes or sputum. INTERPRETATION: PMC captures aerosols with Ultra-detectable MTBC and MTBC is more detectable in aerosols than sputum by sequencing. The aeromicrobiome is distinct from sputum, oral washes and BALF and contains differentially-enriched lower respiratory tract microbes.


Subject(s)
Aerosols , Bronchoalveolar Lavage Fluid , Cough , Mycobacterium tuberculosis , RNA, Ribosomal, 16S , Sputum , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Aerosols/analysis , Sputum/microbiology , Cough/microbiology , Male , RNA, Ribosomal, 16S/genetics , Adult , Female , Bronchoalveolar Lavage Fluid/microbiology , Middle Aged , Microbiota , Air Microbiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Tuberculosis/diagnosis , Tuberculosis/microbiology , Specimen Handling/methods , Specimen Handling/instrumentation , Aged , Young Adult
13.
PeerJ ; 12: e17724, 2024.
Article in English | MEDLINE | ID: mdl-39175749

ABSTRACT

Discovering new deep hydrothermal vent systems is one of the biggest challenges in ocean exploration. They are a unique window to elucidate the physical, geochemical, and biological processes that occur on the seafloor and are involved in the evolution of life on Earth. In this study, we present a molecular analysis of the microbial composition within the newly discovered hydrothermal vent field, JaichMaa 'ja 'ag, situated in the Southern Pescadero Basin within the Gulf of California. During the cruise expedition FK181031 in 2018, 33 sediment cores were collected from various sites within the Pescadero vent fields and processed for 16S rRNA amplicon sequence variants (ASVs) and geochemical analysis. Correlative analysis of the chemical composition of hydrothermal pore fluids and microbial abundances identified several sediment-associated phyla, including Thermotogota, that appear to be enriched in sediment horizons impacted by hydrothermal fluid flow. Comparative analysis of Thermotogota with the previously explored Auka hydrothermal vent field situated 2 km away displayed broad similarity between the two locations, although at finer scales (e.g., ASV level), there were notable differences that point to core-to-core and site-level factors revealing distinct patterns of distribution and abundance within these two sediment-hosted hydrothermal vent fields. These patterns are intricately linked to the specific physical and geochemical conditions defining each vent, illuminating the complexity of this unique deep ocean chemosynthetic ecosystem.


Subject(s)
Geologic Sediments , Hydrothermal Vents , Hydrothermal Vents/microbiology , Geologic Sediments/microbiology , Geologic Sediments/chemistry , RNA, Ribosomal, 16S/genetics , Biodiversity , Seawater/microbiology , Seawater/chemistry , California , Bacteria/genetics , Bacteria/classification
14.
Open Vet J ; 14(7): 1644-1657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39175982

ABSTRACT

Background: Although milk is nutritionally valuable, it also serves as a significant medium for the transmission of pathogens and their toxins. Aim: This study aimed to investigate the role of enterotoxin gene A (SEA) in the development of bovine mastitis. We accomplished this by examining milk through polymerase chain reaction (PCR) testing, amino acid substitution analysis, and phylogenetic analysis. Methods: A total of fifty milk samples were collected from locally bred dairy cows in Al-Diwaniyah, located in southern Iraq. We employed the VITEK-2 platform to validate the diagnosis of Staphylococcus aureus and confirm the results of routine tests (culturing and biochemical tests). Subsequently, the genetic mutation and phylogeny analysis were achieved utilizing DNA sequencing to 16S rRNA and enterotoxin A genes. Results: 66% (33/50) of the milk samples found to be contain S. aureus by the VITEK-2 system. Furthermore, 25/33 of the samples were positive by the PCR test. While 60% (15 out of 25) tested positive for the SEA gene. After genomic analysis, we identified amino acid substitutions of serine, glutamine with arginine, tyrosine with cysteine, and aspartic acid with glycine at positions 9, 101, 119, 187, and 191. The phylogenetic investigation demonstrated a genetic relationship between our isolates (Iraqi isolates) and isolates from Indian and the United States. Conclusion: Our study indicated the widespread distribution of the enterotoxin gene A (SEA) of S. aureus among dairy cows. The molecular study revealed significant changes in key amino acids that could play an important role in the bacterium's pathogenesis. The phylogenetic similarities among S. aureus samples from various countries suggest that the bacteria has spread globally.


Subject(s)
Enterotoxins , Mastitis, Bovine , Milk , Phylogeny , Staphylococcal Infections , Staphylococcus aureus , Cattle , Animals , Enterotoxins/genetics , Mastitis, Bovine/microbiology , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Milk/microbiology , Iraq , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
15.
Open Vet J ; 14(7): 1689-1700, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39175981

ABSTRACT

Background: Food safety and food-borne infections are major subjects of global interest. Dairy products are considered as important source for these infections. Aim: The present study was conducted to identify the occurrence and to genotype isolates of Staphylococcus spp. recovered from milk samples in Al-Diwaniyah City, Iraq. Methods: The current study included the collection of 50 milk samples purchased from local stores in the current city. These samples were subjected to bacterial cultivation and biochemical tests. Later, the growth was used to extract the genomic DNA that was exposed to PCR and partial gene sequencing both targeted the 16S rRNA gene at a specific genetic piece. Results: The PCR results demonstrated the amplification of the genetic fragment of five genetic clusters for each of Staphylococcus aureus (SAD11, SAD12, SAD13, SAD14, and SAD15), Staphylococcus epidermidis (SED1, SED2, SED3, SED4, and SED5), and Staphylococcus intermedius (SID1, SID2, SID3, SID4, and SID5). The PCR products were sent out to sequencing and reported that the current isolates were similar in their genetic content with global isolates at 95.34% to 97.59%, 96.21% to 97.57%, and 96.09% to 97.88%, respectively, of identity. Conclusion: The present findings show high genetic variations among isolates of S. aureus, S. epidermidis, and S. intermedius recovered from milk samples, and these genotypes are found in different infection settings related to humans and animals, which may pose high risks to humans and animals.


Subject(s)
Milk , Staphylococcus , Milk/microbiology , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Animals , Virulence/genetics , Drug Resistance, Bacterial/genetics , Iraq , Anti-Bacterial Agents/pharmacology , Cattle , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Genotype , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Polymerase Chain Reaction/veterinary
16.
Sci Rep ; 14(1): 18705, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134638

ABSTRACT

The incidence of duodenal tumors (DTs) is increasing. However, the mechanisms underlying its development remain unclear. Environmental factors, including the microbiome and bile acids (BAs), are believed to influence tumor development. Therefore, we conducted a single-center, prospective, observational study to investigate the potential differences between patients with DTs and healthy controls (HCs) based on these factors. In addition, the BAs in the duodenal fluid were measured using liquid chromatography-tandem mass spectrometry. We recruited 41 patients and performed 16S rRNA-seq. There was no difference in the observed ASVs or PCoA plot of Bray-Curtis dissimilarity between the DTs and HCs. The lithocholic acid concentration was significantly lower in the DT group than in the control group. The ratio of CDCA to LCA was significantly higher in patients with DTs. No significant differences in microbiota were observed between DTs and HCs. In patients with DTs, the lithocholic acid concentration in duodenal was significantly lower than in HCs.


Subject(s)
Bile Acids and Salts , Duodenal Neoplasms , Duodenum , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Male , Bile Acids and Salts/metabolism , Female , Prospective Studies , Middle Aged , Duodenal Neoplasms/microbiology , Duodenal Neoplasms/metabolism , Duodenum/metabolism , Duodenum/microbiology , Aged , RNA, Ribosomal, 16S/genetics , Adult , Lithocholic Acid/metabolism , Microbiota , Case-Control Studies
17.
BMC Microbiol ; 24(1): 301, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134942

ABSTRACT

BACKGROUND: Penicillium oxalicum is an important fungal agent in the composting of cattle manure, but the changes that occur in the microbial community, physicochemical factors, and potential functions of microorganisms at different time points are still unclear. To this end, the dynamic changes occurring in the microbial community and physicochemical factors and their correlations during the composting of cattle manure with Penicillium oxalicum were analysed. RESULTS: The results showed that the main phyla observed throughout the study period were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Halanaerobiaeota, Apicomplexa and Ascomycota. Linear discriminant analysis effect size (LEfSe) illustrated that Chitinophagales and Eurotiomycetes were biomarker species of bacteria and eukaryote in samples from Days 40 and 35, respectively. Bacterial community composition was significantly correlated with temperature and pH, and eukaryotic microorganism community composition was significantly correlated with moisture content and NH4+-N according to redundancy analysis (RDA). The diversity of the microbial communities changed significantly, especially that of the main pathogenic microorganisms, which showed a decreasing trend or even disappeared after composting. CONCLUSIONS: In conclusion, a combination of high-throughput sequencing and physicochemical analysis was used to identify the drivers of microbial community succession and the composition of functional microbiota during cattle manure composting with Penicillium oxalicum. The results offer a theoretical framework for explaining microecological assembly during cattle manure composting with Penicillium oxalicum.


Subject(s)
Bacteria , Composting , Manure , Microbiota , Penicillium , Animals , Penicillium/metabolism , Cattle , Manure/microbiology , Manure/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Temperature , Soil Microbiology , High-Throughput Nucleotide Sequencing , Hydrogen-Ion Concentration , Biodiversity , RNA, Ribosomal, 16S/genetics
18.
World J Gastroenterol ; 30(29): 3488-3510, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39156502

ABSTRACT

BACKGROUND: Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM: To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS: A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS: The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION: The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Hyperuricemia , Leeches , Animals , Hyperuricemia/drug therapy , Hyperuricemia/blood , Hyperuricemia/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Male , Leeches/microbiology , Uric Acid/blood , Kidney/drug effects , Kidney/metabolism , Kidney/microbiology , Metabolomics/methods , RNA, Ribosomal, 16S/genetics , Humans , Dysbiosis , Metabolome/drug effects
19.
PeerJ ; 12: e17900, 2024.
Article in English | MEDLINE | ID: mdl-39157765

ABSTRACT

The activities of microbiomes in river sediments play an important role in sustaining ecosystem functions by driving many biogeochemical cycles. However, river ecosystems are frequently affected by anthropogenic activities, which may lead to microbial biodiversity loss and/or changes in ecosystem functions and related services. While parts of the Atlantic Forest biome stretching along much of the eastern coast of South America are protected by governmental conservation efforts, an estimated 89% of these areas in Brazil are under threat. This adds urgency to the characterization of prokaryotic communities in this vast and highly diverse biome. Here, we present prokaryotic sediment communities in the tropical Juliana River system at three sites, an upstream site near the river source in the mountains (Source) to a site in the middle reaches (Valley) and an estuarine site near the urban center of Ituberá (Mangrove). The diversity and composition of the communities were compared at these sites, along with environmental conditions, the former by using qualitative and quantitative analyses of 16S rRNA gene amplicons. While the communities included distinct populations at each site, a suite of core taxa accounted for the majority of the populations at all sites. Prokaryote diversity was highest in the sediments of the Mangrove site and lowest at the Valley site. The highest number of genera exclusive to a given site was found at the Source site, followed by the Mangrove site, which contained some archaeal genera not present at the freshwater sites. Copper (Cu) concentrations were related to differences in communities among sites, but none of the other environmental factors we determined was found to have a significant influence. This may be partly due to an urban imprint on the Mangrove site by providing organic carbon and nutrients via domestic effluents.


Subject(s)
Geologic Sediments , RNA, Ribosomal, 16S , Rivers , Brazil , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Forests , Estuaries , Biodiversity , Archaea/genetics , Archaea/classification , Archaea/isolation & purification , Microbiota
20.
Microb Ecol ; 87(1): 107, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162854

ABSTRACT

Cigars and cigarillos are emerging as popular tobacco alternatives to cigarettes. However, these products may be equally harmful to human health than cigarettes and are associated with similar adverse health effects. We used 16S rRNA gene amplicon sequencing to extensively characterize the microbial diversity and investigate differences in microbial composition across 23 different products representing three different cigar product categories: filtered cigar, cigarillo, and large cigar. High throughput sequencing of the V4 hypervariable region of the 16 s rRNA gene revealed 2124 Operational Taxonomic Units (OTUs). Our findings showed that the three categories of cigars differed significantly in observed richness and Shannon diversity, with filtered cigars exhibiting lower diversity compared to large cigars and cigarillos. We also found a shared and unique microbiota among different product types. Firmicutes was the most abundant phylum in all product categories, followed by Actinobacteria. Among the 16 genera shared across all product types were Bacillus, Staphylococcus, Pseudomonas, and Pantoea. Nine genera were exclusively shared by large cigars and cigarillos and an additional thirteen genera were exclusive to filtered cigars. Analysis of individual cigar products showed consistent microbial composition across replicates for most large cigars and cigarillos while filtered cigars showed more inter-product variability. These findings provide important insights into the microbial diversity of the different cigar product types.


Subject(s)
Bacteria , Biodiversity , Microbiota , RNA, Ribosomal, 16S , Tobacco Products , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , High-Throughput Nucleotide Sequencing , DNA, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL