Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76.062
Filter
1.
Semin Cell Dev Biol ; 164: 1-12, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38823219

ABSTRACT

Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.


Subject(s)
DNA Transposable Elements , RNA, Small Interfering , DNA Transposable Elements/genetics , Animals , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Gene Expression Regulation/genetics , Humans , Evolution, Molecular , Piwi-Interacting RNA
2.
Methods Mol Biol ; 2829: 91-107, 2024.
Article in English | MEDLINE | ID: mdl-38951329

ABSTRACT

RNA interference (RNAi) serves as an indispensable tool for gene function studies and has been substantiated through extensive research for its practical applications in the baculovirus expression vector system (BEVS). This chapter expands the RNAi toolkit in insect cell culture by including small interfering RNA (siRNA) in the protocol, in addition to the conventional use of double-stranded RNA (dsRNA). This chapter also brings attention to key design and reporting considerations, based on Minimum Information About an RNAi Experiment (MIARE) guidelines. Recommendations regarding online tools for dsRNA and siRNA design are provided, along with guidance on choosing suitable methods for measuring silencing outcomes.


Subject(s)
Baculoviridae , Genetic Vectors , RNA Interference , RNA, Double-Stranded , RNA, Small Interfering , Animals , Baculoviridae/genetics , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , Genetic Vectors/genetics , Insecta/genetics , Cell Line , Sf9 Cells
3.
J Gene Med ; 26(7): e3716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961849

ABSTRACT

BACKGROUND: Differentiation of pluripotent stem cells into desired lineages is the key aspect of regenerative medicine and cell-based therapy. Although RNA interference (RNAi) technology is exploited extensively for this, methods for long term silencing of the target genes leading to differentiation remain a challenge. Sustained knockdown of the target gene by RNAi is often inefficient as a result of low delivery efficiencies, protocol induced toxicity and safety concerns related to viral vectors. Earlier, we established octa-arginine functionalized hydroxyapatite nano vehicles (R8HNPs) for delivery of small interfering RNA (siRNA) against a pluripotency marker gene in mouse embryonic stem cells. Although we demonstrated excellent knockdown efficiency of the target gene, sustained gene silencing leading to differentiation was yet to be achieved. METHODS: To establish a sustained non-viral gene silencing protocol using R8HNP, we investigated various methods of siRNA delivery: double delivery of adherent cells (Adh-D), suspension delivery followed by adherent delivery (Susp + Adh), single delivery in suspension (Susp-S) and multiple deliveries in suspension (Susp-R). Sustained knockdown of a pluripotent marker gene followed by differentiation was analysed by reverse transcriptase-PCR, fluoresence-activated cell sorting and immunofluorescence techniques. Impact on cell viability as a result of repeated exposure of the R8HNP was also tested. RESULTS: Amongst the protocols tested, the most efficient knockdown of the target gene for a prolonged period of time was obtained by repeated suspension delivery of the R8HNP-siRNA conjugate. The long-term silencing of a pluripotency marker gene resulted in differentiation of R1 ESCs predominantly towards the extra embryonic and ectodermal lineages. Cells displayed excellent tolerance to repeated exposures of R8HNPs. CONCLUSIONS: The results demonstrate that R8HNPs are promising, biocompatible, non-viral alternatives for prolonged gene silencing and obtaining differentiated cells for therapeutics.


Subject(s)
Cell Differentiation , Durapatite , Mouse Embryonic Stem Cells , RNA, Small Interfering , Animals , Mice , Durapatite/chemistry , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/drug effects , RNA, Small Interfering/genetics , Gene Silencing , Biocompatible Materials/chemistry , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Nanoparticles/chemistry , Transduction, Genetic , RNA Interference , Gene Knockdown Techniques
4.
Cell Physiol Biochem ; 58(4): 292-310, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973197

ABSTRACT

BACKGROUND/AIMS: Tactile perception relies on mechanoreceptors and nerve fibers, including c-fibers, Aß-fibers and Aδ-fibers. Schwann cells (SCs) play a crucial role in supporting nerve fibers, with non-myelinating SCs enwrapping c-fibers and myelinating SCs ensheathing Aß and Aδ fibers. Recent research has unveiled new functions for cutaneous sensory SCs, highlighting the involvement of nociceptive SCs in pain perception and Meissner corpuscle SCs in tactile sensation. Furthermore, Piezo2, previously associated with Merkel cell tactile sensitivity, has been identified in SCs. The goal of this study was to investigate the channels implicated in SC mechanosensitivity and the release process of neurotrophic factor secretion. METHODS: Immortalized IFRS1 SCs and human primary SCs generated two distinct subtypes of SCs: undifferentiated and differentiated SCs. Quantitative PCR was employed to evaluate the expression of differentiation markers and mechanosensitive channels, including TRP channels (TRPV4, TRPM7 and TRPA1) and Piezo channels (Piezo1 and Piezo2). To validate the functionality of specific mechanosensitive channels, Ca2+ imaging and electronic cell sizing experiments were conducted under hypotonic conditions, and inhibitors and siRNAs were used. Protein expression was assessed by Western blotting and immunostaining. Additionally, secretome analysis was performed to evaluate the release of neurotrophic factors in response to hypotonic stimulation, with BDNF, a representative trophic factor, quantified using ELISA. RESULTS: Induction of differentiation increased Piezo2 mRNA expression levels both in IFRS1 and in human primary SCs. Both cell types were responsive to hypotonic solutions, with differentiated SCs displaying a more pronounced response. Gd3+ and FM1-43 effectively inhibited hypotonicity-induced Ca2+ transients in differentiated SCs, implicating Piezo2 channels. Conversely, inhibitors of Piezo1 and TRPM7 (Dooku1 and NS8593, respectively) had no discernible impact. Moreover, Piezo2 in differentiated SCs appeared to participate in regulatory volume decreases (RVD) after cell swelling induced by hypotonic stimulation. A Piezo2 deficiency correlated with reduced RVD and prolonged cell swelling, leading to heightened release of the neurotrophic factor BDNF by upregulating the function of endogenously expressed Ca2+-permeable TRPV4. CONCLUSION: Our study unveils the mechanosensitivity of SCs and implicates Piezo2 channels in the release of neurotrophic factors from SCs. These results suggest that Piezo2 may contribute to RVD, thereby maintaining cellular homeostasis, and may also serve as a negative regulator of neurotrophic factor release. These findings underscore the need for further investigation into the role of Piezo2 in SC function and neurotrophic regulation.


Subject(s)
Brain-Derived Neurotrophic Factor , Cell Size , Ion Channels , Schwann Cells , Schwann Cells/metabolism , Schwann Cells/cytology , Humans , Ion Channels/metabolism , Cell Size/drug effects , Brain-Derived Neurotrophic Factor/metabolism , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , RNA, Small Interfering/metabolism , Cell Differentiation , Cells, Cultured , RNA Interference , Calcium/metabolism , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Mechanotransduction, Cellular
5.
BMC Genomics ; 25(1): 678, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977960

ABSTRACT

BACKGROUND: The piRNA pathway in animal gonads functions as an 'RNA-based immune system', serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23-28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. RESULTS: By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. CONCLUSION: Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Gene Silencing , Germ Cells , Promoter Regions, Genetic , RNA, Small Interfering , Animals , DNA Transposable Elements/genetics , Germ Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Drosophila Proteins/genetics , Drosophila/genetics , Argonaute Proteins/genetics
6.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2136-2149, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044580

ABSTRACT

African swine fever virus (ASFV), as a contagious viral pathogen, is responsible for the occurrence of African swine fever (ASF), a rapidly spreading and highly lethal disease. Since ASFV was introduced into China in 2018, it has been quickly spread to many provinces, which brought great challenges to the pig industry in China. Due to the limited knowledge about the pathogenesis of ASFV, neither vaccines nor antiviral drugs are available. We have found that ASFV infection can induce oxidative stress responses in cells, and DNA repair enzymes play a key role in this process. This study employed RNA interference, RT-qPCR, Western blotting, Hemadsorption (HAD), and flow cytometry to investigate the effects of the inhibitors of DNA repair enzymes OGG1 and MTH1 on ASFV replication and evaluated the anti-ASFV effects of the inhibitors. This study provides reference for the development of anti-viral drugs.


Subject(s)
African Swine Fever Virus , DNA Glycosylases , Phosphoric Monoester Hydrolases , Virus Replication , African Swine Fever Virus/genetics , African Swine Fever Virus/drug effects , Animals , Virus Replication/drug effects , Swine , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , African Swine Fever/virology , Antiviral Agents/pharmacology , RNA Interference , RNA, Small Interfering/genetics , Enzyme Inhibitors/pharmacology , Oxidative Stress/drug effects , Vero Cells
7.
Recent Pat Anticancer Drug Discov ; 19(4): 503-515, 2024.
Article in English | MEDLINE | ID: mdl-39044710

ABSTRACT

BACKGROUND: Both apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) inhibition and melatonin suppress prostate cancer (PCa) growth. OBJECTIVE: This study evaluated the therapeutic efficiency of self-assembled and prostate-specific membrane antigen (PSMA)-targeted nanocarrier loading 125I radioactive particles and encapsulating siRNA targeting APE1 (siAPE1) and melatonin for PCa. METHODS: The linear polyarginine R12 polypeptide was prepared using Fmoc-Arg-Pbf-OH. The PSMA-targeted polymer was synthesized by conjugating azide-modified R12 peptide to PSMA monoclonal antibody (mAb). Before experiments, the PSMA-R12 nanocarrier was installed with melatonin and siAPE1, which were subsequently labeled by 125I radioactive particles. In vitro biocompatibility and cytotoxicity of nanocomposites were examined in LNCaP cells and in vivo biodistribution and pharmacokinetics were determined using PCa tumor-bearing mice. RESULTS: PSMA-R12 nanocarrier was ~120 nm in size and was increased to ~150 nm by melatonin encapsulation. PSMA-R12 nanoparticles had efficient loading capacities of siAPE1, melatonin, and 125I particles. The co-delivery of melatonin and siAPE1 by PSMA-R12-125I showed synergistic effects on suppressing LNCaP cell proliferation and Bcl-2 expression and promoting cell apoptosis and caspase-3 expression. Pharmacokinetics analysis showed that Mel@PSMA-R12-125I particles had high uptake activity in the liver, spleen, kidney, intestine, and tumor, and were accumulated in the tumor sites within the first 8 h p.i., but was rapidly cleared from all the tested organs at 24 h p.i. Administration of nanoparticles to PCa tumors in vivo showed that Mel@PSMA-R12- 125I/siAPE1 had high efficiency in suppressing PCa tumor growth. CONCLUSION: The PSMA-targeted nanocarrier encapsulating siAPE1 and melatonin is a promising therapeutic strategy for PCa and can provide a theoretical basis for patent applications.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Iodine Radioisotopes , Melatonin , Nanoparticles , Prostatic Neoplasms , Male , Animals , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Humans , Iodine Radioisotopes/administration & dosage , Melatonin/pharmacology , Melatonin/administration & dosage , Cell Line, Tumor , Nanoparticles/chemistry , Mice , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Tissue Distribution , Mice, Nude , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Mice, Inbred BALB C , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology
8.
J Nanobiotechnology ; 22(1): 434, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044233

ABSTRACT

Pulmonary Fibrosis (PF) is a fatal disease in the interstitial lung associated with high mortality, morbidity, and poor prognosis. Transforming growth factor-ß1 (TGF-ß1) is a fibroblast-activating protein that promotes fibrous diseases. Herein, an inhalable system was first developed using milk exosomes (M-Exos) encapsulating siRNA against TGF-ß1 (MsiTGF-ß1), and their therapeutic potential for bleomycin (BLM)-induced PF was investigated. M-siTGF-ß1 was introduced into the lungs of mice with PF through nebulization. The collagen penetration effect and lysosomal escape ability were verified in vitro. Inhaled MsiTGF-ß1 notably alleviated inflammatory infiltration, attenuated extracellular matrix (ECM) deposition, and increased the survival rate of PF mice by 4.7-fold. M-siTGF-ß1 protected lung tissue from BLM toxicity by efficiently delivering specific siRNA to the lungs, leading to TGF-ß1 mRNA silencing and epithelial mesenchymal transition pathway inhibition. Therefore, M-siTGF-ß1 offers a promising avenue for therapeutic intervention in fibrosis-related disorders.


Subject(s)
Bleomycin , Collagen , Epithelial-Mesenchymal Transition , Exosomes , Lung , Milk , Pulmonary Fibrosis , RNA, Small Interfering , Transforming Growth Factor beta1 , Animals , Exosomes/metabolism , Transforming Growth Factor beta1/metabolism , Pulmonary Fibrosis/drug therapy , Mice , Collagen/metabolism , Bleomycin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Milk/chemistry , Mice, Inbred C57BL , Humans , Permeability , Male , Nebulizers and Vaporizers
9.
Proc Natl Acad Sci U S A ; 121(31): e2409233121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39047046

ABSTRACT

Invertebrates mainly rely on sequence-specific RNA interference (RNAi) to resist viral infections. Increasing studies show that double-stranded RNA (dsRNA) can induce sequence-independent protection and that Dicer-2, the key RNAi player that cleaves long dsRNA into small interfering RNA (siRNA), is necessary for this protection. However, how this protection occurs remains unknown. Herein, we report that it is caused by adenosine triphosphate (ATP)-hydrolysis accompanying the dsRNA-cleavage. Dicer-2 helicase domain is ATP-dependent; therefore, the cleavage consumes ATP. ATP depletion activates adenosine monophosphate-activated protein kinase (Ampk) and induces nuclear localization of Fork head box O (FoxO), a key transcriptional factor for dsRNA-induced genes. siRNAs that do not require processing cannot activate the transcriptional response. This study reveals a unique nonspecific antiviral mechanism other than the specific RNAi in shrimp. This mechanism is functionally similar to, but mechanistically different from, the dsRNA-activated antiviral response in vertebrates and suggests an interesting evolution of innate antiviral immunity.


Subject(s)
AMP-Activated Protein Kinases , Adenosine Triphosphate , RNA, Double-Stranded , Ribonuclease III , Animals , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/genetics , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Immunity, Innate , Transcription, Genetic
10.
J Extracell Vesicles ; 13(7): e12484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041344

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterised by immune evasion that contribute to poor prognosis. Cancer-associated fibroblasts (CAFs) play a pivotal role in orchestrating the PDAC tumour microenvironment. We investigated the role of CAF-derived extracellular vesicle (EV)-packaged long non-coding RNAs (lncRNAs) in immune evasion and explored gene therapy using engineered EVs loading small interfering RNAs (siRNAs) as a potential therapeutic strategy. Our findings highlight the significance of EV-packaged lncRNA RP11-161H23.5 from CAF in promoting PDAC immune evasion by downregulating HLA-A expression, a key component of antigen presentation. Mechanistically, RP11-161H23.5 forms a complex with CNOT4, a subunit of the mRNA deadenylase CCR4-NOT complex, enhancing the degradation of HLA-A mRNA by shortening its poly(A) tail. This immune evasion mechanism compromises the anti-tumour immune response. To combat this, we propose an innovative approach utilising engineered EVs as natural and biocompatible nanocarriers for siRNA-based gene therapy and this strategy holds promise for enhancing the effectiveness of immunotherapy in PDAC. Overall, our study sheds light on the critical role of CAF-derived EV-packaged lncRNA RP11-161H23.5/CNOT4/HLA-A axis in PDAC immune evasion and presents a novel avenue for therapeutic intervention.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Extracellular Vesicles , HLA-A Antigens , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-A Antigens/metabolism , Immune Evasion , Gene Expression Regulation, Neoplastic , Down-Regulation , RNA, Small Interfering , Tumor Microenvironment/immunology , Animals , Tumor Escape , Mice
11.
Reprod Biol Endocrinol ; 22(1): 87, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049033

ABSTRACT

BACKGROUND: Spermatogenesis is a temperature-sensitive process, and elevation in temperature hampers this process quickly and significantly. We studied the molecular effects of testicular heating on piRNAs and gene expression in rat testicular germ cells. METHODS: We generated a cryptorchid rat model by displacing the testis from the scrotal sac (34 °C) to the abdominal area (37 °C) and sacrificed animals after 1 day, 3 days, and 5 days. Pachytene spermatocytes and round spermatids were purified using elutriation centrifugation and percoll gradient methods. We performed transcriptome sequencing in pachytene spermatocytes and round spermatids to identify differentially expressed piRNAs and their probable targets, i.e., TE transcripts and mRNAs. RESULTS: As a result of heat stress, we observed significant upregulation of piRNAs and TE transcripts in testicular germ cells. In addition to this, piRNA biogenesis machinery and heat shock proteins (Hsp70 and Hsp90 family members) were upregulated. mRNAs have also been proposed as targets for piRNAs; therefore, we shortlisted certain piRNA-mRNA pairs with an inverse relationship of expression. We observed that in testicular heat stress, the heat shock proteins go hand-in-hand with the upregulation of piRNA biogenesis machinery. The dysregulation of piRNAs in heat-stressed germ cells, increased ping-pong activity, and disturbed expression of piRNA target transcripts suggest a connection between piRNAs, mRNAs, and TE transcripts. CONCLUSIONS: In heat stress, piRNAs, piRNA machinery, and heat shock proteins are activated to deal with low levels of stress, which is followed by a rescue approach in prolonged stressaccompained by high TE activity to allow genetic mutations, perhaps for survival and adaptability.


Subject(s)
Heat-Shock Response , RNA, Small Interfering , Spermatids , Spermatocytes , Testis , Animals , Male , Spermatids/metabolism , Spermatocytes/metabolism , RNA, Small Interfering/genetics , Rats , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Testis/metabolism , Spermatogenesis/genetics , Spermatogenesis/physiology , Pachytene Stage/genetics , Rats, Sprague-Dawley , Piwi-Interacting RNA
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1227-1235, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39051068

ABSTRACT

OBJECTIVE: To investigate the role of high-mobility group AT-hook 2 (HMGA2) in osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) and the effect of Hmga2 knockdown for promoting bone defect repair. METHODS: Bioinformatics studies using the GEO database and Rstudio software identified HMGA2 as a key factor in adipogenic-osteogenic differentiation balance of ADSCs. The protein-protein interaction network of HMGA2 in osteogenic differentiation was mapped using String and visualized with Cytoscape to predict the downstream targets of HMGA2. Primary mouse ADSCs (mADSCs) were transfected with Hmga2 siRNA, and the changes in osteogenic differentiation of the cells were evaluated using alkaline phosphatase staining and Alizarin red S staining. The expressions of osteogenic markers Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcein (OCN) in the transfected cells were detected using RT-qPCR and Western blotting. In a mouse model of critical-sized calvarial defects, mADSCs with Hmga2-knockdown were transplanted into the defect, and bone repair was evaluated 6 weeks later using micro-CT scanning and histological staining. RESULTS: GEO database analysis showed that HMGA2 expression was upregulated during adipogenic differentiation of ADSCs. Protein-protein interaction network analysis suggested that the potential HMGA2 targets in osteogenic differentiation of ADSCs included SMAD7, CDH1, CDH2, SNAI1, SMAD9, IGF2BP3, and ALDH1A1. In mADSCs, Hmga2 knockdown significantly upregulated the expressions of RUNX2, OPN, and OCN and increased cellular alkaline phosphatase activity and calcium deposition. In a critical-sized calvarial defect model, transplantation of mADSCs with Hmga2 knockdown significantly promoted new bone formation. CONCLUSION: HMGA2 is a crucial regulator of osteogenic differentiation in ADSCs, and Hmga2 knockdown significantly promotes osteogenic differentiation of ADSCs and accelerates ADSCs-mediated bone defect repair in mice.


Subject(s)
Cell Differentiation , HMGA2 Protein , Mesenchymal Stem Cells , Osteogenesis , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Mice , Adipose Tissue/cytology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , RNA, Small Interfering/genetics , Gene Knockdown Techniques , Adipogenesis/genetics
13.
Sci Rep ; 14(1): 15442, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965312

ABSTRACT

The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.


Subject(s)
Epithelial Cells , Intestinal Mucosa , beta-Defensins , Humans , beta-Defensins/metabolism , beta-Defensins/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Signal Transduction , Gene Expression Regulation , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , RNA Interference
14.
J Nanobiotechnology ; 22(1): 392, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965606

ABSTRACT

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.


Subject(s)
Aptamers, Nucleotide , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Receptors, Transferrin , Animals , Humans , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Receptors, Transferrin/metabolism , Mice , Cell Line, Tumor , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Cell Proliferation/drug effects , Genetic Therapy/methods , RNA, Small Interfering/pharmacology , Mice, Nude
15.
Nat Commun ; 15(1): 5499, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951509

ABSTRACT

Argonaute proteins are the central effectors of RNA-guided RNA silencing pathways in eukaryotes, playing crucial roles in gene repression and defense against viruses and transposons. Eukaryotic Argonautes are subdivided into two clades: AGOs generally facilitate miRNA- or siRNA-mediated silencing, while PIWIs generally facilitate piRNA-mediated silencing. It is currently unclear when and how Argonaute-based RNA silencing mechanisms arose and diverged during the emergence and early evolution of eukaryotes. Here, we show that in Asgard archaea, the closest prokaryotic relatives of eukaryotes, an evolutionary expansion of Argonaute proteins took place. In particular, a deep-branching PIWI protein (HrAgo1) encoded by the genome of the Lokiarchaeon 'Candidatus Harpocratesius repetitus' shares a common origin with eukaryotic PIWI proteins. Contrasting known prokaryotic Argonautes that use single-stranded DNA as guides and/or targets, HrAgo1 mediates RNA-guided RNA cleavage, and facilitates gene silencing when expressed in human cells and supplied with miRNA precursors. A cryo-EM structure of HrAgo1, combined with quantitative single-molecule experiments, reveals that the protein displays structural features and target-binding modes that are a mix of those of eukaryotic AGO and PIWI proteins. Thus, this deep-branching archaeal PIWI may have retained an ancestral molecular architecture that preceded the functional and mechanistic divergence of eukaryotic AGOs and PIWIs.


Subject(s)
Argonaute Proteins , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Humans , RNA Interference , Archaea/genetics , Archaea/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Cryoelectron Microscopy , MicroRNAs/genetics , MicroRNAs/metabolism , Evolution, Molecular , Phylogeny
16.
Theranostics ; 14(10): 3945-3962, 2024.
Article in English | MEDLINE | ID: mdl-38994035

ABSTRACT

Rationale: NLRP3 inflammasome is critical in the development and progression of many metabolic diseases driven by chronic inflammation, but its effect on the pathology of postmenopausal osteoporosis (PMOP) remains poorly understood. Methods: We here firstly examined the levels of NLRP3 inflammasome in PMOP patients by ELISA. Then we investigated the possible mechanisms underlying the effect of NLRP3 inflammasome on PMOP by RNA sequencing of osteoblasts treated with NLRP3 siRNA and qPCR. Lastly, we accessed the effect of decreased NLRP3 levels on ovariectomized (OVX) rats. To specifically deliver NLRP3 siRNA to osteoblasts, we constructed NLRP3 siRNA wrapping osteoblast-specific aptamer (CH6)-functionalized lipid nanoparticles (termed as CH6-LNPs-siNLRP3). Results: We found that the levels of NLRP3 inflammasome were significantly increased in patients with PMOP, and were negatively correlated with estradiol levels. NLRP3 knock-down influenced signal pathways including immune system process, interferon signal pathway. Notably, of the top ten up-regulated genes in NLRP3-reduced osteoblasts, nine genes (except Mx2) were enriched in immune system process, and five genes were related to interferon signal pathway. The in vitro results showed that CH6-LNPs-siNLRP3 was relatively uniform with a dimeter of 96.64 ± 16.83 nm and zeta potential of 38.37 ± 1.86 mV. CH6-LNPs-siNLRP3 did not show obvious cytotoxicity and selectively delivered siRNA to bone tissue. Moreover, CH6-LNPs-siNLRP3 stimulated osteoblast differentiation by activating ALP and enhancing osteoblast matrix mineralization. When administrated to OVX rats, CH6-LNPs-siNLRP3 promoted bone formation and bone mass, improved bone microarchitecture and mechanical properties by decreasing the levels of NLRP3, IL-1ß and IL-18 and increasing the levels of OCN and Runx2. Conclusion: NLRP3 inflammasome may be a new biomarker for PMOP diagnosis and plays a key role in the pathology of PMOP. CH6-LNPs-siNLRP3 has potential application for the treatment of PMOP.


Subject(s)
Inflammasomes , Liposomes , NLR Family, Pyrin Domain-Containing 3 Protein , Nanoparticles , Osteoblasts , Osteoporosis, Postmenopausal , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Female , Humans , Rats , Inflammasomes/metabolism , Nanoparticles/chemistry , Osteoporosis, Postmenopausal/metabolism , Down-Regulation/drug effects , Rats, Sprague-Dawley , RNA, Small Interfering/administration & dosage , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/administration & dosage , Disease Models, Animal , Middle Aged , Ovariectomy
17.
Nano Lett ; 24(28): 8732-8740, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958407

ABSTRACT

Piwi-interacting RNAs (piRNAs) are small noncoding RNAs that repress transposable elements to maintain genome integrity. The canonical catalytic hairpin assembly (CHA) circuit relies on random collisions of free-diffused reactant probes, which substantially slow down reaction efficiency and kinetics. Herein, we demonstrate the construction of a spatial-confined self-stacking catalytic circuit for rapid and sensitive imaging of piRNA in living cells based on intramolecular and intermolecular hybridization-accelerated CHA. We rationally design a 3WJ probe that not only accelerates the reaction kinetics by increasing the local concentration of reactant probes but also eliminates background signal leakage caused by cross-entanglement of preassembled probes. This strategy achieves high sensitivity and good specificity with shortened assay time. It can quantify intracellular piRNA expression at a single-cell level, discriminate piRNA expression in tissues of breast cancer patients and healthy persons, and in situ image piRNA in living cells, offering a new approach for early diagnosis and postoperative monitoring.


Subject(s)
RNA, Small Interfering , Humans , RNA, Small Interfering/genetics , Catalysis , Nucleic Acid Hybridization , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Kinetics , Piwi-Interacting RNA
18.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000202

ABSTRACT

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.


Subject(s)
Cisplatin , Hair Cells, Auditory , Microbubbles , Muramidase , NADPH Oxidase 4 , Ototoxicity , Reactive Oxygen Species , Cisplatin/pharmacology , Animals , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Mice , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Reactive Oxygen Species/metabolism , Ototoxicity/genetics , Muramidase/genetics , RNA, Small Interfering/genetics , Ultrasonic Waves , Gene Knockdown Techniques , Cell Line
19.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000204

ABSTRACT

Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.


Subject(s)
Fear , Hippocampus , Tacrolimus Binding Proteins , Animals , Male , Fear/physiology , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Hippocampus/metabolism , Rats , Corticosterone/metabolism , Corticosterone/blood , Rats, Sprague-Dawley , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Receptors, Glucocorticoid/metabolism , Extinction, Psychological/physiology
20.
PLoS Genet ; 20(7): e1011345, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985845

ABSTRACT

The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNAs are expressed from >10,000 independently transcribed genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. Clustering of piRNA genes contributes to their germline-specific expression, but the underlying mechanisms are unclear. We analyze isolated germ nuclei to demonstrate that the piRNA genomic domains are located in a heterochromatin-like environment. USTC (Upstream Sequence Transcription Complex) promotes strong association of nucleosomes throughout piRNA clusters, yet organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Localization of USTC to the piRNA domains depends upon the ATPase chromatin remodeler ISW-1, which maintains high nucleosome density across piRNA clusters and ongoing production of piRNA precursors. Overall, this work provides insight into how chromatin states coordinate transcriptional regulation over large genomic domains, with implications for global genome organization.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Germ Cells , Nucleosomes , Promoter Regions, Genetic , RNA, Small Interfering , Animals , Caenorhabditis elegans/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Germ Cells/metabolism , Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Chromatin/metabolism , Transcription, Genetic , Gene Expression Regulation/genetics , Heterochromatin/genetics , Heterochromatin/metabolism , Piwi-Interacting RNA
SELECTION OF CITATIONS
SEARCH DETAIL