Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.674
1.
Theranostics ; 14(7): 2777-2793, 2024.
Article En | MEDLINE | ID: mdl-38773978

Small extracellular vesicles (sEVs) are naturally occurring vesicles that have the potential to be manipulated to become promising drug delivery vehicles for on-demand in vitro and in vivo gene editing. Here, we developed the modular safeEXO platform, a prototype sEV delivery vehicle that is mostly devoid of endogenous RNA and can efficaciously deliver RNA and ribonucleoprotein (RNP) complexes to their intended intracellular targets manifested by downstream biologic activity. We also successfully engineered producer cells to produce safeEXO vehicles that contain endogenous Cas9 (safeEXO-CAS) to effectively deliver efficient ribonucleoprotein (RNP)-mediated CRISPR genome editing machinery to organs or diseased cells in vitro and in vivo. We confirmed that safeEXO-CAS sEVs could co-deliver ssDNA, sgRNA and siRNA, and efficaciously mediate gene insertion in a dose-dependent manner. We demonstrated the potential to target safeEXO-CAS sEVs by engineering sEVs to express a tissue-specific moiety, integrin alpha-6 (safeEXO-CAS-ITGA6), which increased their uptake to lung epithelial cells in vitro and in vivo. We tested the ability of safeEXO-CAS-ITGA6 loaded with EMX1 sgRNAs to induce lung-targeted editing in mice, which demonstrated significant gene editing in the lungs with no signs of morbidity or detectable changes in immune cell populations. Our results demonstrate that our modular safeEXO platform represents a targetable, safe, and efficacious vehicle to deliver nucleic acid-based therapeutics that successfully reach their intracellular targets. Furthermore, safeEXO producer cells can be genetically manipulated to produce safeEXO vehicles containing CRISPR machinery for more efficient RNP-mediated genome editing. This platform has the potential to improve current therapies and increase the landscape of treatment for various human diseases using RNAi and CRISPR approaches.


CRISPR-Cas Systems , Extracellular Vesicles , Gene Editing , Gene Transfer Techniques , Gene Editing/methods , Extracellular Vesicles/metabolism , CRISPR-Cas Systems/genetics , Animals , Humans , Mice , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Guide, CRISPR-Cas Systems/genetics
2.
Int J Nanomedicine ; 19: 4411-4427, 2024.
Article En | MEDLINE | ID: mdl-38774028

Background: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation and joint destruction. Despite progress in RA therapy, it remains difficult to achieve long-term remission in RA patients. Phosphodiesterase 3B (Pde3b) is a member of the phosphohydrolyase family that are involved in many signal transduction pathways. However, its role in RA is yet to be fully addressed. Methods: Studies were conducted in arthritic DBA/1 mice, a suitable mouse strain for collagen-induced rheumatoid arthritis (CIA), to dissect the role of Pde3b in RA pathogenesis. Next, RNAi-based therapy with Pde3b siRNA-loaded liposomes was assessed in a CIA model. To study the mechanism involved, we investigated the effect of Pde3b knockdown on macrophage polarization and related signaling pathway. Results: We demonstrated that mice with CIA exhibited upregulated Pde3b expression in macrophages. Notably, intravenous administration of liposomes loaded with Pde3b siRNA promoted the macrophage anti-inflammatory program and alleviated CIA in mice, as indicated by the reduced inflammatory response, synoviocyte infiltration, and bone and cartilage erosion. Mechanistic study revealed that depletion of Pde3b increased cAMP levels, by which it enhanced PKA-CREB-C/EBPß pathway to transcribe the expression of anti-inflammatory program-related genes. Conclusion: Our results support that Pde3b is involved in the pathogenesis of RA, and Pde3b siRNA-loaded liposomes might serve as a promising therapeutic approach against RA.


Arthritis, Experimental , Arthritis, Rheumatoid , Cyclic Nucleotide Phosphodiesterases, Type 3 , Genetic Therapy , Liposomes , Macrophages , Mice, Inbred DBA , RNA, Small Interfering , Animals , Liposomes/chemistry , Liposomes/administration & dosage , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/chemically induced , Mice , Arthritis, Experimental/genetics , Arthritis, Experimental/prevention & control , Arthritis, Experimental/therapy , Macrophages/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/administration & dosage , Genetic Therapy/methods , Male , Signal Transduction/drug effects
3.
Med ; 5(5): 383-385, 2024 May 10.
Article En | MEDLINE | ID: mdl-38733971

Hypertension is a modifiable risk factor for cardiovascular disease, the leading cause of death worldwide, yet most US adults with hypertension do not meet goal blood pressure. KARDIA-1 demonstrates the efficacy of zilebesiran, a subcutaneously administered small interfering RNA, for lowering blood pressure, presenting a novel treatment option for this deadly disease.1.


Hypertension , RNA, Small Interfering , Hypertension/genetics , Humans , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/therapeutic use , Blood Pressure/drug effects
4.
Zhonghua Zhong Liu Za Zhi ; 46(5): 409-418, 2024 May 23.
Article Zh | MEDLINE | ID: mdl-38742354

Objective: This study aimed to develop a new delivery strategy that utilized metal organic framework (MOF) loaded with small-interfering RNA (siRNA) targeting ITGAV to overcome tumor matrix barrier, and thus enhance drug penetration and immune accessibility in breast cancer. Methods: MOF@siITGAV particles were constructed and characterized. The uptake of MOF@siITGAV in breast cancer cell line 4T1 was observed by the cellular uptake assay. The toxicity of MOF@siITGAV was detected by cell counting kit 8 (CCK-8). The blank control group, naked siITGAV group and MOF@siITGAV group were set. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the expressions of ITGAV. The level of transforming growth factor ß1 (TGF-ß1) in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA). The penetration of MOF@siITGAV in 4T1 cells was tested by constructing 3D spheroids. Mouse models of triple negative breast cancer were established. The effect of MOF@siITGAV on the growth of transplanted tumors and main organs was verified. Imminohistochemical (IHC) was used to test the expression of collagen and CD8. Results: MOF@siITGAV particles were constructed with sizes of (198.0±3.3) nm and zeta potential of -(20.2±0.4) mV. MOF@siITGAV could be engulfed by 4T1 cells and triggered to release siRNA. Compared to the blank control group, the expression of ITGAV in the MOF@siITGAV group [(46.5±11.3)%] and the naked siITGAV group [(109.9±19.0)%] was lower. TGF-ß1 in the cell culture medium of the blank control group, naked siITGAV group, and MOF@siITGAV group was (474.5±34.4) pg/ml, (437.2±16.5) pg/ml, and (388.4±14.4) pg/ml, respectively. MOF@siITGAV could better penetrate into 4T1 spheroids and exhibit no obvious toxicity. The cell viability was (99.7±3.5)%, (98.2±5.2)%, (97.3±6.6)%, (92.1±8.1)%, and (92.4±4.1)%, respectively, after MOF@siITGAV treatment with the concentration of 0, 10, 20, 40, 80, and 160 µg/ml, respectively, for 24 h. The tumor growth in the MOF@siITGAV group was suppressed significantly. After 15-day treatment, the tumor volume of the MOF@siITGAV group was (135.3±41.9) mm3, smaller than that of the blank control group [(691.1±193.0) mm3] (P=0.025). The expression of collagen and the number of CD8 positive cells of the MOF@siITGAV group were lower than those of the other two groups. No significant abnormalities were observed in the main organs of mice. Conclusions: Targeting the integrinαv on the surface of cancer cells could destroy extracellular matrix, improve drug delivery, and increase immune infiltration.


Metal-Organic Frameworks , RNA, Small Interfering , Transforming Growth Factor beta1 , Animals , RNA, Small Interfering/administration & dosage , Mice , Female , Cell Line, Tumor , Metal-Organic Frameworks/chemistry , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Drug Delivery Systems , Mice, Inbred BALB C , RNA, Messenger/metabolism , RNA, Messenger/genetics
5.
Med Oncol ; 41(6): 149, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739199

Because of the high biocompatibility, self-assembly capability, and CD71-mediated endocytosis, using human heavy chain ferritin (HFn) as a nanocarrier would greatly increase therapeutic effectiveness and reduce possible adverse events. Anti-PD-L1 siRNA can downregulate the level of PD-L1 on tumor cells, resulting in the activation of effector T cells against leukemia. Therefore, this study aimed to produce the tumor-targeting siPD-L1/HFn nanocarrier. Briefly, the HFn coding sequence was cloned into a pET-28a, and the constructed expression plasmid was subsequently transformed into E. coli BL21. After induction of Isopropyl ß-D-1-thiogalactopyranoside (IPTG), HFn was purified with Ni-affinity chromatography and dialyzed against PBS. The protein characteristics were analyzed using SDS-PAGE, Western Blot, and Dynamic light scattering (DLS). The final concentration was assessed using the Bicinchoninic acid (BCA) assay. The encapsulation was performed using the standard pH system. The treatment effects of siPD-L1/HFn were carried out on HL-60 and K-562 cancer cell lines. The RT-PCR was used to determine the mRNA expression of PD-L1. The biocompatibility and excretion of siPD-L1/HFn have also been evaluated. The expression and purity of HFn were well verified through SDS-PAGE, WB, and DLS. RT-PCR analyses also showed significant siRNA-mediated PD-L1 silencing in both HL-60 and K-562 cells. Our study suggested a promising approach for siRNA delivery. This efficient delivery system can pave the way for the co-delivery of siRNAs and multiple chemotherapies to address the emerging needs of cancer combination therapy.


Apoferritins , B7-H1 Antigen , Leukemia, Myeloid, Acute , RNA, Small Interfering , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/administration & dosage , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/antagonists & inhibitors , Apoferritins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , HL-60 Cells , K562 Cells , Cell Line, Tumor , Nanoparticles/chemistry
6.
Int J Pharm ; 657: 124159, 2024 May 25.
Article En | MEDLINE | ID: mdl-38701907

Inhibiting the expression of tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine widely distributed in the serum and synovial fluid, is important for managing rheumatoid arthritis (RA). Despite the good therapeutic effects of TNF-α small interfering RNA (TNF-α siRNA) in RA animal models, safe and efficient siRNA delivery systems that retain stability are lacking. We introduced a novel therapy using milk-derived exosomes(mEXOs)-encapsulated TNF-α siRNA-coated cryomicroneedle (cryoMN) patch and evaluated its efficacy via local transdermal administration through acupoints in RA treatment. The loading of TNF-α siRNAs into mEXOs was achieved by sonication, the loading rate, stability, and in vitro release of mEXOs-TNF-α siRNA were determined. The cryoMNs were prepared by micromolding, morphology, drug loading, and mechanical strength of the cryoMN array were analyzed. The loading efficiency of TNF-α siRNA was up to 21% and each cryoMN contained 39.6 ± 1.29 µg of TNF-α siRNA. Frozen sections penetrated 523 ± 63 µm deep. In vitro experiments have shown that mEXOs-TNF-α siRNA cryoMNs have good biocompatibility and inhibit the proliferation of HFLS-RA cells. In vivo pharmacodynamics studies found that general conditions, changes in microcirculation indexes, synovial histopathological changes, and expression of related proteins in the synovial tissue in RA rabbits were effectively alleviated by mEXOs-TNF-α siRNA cryoMNs. Improvement of each index at acupoints was greater than that at non-acupoints. Our findings facilitate the development of cryoMNs combined with exosomes and acupoints drug delivery for the treatment of RA. The combination of exosomes and cryoMNs will enable the development of new-generation microneedle-based treatments.


Administration, Cutaneous , Arthritis, Rheumatoid , Exosomes , Milk , RNA, Small Interfering , Tumor Necrosis Factor-alpha , Animals , Arthritis, Rheumatoid/therapy , RNA, Small Interfering/administration & dosage , Rabbits , Humans , Milk/chemistry , Needles , Cell Line , Male , Drug Delivery Systems/methods
7.
Expert Opin Drug Metab Toxicol ; 20(5): 399-406, 2024 May.
Article En | MEDLINE | ID: mdl-38706380

BACKGROUND: Methotrexate (MTX) is partially metabolized by aldehyde oxidase (AOX) in the liver and its clinical impact remains unclear. In this study, we aimed to demonstrate how AOX contributes to MTX-induced hepatotoxicity in vitro and clarify the relationship between concomitant AOX inhibitor use and MTX-associated liver injury development using the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS: We assessed intracellular MTX accumulation and cytotoxicity using HepG2 cells. We used the FAERS database to detect reporting odds ratio (ROR)-based MTX-related hepatotoxicity event signals. RESULTS: AOX inhibition by AOX inhibitor raloxifene and siRNA increased the MTX accumulation in HepG2 cells and enhanced the MTX-induced cell viability reduction. In the FAERS analysis, the ROR for MTX-related hepatotoxicity increased with non-overlap of 95% confidence interval when co-administered with drugs with higher Imax, u (maximum unbound plasma concentration)/IC50 (half-maximal inhibitory concentration for inhibition of AOX) calculated based on reported pharmacokinetic data. CONCLUSION: AOX inhibition contributed to MTX accumulation in the liver, resulting in increased hepatotoxicity. Our study raises concerns regarding MTX-related hepatotoxicity when co-administered with drugs that possibly inhibit AOX activity at clinical concentrations.


Adverse Drug Reaction Reporting Systems , Aldehyde Oxidase , Chemical and Drug Induced Liver Injury , Methotrexate , Methotrexate/adverse effects , Methotrexate/administration & dosage , Humans , Aldehyde Oxidase/metabolism , Chemical and Drug Induced Liver Injury/etiology , Hep G2 Cells , Cell Survival/drug effects , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/administration & dosage , United States , United States Food and Drug Administration , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , Inhibitory Concentration 50
8.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791462

Small interfering RNA (siRNA) has significant potential as a treatment for cancer by targeting specific genes or molecular pathways involved in cancer development and progression. The addition of siRNA to other therapeutic strategies, like photodynamic therapy (PDT), can enhance the anticancer effects, providing synergistic benefits. Nevertheless, the effective delivery of siRNA into target cells remains an obstacle in cancer therapy. Herein, supramolecular nanoparticles were fabricated via the co-assembly of natural histone and hyaluronic acid for the co-delivery of HMGB1-siRNA and the photosensitizer chlorin e6 (Ce6) into the MCF-7 cell. The produced siRNA-Ce6 nanoparticles (siRNA-Ce6 NPs) have a spherical morphology and exhibit uniform distribution. In vitro experiments demonstrate that the siRNA-Ce6 NPs display good biocompatibility, enhanced cellular uptake, and improved cytotoxicity. These outcomes indicate that the nanoparticles constructed by the co-assembly of histone and hyaluronic acid hold enormous promise as a means of siRNA and photosensitizer co-delivery towards synergetic therapy.


Histones , Hyaluronic Acid , Nanoparticles , Photosensitizing Agents , RNA, Small Interfering , Hyaluronic Acid/chemistry , Humans , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Nanoparticles/chemistry , Histones/metabolism , MCF-7 Cells , Photochemotherapy/methods , Porphyrins/chemistry , Porphyrins/pharmacology , Chlorophyllides , Cell Survival/drug effects
9.
J Control Release ; 369: 642-657, 2024 May.
Article En | MEDLINE | ID: mdl-38575072

Glioma is recognized as the most infiltrative and lethal form of central nervous system tumors and is known for its limited response to standard therapeutic interventions, high recurrence rate, and unfavorable prognosis. Recent progress in gene and immunotherapy presents a renewed sense of optimism in the treatment of glioblastoma. However, the barriers to overcome include the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), as well as the suppressive immune microenvironment. Overcoming these barriers remains a significant challenge. Here, we developed a lipid nanoparticle platform incorporating a dual-functional peptide (cholesterol-DP7-ACP-T7-modified DOTAP or DAT-LNP) capable of targeting glioma across the BBB and BBTB for brain tumor immunotherapy. This system was designed to achieve two key functions. First, the system could effectively penetrate the BBB during accumulation within brain tissue following intravenous administration. Second, this system enhances the maturation of dendritic cells, the polarization of M1 macrophages, and the activation of cytotoxic CD8+ T cells. This multifaceted approach effectively mitigates the immunosuppressive tumor microenvironment of glioma and promotes robust antitumor immune responses. Overall, the intravenous administration of the delivery system designed in this study demonstrates significant therapeutic potential for glioma and holds promising applications in the field of cancer immunotherapy.


Blood-Brain Barrier , Brain Neoplasms , Glioma , Immunotherapy , Nanoparticles , RNA, Small Interfering , Blood-Brain Barrier/metabolism , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Animals , Glioma/therapy , Glioma/immunology , Immunotherapy/methods , RNA, Small Interfering/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Cell Line, Tumor , Humans , Mice, Inbred C57BL , Tumor Microenvironment , Mice , Cholesterol/chemistry , Cholesterol/administration & dosage , Lipids/chemistry , Quaternary Ammonium Compounds , Fatty Acids, Monounsaturated
10.
J Control Release ; 369: 493-505, 2024 May.
Article En | MEDLINE | ID: mdl-38582335

Osteoarthritis (OA) is the most prevalent degenerative cartilage disease, but no effective treatment is currently available to ameliorate the dysregulation of cartilage catabolism. Cartilage degeneration is closely related to the change in the physiology of chondrocytes: for example, chondrocytes of the OA patients overexpress matrix metallopeptidase 13 (MMP13), a.k.a. collagenase 3, which damages the extracellular matrix (ECM) of the cartilage and deteriorate the disease progression. Inhibiting MMP13 has shown to be beneficial for OA treatments, but delivering therapeutics to the chondrocytes embedded in the dense cartilage is a challenge. Here, we engineered the exosome surface with the cartilage affinity peptide (CAP) through lipid insertion to give chondrocyte-targeting exosomes, CAP-Exo, which was then loaded with siRNA against MMP13 (siMMP13) in the interior to give CAP-Exo/siMMP13. Intra-articular administration of CAP-Exo/siMMP13 reduced the MMP13 level and increased collagen COL2A1 and proteoglycan in cartilage in a rat model of anterior cruciate ligament transection (ACLT)-induced OA. Proteomic analysis showed that CAP-Exo/siMMP13 treatment restored the altered protein levels in the IL-1ß-treated chondrocytes. Taken together, a facile exosome engineering method enabled targeted delivery of siRNA to chondrocytes and chondrocyte-specific silencing of MMP13 to attenuate cartilage degeneration.


Chondrocytes , Exosomes , Matrix Metalloproteinase 13 , Osteoarthritis , RNA, Small Interfering , Rats, Sprague-Dawley , Regeneration , Exosomes/metabolism , Animals , Chondrocytes/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , RNA, Small Interfering/administration & dosage , Osteoarthritis/therapy , Male , Cartilage, Articular/metabolism , Peptides/administration & dosage , Peptides/chemistry , Cells, Cultured , Humans , Rats , Cartilage/metabolism
11.
Eur J Pharm Biopharm ; 199: 114296, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636882

Small interfering RNA (siRNA) is emerging as a promising treatment for retinal neovascularization due to its specific inhibition of the expression of target genes. However, the clinical translation of siRNA drugs is hindered by the efficiency and safety of delivery vectors. Here, we describe the properties of a new bioreducible ionizable lipid nanoparticle (LNP) 2N12H, which is based on a rationally designed novel ionizable lipid called 2N12B. 2N12H exhibited degradation in response to the mimic cytoplasmic glutathione condition and ionization with a pKa value of 6.5, which remaining neutral at pH 7.4. At a nitrogen to phosphorus ratio of 5, 2N12H efficiently encapsulated and protected siRNA from degradation. Compared to the commercial vehicle Lipofectamine 2000, 2N12H demonstrated similar silencing efficiency and improved safety in the in vitro cell experiments. 2N12H/siVEGFA reduced the expression of VEGFA in retinal pigment epithelium cells and mouse retina, consequently suppressing cell migration and retinal neovascularization. In the mouse model, the therapeutic effect of 2N12H/siVEGFA was comparable to that of the clinical drug ranibizumab. Together, these results suggest the potential of this novel ionizable LNP to facilitate the development of nonviral ocular gene delivery systems.


Lipids , Mice, Inbred C57BL , Nanoparticles , RNA, Small Interfering , Retinal Neovascularization , Vascular Endothelial Growth Factor A , Animals , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , Retinal Neovascularization/drug therapy , Mice , Lipids/chemistry , Humans , Vascular Endothelial Growth Factor A/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Cell Movement/drug effects , Gene Silencing/drug effects , Ranibizumab/administration & dosage , Gene Transfer Techniques , Retina/metabolism , Retina/drug effects
12.
Eur J Pharm Biopharm ; 199: 114297, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641228

Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a âˆ¼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.


DNA , Nanoparticles , Polyethyleneimine , RNA, Small Interfering , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Nanoparticles/chemistry , Polyethyleneimine/chemistry , DNA/administration & dosage , DNA/chemistry , Humans , Gene Transfer Techniques , Spray Drying , Transfection/methods , Polypropylenes/chemistry , Excipients/chemistry , Particle Size , Plasmids/administration & dosage , Desiccation/methods , Polyvinyl Alcohol/chemistry
13.
Nat Rev Drug Discov ; 23(5): 341-364, 2024 May.
Article En | MEDLINE | ID: mdl-38570694

More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.


Drug Design , RNA Interference , RNA, Small Interfering , Humans , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Animals , Drug Delivery Systems
14.
Adv Drug Deliv Rev ; 209: 115306, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626859

Cancer immunotherapy represents a revolutionary strategy, leveraging the patient's immune system to inhibit tumor growth and alleviate the immunosuppressive effects of the tumor microenvironment (TME). The recent emergence of immune checkpoint blockade (ICB) therapies, particularly following the first approval of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors like ipilimumab, has led to significant growth in cancer immunotherapy. The extensive explorations on diverse immune checkpoint antibodies have broadened the therapeutic scope for various malignancies. However, the clinical response to these antibody-based ICB therapies remains limited, with less than 15% responsiveness and notable adverse effects in some patients. This review introduces the emerging strategies to overcome current limitations of antibody-based ICB therapies, mainly focusing on the development of small interfering ribonucleic acid (siRNA)-based ICB therapies and innovative delivery systems. We firstly highlight the diverse target immune checkpoint genes for siRNA-based ICB therapies, incorporating silencing of multiple genes to boost anti-tumor immune responses. Subsequently, we discuss improvements in siRNA delivery systems, enhanced by various nanocarriers, aimed at overcoming siRNA's clinical challenges such as vulnerability to enzymatic degradation, inadequate pharmacokinetics, and possible unintended target interactions. Additionally, the review presents various combination therapies that integrate chemotherapy, phototherapy, stimulatory checkpoints, ICB antibodies, and cancer vaccines. The important point is that when used in combination with siRNA-based ICB therapy, the synergistic effect of traditional therapies is strengthened, improving host immune surveillance and therapeutic outcomes. Conclusively, we discuss the insights into innovative and effective cancer immunotherapeutic strategies based on RNA interference (RNAi) technology utilizing siRNA and nanocarriers as a novel approach in ICB cancer immunotherapy.


Gene Silencing , Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms , RNA, Small Interfering , Humans , RNA, Small Interfering/administration & dosage , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Immunotherapy/methods , Immune Checkpoint Inhibitors/administration & dosage , Animals , Tumor Microenvironment/immunology
15.
Mol Pharm ; 21(5): 2081-2096, 2024 May 06.
Article En | MEDLINE | ID: mdl-38630656

Small interfering RNAs (siRNAs) are promising therapeutic strategies, and five siRNA drugs have been approved by the Food and Drug Administration (FDA) and the European Commission (EC). This marks a significant milestone in the development of siRNA for clinical applications. The approved siRNA agents can effectively deliver siRNAs to the liver and treat liver-related diseases. Currently, researchers have developed diverse delivery platforms for transporting siRNAs to different tissues such as the brain, lung, muscle, and others, and a large number of siRNA drugs are undergoing clinical trials. Here, these delivery technologies and the latest advancements in clinical applications are summarized, and this Review provides a concise overview of the strategies employed for siRNA delivery to both hepatic and extrahepatic tissues.


RNA, Small Interfering , RNA, Small Interfering/administration & dosage , Humans , Animals , Drug Delivery Systems/methods , Gene Transfer Techniques , Liver/metabolism , RNA Interference , Nanoparticles/chemistry , United States Food and Drug Administration , Clinical Trials as Topic
16.
JAMA ; 331(18): 1534-1543, 2024 05 14.
Article En | MEDLINE | ID: mdl-38587822

Importance: Lipoprotein(a) is a causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and calcific aortic stenosis, with no pharmacological treatments approved by regulatory authorities. Objectives: To assess the safety and tolerability of zerlasiran, a short interfering RNA targeting hepatic synthesis of apolipoprotein(a), and effects on serum concentrations of lipoprotein(a). Design, Setting, and Participants: Single- and multiple-dose study in healthy participants and patients with stable ASCVD, respectively, with lipoprotein(a) serum concentrations greater than 150 nmol/L, conducted at 7 research sites in the US, the Netherlands, UK, and Australia between November 18, 2020, and February 8, 2023, with last follow-up on August 23, 2023. Interventions: Participants were randomized to receive (1) a single subcutaneous dose of placebo (n = 8), zerlasiran 300 mg (n = 6) or 600 mg (n = 6); or (2) 2 doses of placebo (n = 9), zerlasiran 200 mg (n = 9) at a 4-week interval or 300 mg (n = 9) or 450 mg (n = 9) at an 8-week interval. Main Outcomes Measures: The primary outcome was safety and tolerability. Secondary outcomes included serum levels of zerlasiran and effects on lipoprotein(a) serum concentrations. Results: Among 37 patients in the multiple-dose group (mean age, 56 [SD, 10.4] years; 15 [42%] women), 36 completed the trial. Among 14 participants with extended follow-up after single doses, 13 completed the trial. There were no serious adverse events. Median baseline lipoprotein(a) concentrations in the multiple-dose group were 288 (IQR, 199-352) nmol/L. Median changes in lipoprotein(a) concentration at 365 days after single doses were 14% (IQR, 13% to 15%) for the placebo group, -30% (IQR, -51% to -18%) for the 300 mg of zerlasiran group, and -29% (IQR, -39% to -7%) for the 600-mg dose group. After 2 doses, maximal median changes in lipoprotein(a) concentration were 19 (IQR, -17 to 28) nmol/L for the placebo group, -258 (IQR, -289 to -188) nmol/L for the 200 mg of zerlasiran group, -310 (IQR, -368 to -274) nmol/L for the 300-mg dose group, and -242 (IQR, -343 to -182) nmol/L for the 450-mg dose group, with maximal median percent change of 7% (IQR, -4% to 21%), -97% (IQR, -98% to -95%), -98% (IQR, -99% to -97%), and -99% (IQR, -99% to -98%), respectively, attenuating to 0.3% (IQR, -2% to 21%), -60% (IQR, -71% to -40%), -90% (IQR, -91% to -74%), and -89% (IQR, -91% to -76%) 201 days after administration. Conclusions: Zerlasiran was well tolerated and reduced lipoprotein(a) concentrations with infrequent administration. Trial Registration: ClinicalTrials.gov Identifier: NCT04606602.


Atherosclerosis , Lipoprotein(a) , RNA, Small Interfering , Aged , Female , Humans , Male , Middle Aged , Atherosclerosis/blood , Atherosclerosis/drug therapy , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Follow-Up Studies , Injections, Subcutaneous , Internationality , Lipoprotein(a)/antagonists & inhibitors , Lipoprotein(a)/blood , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/adverse effects , RNA, Small Interfering/therapeutic use , Treatment Outcome
17.
Biomacromolecules ; 25(5): 2934-2952, 2024 May 13.
Article En | MEDLINE | ID: mdl-38687965

Localized short interfering RNA (siRNA) therapy has the potential to drive high-specificity molecular-level treatment of a variety of disease states. Unfortunately, effective siRNA therapy suffers from several barriers to its intracellular delivery. Thus, drug delivery systems that package and control the release of therapeutic siRNAs are necessary to overcome these obstacles to clinical translation. Layer-by-layer (LbL) electrostatic assembly of thin film coatings containing siRNA and protonatable, hydrolyzable poly(ß-aminoester) (PBAE) polymers is one such drug delivery strategy. However, the impact of PBAE physicochemical properties on the transfection efficacy of siRNA released from LbL thin film coatings has not been systematically characterized. In this study, we investigate the siRNA transfection efficacy of four structurally similar PBAEs in vitro. We demonstrate that small changes in structure yield large changes in physicochemical properties, such as hydrophobicity, pKa, and amine chemical structure, driving differences in the interactions between PBAEs and siRNA in polyplexes and in LbL thin film coatings for wound dressings. In our polymer set, Poly3 forms the most stable interactions with siRNA (Keff,w/w = 0.298) to slow release kinetics and enhance transfection of reporter cells in both colloidal and thin film coating approaches. This is due to its unique physiochemical properties: high hydrophobicity (clog P = 7.86), effective pKa closest to endosomal pH (pKa = 6.21), and high cooperativity in buffering (nhill = 7.2). These properties bestow Poly3 with enhanced endosomal buffering and escape properties. Taken together, this work elucidates the connections between small changes in polymer structure, emergent properties, and polyelectrolyte theory to better understand PBAE transfection efficacy.


Polymers , RNA, Small Interfering , Static Electricity , RNA, Small Interfering/chemistry , RNA, Small Interfering/administration & dosage , Humans , Polymers/chemistry , Transfection/methods , Hydrophobic and Hydrophilic Interactions , Drug Delivery Systems/methods
18.
ACS Biomater Sci Eng ; 10(5): 2636-2658, 2024 May 13.
Article En | MEDLINE | ID: mdl-38606473

Nanosized mesoporous silica has emerged as a promising flexible platform delivering siRNA for cancer treatment. This ordered mesoporous nanosized silica provides attractive features of well-defined and tunable porosity, structure, high payload, and multiple functionalizations for targeted delivery and increasing biocompatibility over other polymeric nanocarriers. Moreover, it also overcomes the lacunae associated with traditional administration of drugs. Chemically modified porous silica matrix efficiently entraps siRNA molecules and prevents their enzymatic degradation and premature release. This Review discusses the synthesis of silica using the sol-gel approach and the advantages with different silica mesostructure. Herein, the factors affecting the synthesis of silica at nanometer scale, shape, porosity and nanoparticle surface modification are also highlighted to attain the desired nanostructured silica carriers. Additional emphasis is given to chemically modified silica delivering siRNA, where the silica nanoparticle surface was modified with different chemical moieties such as amine modified with (3-aminoropyl) triethoxysilane, polyethylenimine, chitosan, poly(ethylene glycol), and cyclodextrin polymer modification to attain high therapeutic loading, improved dispersibility and biocompatibility. Upon systemic administration, ordered mesoporous nanosized silica encounters blood cells, immune cells, and organs mainly of the reticuloendothelial system (RES). Thereby, biocompatibility and biodistribution of silica based nanocarriers are deliberated to design principles for smart and efficacious nanostructured silica-siRNA carriers and their clinical trial status. This Review further reports the future scopes and challenges for developing silica nanomaterial as a promising siRNA delivery vehicle demanding FDA approval.


Neoplasms , RNA, Small Interfering , Silicon Dioxide , Silicon Dioxide/chemistry , RNA, Small Interfering/therapeutic use , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/genetics , Porosity , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals , Drug Carriers/chemistry
19.
Theranostics ; 14(6): 2526-2543, 2024.
Article En | MEDLINE | ID: mdl-38646640

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Clodronic Acid , Lung , Macrophages, Peritoneal , Nanoparticles , Animals , Clodronic Acid/pharmacology , Clodronic Acid/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Lung/metabolism , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/drug effects , Macrophages, Alveolar/metabolism , RNA, Small Interfering/administration & dosage , GATA6 Transcription Factor/metabolism , Liposomes , Mice, Inbred C57BL , Carbocyanines/chemistry , Cell Movement/drug effects , Flow Cytometry
20.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 729-742, 2024 05.
Article En | MEDLINE | ID: mdl-38522000

The objective of this study was to compare the efficacy of short interfering RNA therapeutics (siRNAs) in reducing hepatitis B surface antigen (HBsAg) levels in hepatitis B-infected (HBV) mice across multiple siRNA therapeutic classes using model-based meta-analysis (MBMA) techniques. Literature data from 10 studies in HBV-infected mice were pooled, including 13 siRNAs, formulated as liposomal nanoparticles (LNPs) or conjugated to either cholesterol (chol) or N-acetylgalactosamine (GalNAc). Time course of the baseline- and placebo-corrected mean HBsAg profiles were modeled using kinetics of drug effect (KPD) model coupled to an indirect response model (IRM) within a longitudinal non-linear mixed-effects MBMA framework. Single and multiple dose simulations were performed exploring the role of dosing regimens across evaluated siRNA classes. The HBsAg degradation rate (0.72 day-1) was consistent across siRNAs but exhibited a large between-study variability of 31.4% (CV%). The siRNA biophase half-life was dependent on the siRNA class and was highest for GalNAc-siRNAs (21.06 days) and lowest for chol-siRNAs (2.89 days). ID50 estimates were compound-specific and were lowest for chol-siRNAs and highest for GalNAc-siRNAs. Multiple dose simulations suggest GalNAc-siRNAs may require between 4 and 7 times less frequent dosing at higher absolute dose levels compared to LNP-siRNAs and chol-siRNAs, respectively, to reach equipotent HBsAg-lowering effects in HBV mice. In conclusion, non-clinical HBsAg concentration-time data after siRNA administration can be described using the presented KPD-IRM MBMA framework. This framework allows to quantitatively compare the effects of siRNAs on the HBsAg time course and inform dose and regimen selection across siRNA classes. These results may support siRNA development, optimize preclinical study designs, and inform data analysis methodology of future anti-HBV siRNAs; and ultimately, support siRNA model-informed drug development (MIDD) strategies.


Hepatitis B Surface Antigens , Hepatitis B , RNA, Small Interfering , Animals , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , Hepatitis B Surface Antigens/blood , Mice , Hepatitis B/drug therapy , Disease Models, Animal , Acetylgalactosamine/pharmacology , Liposomes , Models, Biological , Nanoparticles , Hepatitis B virus/genetics
...