Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 570
Filter
1.
RNA Biol ; 21(1): 42-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38958280

ABSTRACT

The TATA-box binding protein (TBP) is the sole transcription factor common in the initiation complexes of the three major eukaryotic RNA Polymerases (Pol I, II and III). Although TBP is central to transcription by the three RNA Pols in various species, the emergence of TBP paralogs throughout evolution has expanded the complexity in transcription initiation. Furthermore, recent studies have emerged that questioned the centrality of TBP in mammalian cells, particularly in Pol II transcription, but the role of TBP and its paralogs in Pol I transcription remains to be re-evaluated. In this report, we show that in murine embryonic stem cells TBP localizes onto Pol I promoters, whereas the TBP paralog TRF2 only weakly associates to the Spacer Promoter of rDNA, suggesting that it may not be able to replace TBP for Pol I transcription. Importantly, acute TBP depletion does not fully disrupt Pol I occupancy or activity on ribosomal RNA genes, but TBP binding in mitosis leads to efficient Pol I reactivation following cell division. These findings provide a more nuanced role for TBP in Pol I transcription in murine embryonic stem cells.


Subject(s)
Mitosis , Promoter Regions, Genetic , RNA Polymerase I , TATA-Box Binding Protein , Transcription, Genetic , Animals , RNA Polymerase I/metabolism , RNA Polymerase I/genetics , TATA-Box Binding Protein/metabolism , TATA-Box Binding Protein/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Protein Binding , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism
2.
PLoS Genet ; 20(7): e1011331, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968290

ABSTRACT

Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology-which we refer to as spatial organization-of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.


Subject(s)
DNA, Ribosomal , Ribosomes , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , DNA, Ribosomal/genetics , Ribosomes/metabolism , Ribosomes/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Gene Expression Regulation, Fungal , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Signal Transduction/genetics , Cell Cycle/genetics , Gene Deletion
3.
RNA Biol ; 21(1): 1-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39049162

ABSTRACT

Transcription is a major contributor to genomic instability. The ribosomal RNA (rDNA) gene locus consists of a head-to-tail repeat of the most actively transcribed genes in the genome. RNA polymerase I (RNAPI) is responsible for massive rRNA production, and nascent rRNA is co-transcriptionally assembled with early assembly factors in the yeast nucleolus. In Saccharomyces cerevisiae, a mutant form of RNAPI bearing a fusion of the transcription factor Rrn3 with RNAPI subunit Rpa43 (CARA-RNAPI) has been described previously. Here, we show that the CARA-RNAPI allele results in a novel type of rRNA processing defect, associated with rDNA genomic instability. A fraction of the 35S rRNA produced in CARA-RNAPI mutant escapes processing steps and accumulates. This accumulation is increased in mutants affecting exonucleolytic activities of the exosome complex. CARA-RNAPI is synthetic lethal with monopolin mutants that are known to affect the rDNA condensation. CARA-RNAPI strongly impacts rDNA organization and increases rDNA copy number variation. Reduced rDNA copy number suppresses lethality, suggesting that the chromosome segregation defect is caused by genomic rDNA instability. We conclude that a constitutive association of Rrn3 with transcribing RNAPI results in the accumulation of rRNAs that escape normal processing, impacting rDNA organization and affecting rDNA stability.


Subject(s)
DNA, Ribosomal , Genomic Instability , Mutation , RNA Polymerase I , RNA Processing, Post-Transcriptional , RNA, Ribosomal , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA Polymerase I/metabolism , RNA Polymerase I/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Pol1 Transcription Initiation Complex Proteins
4.
J Cardiothorac Surg ; 19(1): 322, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844975

ABSTRACT

AIM: The most common type of cancer that leads to death worldwide is lung cancer. Despite significant surgery and chemotherapy improvements, lung cancer patient's survival rate is still poor. The RNA polymerase I subunit D (POLR1D) gene can induce various cancers. A current study reported that POLR1D plays a vital role in cancer prognosis. However, its biological function in the development of lung cancer remains unclear. METHODS: Reverse transcription PCR (RT-PCR) measured the relative POLR1D protein expression level in lung cancer cell lines. Lung cancer cell proliferation, migration, and invasion were analyzed by performing cell counting kit-8 (CCK-8), and transwell. The phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/AKT) signaling pathway-related protein expressions were examined by Western blotting assay. RESULTS: POLR1D protein expression was elevated in lung cancer. Lung cancer cell loss-of-function tests showed that POLR1D silencing could attenuate cell viability both in SK-MES-1 and in H2170 cells. Furthermore, silencing POLR1D inhibited SK-MES-1 and H2170 cells proliferation, migration, and invasion. Moreover, SK-MES-1 and H2170 cells' migration and invasion capacity were potentially suppressed by the knockdown of POLR1D. The progression of multiple cancers has been implicated in the PI3K/AKT pathway. Here, we observed that POLR1D silencing suppressed lung cancer progression by inhibition of the PI3K-Akt pathway. CONCLUSIONS: The study speculated that POLR1D might provide a new potential therapeutic possibility for treating lung cancer patients via targeting PI3K/AKT.


Subject(s)
Cell Movement , Cell Proliferation , Lung Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA Polymerase I/genetics , RNA Polymerase I/metabolism
5.
Curr Opin Hematol ; 31(4): 199-206, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38568093

ABSTRACT

PURPOSE OF REVIEW: Ribosomal RNAs (rRNAs) are transcribed within nucleoli from rDNA repeats by RNA Polymerase I (Pol I). There is variation in rRNA transcription rates across the hematopoietic tree, and leukemic blast cells have prominent nucleoli, indicating abundant ribosome biogenesis. The mechanisms underlying these variations are poorly understood. The purpose of this review is to summarize findings of rDNA binding and Pol I regulation by hematopoietic transcription factors. RECENT FINDINGS: Our group recently used custom genome assemblies optimized for human and mouse rDNA mapping to map nearly 2200 ChIP-Seq datasets for nearly 250 factors to rDNA, allowing us to identify conserved occupancy patterns for multiple transcription factors. We confirmed known rDNA occupancy of MYC and RUNX factors, and identified new binding sites for CEBP factors, IRF factors, and SPI1 at canonical motif sequences. We also showed that CEBPA degradation rapidly leads to reduced Pol I occupancy and nascent rRNA in mouse myeloid cells. SUMMARY: We propose that a number of hematopoietic transcription factors bind rDNA and potentially regulate rRNA transcription. Our model has implications for normal and malignant hematopoiesis. This review summarizes the literature, and outlines experimental considerations to bear in mind while dissecting transcription factor roles on rDNA.


Subject(s)
Hematopoiesis , RNA, Ribosomal , Transcription Factors , Humans , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Gene Expression Regulation , Mice , Transcription, Genetic , RNA Polymerase I/metabolism , RNA Polymerase I/genetics
6.
Int J Biol Macromol ; 266(Pt 2): 131216, 2024 May.
Article in English | MEDLINE | ID: mdl-38556235

ABSTRACT

Treacher Collins syndrome-3 (TCS-3) is a rare congenital craniofacial disorder attributed to variants in the RNA pol I subunit C (POLR1C). The pathogenesis of TCS-3 linked to polr1c involves the activation of apoptosis-dependent p53 pathways within neural crest cells (NCCs). This occurs due to disruptions in ribosome biogenesis, and the restoration of polr1c expression in early embryogenesis effectively rescues the observed craniofacial phenotype in polr1c-deficient zebrafish. Clinical variability in TCS patients suggests interactions between genes and factors like oxidative stress. Elevated production of reactive oxygen species (ROS) in epithelial cells may worsen phenotypic outcomes in TCS individuals. Our study confirmed excessive ROS production in facial regions, inducing apoptosis and altering p53 pathways. Deregulated cell-cycle and epithelial-to-mesenchymal transition (EMT) genes were also detected in the TCS-3 model. Utilizing p53 inhibitor (Pifithrin-α; PFT-α) or antioxidants (Glutathione; GSH and N-Acetyl-L-cysteine; NAC) effectively corrected migrated NCC distribution in the pharyngeal arch (PA), suppressed oxidative stress, prevented cell death, and modulated EMT inducers. Crucially, inhibiting p53 activation or applying antioxidants within a specific time window, notably within 30 h post-fertilization (hpf), successfully reversed phenotypic effects induced by polr1c MO.


Subject(s)
Antioxidants , Benzothiazoles , Disease Models, Animal , Mandibulofacial Dysostosis , Oxidative Stress , Reactive Oxygen Species , Toluene/analogs & derivatives , Tumor Suppressor Protein p53 , Zebrafish Proteins , Zebrafish , Animals , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mandibulofacial Dysostosis/genetics , Mandibulofacial Dysostosis/drug therapy , Antioxidants/pharmacology , Benzothiazoles/pharmacology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Epithelial-Mesenchymal Transition/drug effects , Toluene/pharmacology , Neural Crest/drug effects , Neural Crest/metabolism , Apoptosis/drug effects , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase I/metabolism , RNA Polymerase I/genetics
7.
Genes (Basel) ; 15(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38397236

ABSTRACT

RNA polymerase I (Pol I) is responsible for synthesizing the three largest eukaryotic ribosomal RNAs (rRNAs), which form the backbone of the ribosome. Transcription by Pol I is required for cell growth and, therefore, is subject to complex and intricate regulatory mechanisms. To accomplish this robust regulation, the cell engages a series of trans-acting transcription factors. One such factor, high mobility group protein 1 (Hmo1), has long been established as a trans-acting factor for Pol I in Saccharomyces cerevisiae; however, the mechanism by which Hmo1 promotes rRNA synthesis has not been defined. Here, we investigated the effect of the deletion of HMO1 on transcription elongation by Pol I in vivo. We determined that Hmo1 is an important activator of transcription elongation, and without this protein, Pol I accumulates across rDNA in a sequence-specific manner. Our results demonstrate that Hmo1 promotes efficient transcription elongation by rendering Pol I less sensitive to pausing in the G-rich regions of rDNA.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , High Mobility Group Proteins/genetics , High Mobility Group Proteins/metabolism
8.
Methods Mol Biol ; 2733: 175-183, 2024.
Article in English | MEDLINE | ID: mdl-38064033

ABSTRACT

The reverse genetics system commonly used for the production of hepatitis C virus (HCV), which is a major causative agent of liver diseases, involves introduction of the viral genomic RNA synthesized in vitro into human hepatoma cells by electroporation. As an alternative methodology, we describe a cell culture system based on transfection with an expression plasmid containing a full-length HCV cDNA clone flanked by RNA polymerase I promoter and terminator sequences to generate infectious virus particles from transfected cells.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Humans , Hepacivirus/genetics , Hepacivirus/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Reverse Genetics , Hepatitis C/genetics , Carcinoma, Hepatocellular/genetics , Transfection , DNA, Complementary/genetics , RNA, Viral/genetics
9.
Biol Chem ; 404(11-12): 979-1002, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37823775

ABSTRACT

Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.


Subject(s)
RNA Polymerase I , Saccharomyces cerevisiae , RNA Polymerase I/chemistry , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , Ribosomes/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
10.
Cell Cycle ; 22(18): 1986-2002, 2023 09.
Article in English | MEDLINE | ID: mdl-37795959

ABSTRACT

Transcription is a crucial stage in gene expression. An integrated study of 34 RNA polymerase subunits (RNAPS) in the six most frequent cancer types identified several genetic and epigenetic modification. We discovered nine mutant RNAPS with a mutation frequency of more than 1% in at least one tumor type. POLR2K and POLR2H were found to be amplified and overexpressed, whereas POLR3D was deleted and downregulated. Multiple RNAPS were also observed to be regulated by variations in promoter methylation. 5-Aza-2-deoxycytidine mediated re-expression in cell lines verified methylation-driven inhibition of POLR2F and POLR2L expression in BRCA and NSCLC, respectively. Next, we showed that CD3EAP, a Pol I subunit, was overexpressed in all cancer types and was associated with worst survival in breast, liver, lung, and prostate cancers. The knockdown studies showed that CD3EAP is required for cell proliferation and induces autophagy but not apoptosis. Furthermore, autophagy inhibition rescued the cell proliferation in CD3EAP knockdown cells. CD3EAP expression correlated with S and G2 phase cell cycle regulators, and CD3EAP knockdown inhibited the expression of S and G2 CDK/cyclins. We also identified POLR2D, an RNA pol II subunit, as a commonly overexpressed and prognostic gene in multiple cancers. POLR2D knockdown also decreased cell proliferation. POLR2D is related to the transcription of just a subset of RNA POL II transcribe genes, indicating a distinct role. Taken together, we have shown the genetic and epigenetic regulation of RNAPS genes in most common tumors. We have also demonstrated the cancer-specific function of CD3EAP and POLR2D genes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Humans , RNA Polymerase II/genetics , Epigenesis, Genetic , Cell Cycle , Cell Proliferation/genetics , RNA Polymerase I/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Autophagy/genetics , RNA , Cell Line, Tumor
11.
PLoS Genet ; 19(8): e1010854, 2023 08.
Article in English | MEDLINE | ID: mdl-37639467

ABSTRACT

Transcription of ribosomal RNA (rRNA) by RNA Polymerase (Pol) I in the nucleolus is necessary for ribosome biogenesis, which is intimately tied to cell growth and proliferation. Perturbation of ribosome biogenesis results in tissue specific disorders termed ribosomopathies in association with alterations in nucleolar structure. However, how rRNA transcription and ribosome biogenesis regulate nucleolar structure during normal development and in the pathogenesis of disease remains poorly understood. Here we show that homozygous null mutations in Pol I subunits required for rRNA transcription and ribosome biogenesis lead to preimplantation lethality. Moreover, we discovered that Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- mutants exhibit defects in the structure of their nucleoli, as evidenced by a decrease in number of nucleolar precursor bodies and a concomitant increase in nucleolar volume, which results in a single condensed nucleolus. Pharmacological inhibition of Pol I in preimplantation and midgestation embryos, as well as in hiPSCs, similarly results in a single condensed nucleolus or fragmented nucleoli. We find that when Pol I function and rRNA transcription is inhibited, the viscosity of the granular compartment of the nucleolus increases, which disrupts its phase separation properties, leading to a single condensed nucleolus. However, if a cell progresses through mitosis, the absence of rRNA transcription prevents reassembly of the nucleolus and manifests as fragmented nucleoli. Taken together, our data suggests that Pol I function and rRNA transcription are required for maintaining nucleolar structure and integrity during development and in the pathogenesis of disease.


Subject(s)
Cell Nucleolus , Cell Nucleus Division , Cell Nucleolus/genetics , Cell Cycle , Cell Proliferation , RNA Polymerase I/genetics , RNA, Ribosomal/genetics
12.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37607001

ABSTRACT

Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Endothelial Cells/metabolism , Transcription, Genetic , RNA Polymerase I/genetics , Neoplasms/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics
13.
Biol Chem ; 404(11-12): 1003-1023, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37454246

ABSTRACT

The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.


Subject(s)
RNA Precursors , RNA, Ribosomal , Humans , RNA, Ribosomal/genetics , RNA Precursors/genetics , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , RNA Polymerase I/genetics , RNA Polymerase I/chemistry , RNA Polymerase I/metabolism , DNA, Ribosomal/genetics
14.
J Mol Biol ; 435(15): 168186, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37355033

ABSTRACT

RNA polymerase I (Pol I) synthesizes ribosomal RNA (rRNA), which is the first and rate-limiting step in ribosome biosynthesis. A12.2 (A12) is a critical subunit of Pol I that is responsible for activating Pol I's exonuclease activity. We previously reported a kinetic mechanism for single-nucleotide incorporation catalyzed by Pol I lacking the A12 subunit (ΔA12 Pol I) purified from S. cerevisae and revealed that ΔA12 Pol I exhibited much slower incorporation compared to Pol I. However, it is unknown if A12 influences each nucleotide incorporation in the context of transcription elongation. Here, we show that A12 contributes to every repeating cycle of nucleotide addition and that deletion of A12 results in an entirely different kinetic mechanism compared to WT Pol I. We found that instead of one irreversible step between each nucleotide addition cycle, as reported for wild type (WT) Pol I, the ΔA12 variant requires one reversible step to describe each nucleotide addition. Reversibility fundamentally requires slow PPi release. Consistently, we show that Pol I is more pyrophosphate (PPi) concentration dependent than ΔA12 Pol I. This observation supports the model that PPi is retained in the active site of ΔA12 Pol I longer than WT Pol I. These results suggest that A12 promotes PPi release, revealing a larger role for the A12.2 subunit in the nucleotide addition cycle beyond merely activating exonuclease activity.


Subject(s)
Diphosphates , RNA Polymerase I , Diphosphates/metabolism , Exonucleases , Nucleotides/metabolism , RNA Polymerase I/chemistry , RNA Polymerase I/genetics , RNA Polymerase I/metabolism
15.
Biochim Biophys Acta Gen Subj ; 1867(9): 130411, 2023 09.
Article in English | MEDLINE | ID: mdl-37343605

ABSTRACT

The products synthesized by RNA polymerase I (Pol I) play fundamental roles in several cellular processes, including ribosomal biogenesis, protein synthesis, cell metabolism, and growth. Deregulation of Pol I products can cause various diseases such as ribosomopathies, leukaemia, and solid tumours. However, the detailed mechanism of Pol I-directed transcription remains elusive, and the roles of Pol I subunits in rRNA synthesis and cellular activities still need clarification. In this study, we found that RPA43 expression levels positively correlate with Pol I product accumulation and cell proliferation, indicating that RPA43 activates these processes. Unexpectedly, RPA43 depletion promoted HeLa cell migration, suggesting that RPA43 functions as a negative regulator in cell migration. Mechanistically, RPA43 positively modulates the recruitment of Pol I transcription machinery factors to the rDNA promoter by activating the transcription of the genes encoding Pol I transcription machinery factors. RPA43 inhibits cell migration by dampening the expression of c-JUN and Integrin. Collectively, we found that RPA43 plays opposite roles in cell proliferation and migration except for driving Pol I-dependent transcription. These findings provide novel insights into the regulatory mechanism of Pol I-mediated transcription and cell proliferation and a potential pathway to developing anti-cancer drugs using RPA43 as a target.


Subject(s)
RNA Polymerase I , Transcription, Genetic , Humans , RNA Polymerase I/genetics , HeLa Cells , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Transcription Factors/metabolism , Cell Proliferation , Cell Movement
16.
Biochemistry ; 62(13): 2029-2040, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37347542

ABSTRACT

UV light causes the formation of pyrimidine dimers (PDs). Transcription-coupled (TC) nucleotide excision repair (NER) and global genome (GG) NER remove PDs from the transcribed strand (TS) of active genes and the inactive genome, respectively. TC-NER is triggered by elongating RNA polymerases that are blocked at PDs. The yeast rRNA genes are densely loaded with RNA polymerase-I. After UV irradiation, their density increases at the 5'-end of the gene, which results from continuous transcription initiation, followed by elongation and pausing/release at the first encountered PD, from the transcription start site. RNA polymerase-I posed at downstream PDs are released from the TS and are replaced by nucleosomes. Consequently, discrete chromatin structures are formed in the damaged transcribed rRNA genes. Singular assignation of the two NER sub-pathways could therefore be required to eliminate PDs from the TS. To advance our understanding of NER in the dynamic structure of transcribed chromatin, we investigated the repair of PDs at nucleotide resolution in separate rRNA gene coding regions. In the TS, the TC-NER efficiency reflected the density of RNA polymerase-I, and PDs were removed faster in the 5'-end than in the 3'-end of the gene. GG-NER removed PDs from the TS where RNA polymerase-I was transiently replaced by a nucleosome. The two NER sub-pathways inversely participated to remove PDs from the TS. In the non-TS of both nucleosome and non-nucleosome rRNA gene coding regions, GG-NER was solely responsible to remove UV-induced DNA lesions.


Subject(s)
Pyrimidine Dimers , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Genes, rRNA , DNA Repair , Chromatin , DNA Damage , Nucleosomes/genetics , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Transcription, Genetic , Ultraviolet Rays
17.
Mol Cell Biol ; 43(6): 269-282, 2023.
Article in English | MEDLINE | ID: mdl-37222571

ABSTRACT

Eukaryotic DNA-dependent RNA polymerases (Pols I-III) encode two distinct alpha-like heterodimers where one is shared between Pols I and III, and the other is unique to Pol II. Human alpha-like subunit mutations are associated with several diseases including Treacher Collins Syndrome (TCS), 4H leukodystrophy, and primary ovarian sufficiency. Yeast is commonly used to model human disease mutations, yet it remains unclear whether the alpha-like subunit interactions are functionally similar between yeast and human homologs. To examine this, we mutated several regions of the yeast and human small alpha-like subunits and used biochemical and genetic assays to establish the regions and residues required for heterodimerization with their corresponding large alpha-like subunits. Here we show that different regions of the small alpha-like subunits serve differential roles in heterodimerization, in a polymerase- and species-specific manner. We found that the small human alpha-like subunits are more sensitive to mutations, including a "humanized" yeast that we used to characterize the molecular consequence of the TCS-causingPOLR1D G52E mutation. These findings help explain why some alpha subunit associated disease mutations have little to no effect when made in their yeast orthologs and offer a better yeast model to assess the molecular basis of POLR1D associated disease mutations.


Subject(s)
DNA-Directed RNA Polymerases , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , RNA Polymerase II/metabolism , RNA Polymerase I/genetics , Eukaryotic Cells/metabolism , RNA Polymerase III/metabolism
18.
Nat Commun ; 14(1): 3013, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37230993

ABSTRACT

Transcription by RNA polymerase I (RNAPI) represents most of the transcriptional activity in eukaryotic cells and is associated with the production of mature ribosomal RNA (rRNA). As several rRNA maturation steps are coupled to RNAPI transcription, the rate of RNAPI elongation directly influences processing of nascent pre-rRNA, and changes in RNAPI transcription rate can result in alternative rRNA processing pathways in response to growth conditions and stress. However, factors and mechanisms that control RNAPI progression by influencing transcription elongation rate remain poorly understood. We show here that the conserved fission yeast RNA-binding protein Seb1 associates with the RNAPI transcription machinery and promotes RNAPI pausing states along the rDNA. The overall faster progression of RNAPI at the rDNA in Seb1-deficient cells impaired cotranscriptional pre-rRNA processing and the production of mature rRNAs. Given that Seb1 also influences pre-mRNA processing by modulating RNAPII progression, our findings unveil Seb1 as a pause-promoting factor for RNA polymerases I and II to control cotranscriptional RNA processing.


Subject(s)
RNA Polymerase I , Schizosaccharomyces , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Transcription, Genetic , RNA Processing, Post-Transcriptional , DNA, Ribosomal/metabolism , Schizosaccharomyces/genetics
19.
PLoS One ; 18(5): e0285660, 2023.
Article in English | MEDLINE | ID: mdl-37167337

ABSTRACT

RNA Polymerase I (Pol I) has recently been recognized as a cancer therapeutic target. The activity of this enzyme is essential for ribosome biogenesis and is universally activated in cancers. The enzymatic activity of this multi-subunit complex resides in its catalytic core composed of RPA194, RPA135, and RPA12, a subunit with functions in RNA cleavage, transcription initiation and elongation. Here we explore whether RPA12 influences the regulation of RPA194 in human cancer cells. We use a specific small-molecule Pol I inhibitor BMH-21 that inhibits transcription initiation, elongation and ultimately activates the degradation of Pol I catalytic subunit RPA194. We show that silencing RPA12 causes alterations in the expression and localization of Pol I subunits RPA194 and RPA135. Furthermore, we find that despite these alterations not only does the Pol I core complex between RPA194 and RPA135 remain intact upon RPA12 knockdown, but the transcription of Pol I and its engagement with chromatin remain unaffected. The BMH-21-mediated degradation of RPA194 was independent of RPA12 suggesting that RPA12 affects the basal expression, but not the drug-inducible turnover of RPA194. These studies add to knowledge defining regulatory factors for the expression of this Pol I catalytic subunit.


Subject(s)
Chromatin , RNA Polymerase I , Humans , Catalytic Domain , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Neoplasms/genetics , Neoplasms/metabolism
20.
Nucleic Acids Res ; 51(10): 5177-5192, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37070196

ABSTRACT

TbMex67 is the major mRNA export factor known to date in trypanosomes, forming part of the docking platform within the nuclear pore. To explore its role in co-transcriptional mRNA export, recently reported in Trypanosoma brucei, pulse labelling of nascent RNAs with 5-ethynyl uridine (5-EU) was performed with cells depleted of TbMex67 and complemented with a dominant-negative mutant (TbMex67-DN). RNA polymerase (Pol) II transcription was unaffected, but the procyclin loci, which encode mRNAs transcribed by Pol I from internal sites on chromosomes 6 and 10, showed increased levels of 5-EU incorporation. This was due to Pol I readthrough transcription, which proceeded beyond the procyclin and procyclin-associated genes up to the Pol II transcription start site on the opposite strand. Complementation by TbMex67-DN also increased Pol I-dependent formation of R-loops and γ-histone 2A foci. The DN mutant exhibited reduced nuclear localisation and binding to chromatin compared to wild-type TbMex67. Together with its interaction with chromatin remodelling factor TbRRM1 and Pol II, and transcription-dependent association of Pol II with nucleoporins, our findings support a role for TbMex67 in connecting transcription and export in T. brucei. In addition, TbMex67 stalls readthrough by Pol I in specific contexts, thereby limiting R-loop formation and replication stress.


Subject(s)
Protozoan Proteins , RNA Polymerase I , Trypanosoma brucei brucei , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL