ABSTRACT
Mitoviruses are cryptic capsidless viruses belonging to the family Mitoviridae that replicate and are maintained in the mitochondria of fungi. Complete mitovirus-like sequences were recently assembled from plant transcriptome data and plant leaf tissue samples. Passion fruit (Passiflora spp.) is an economically important crop for numerous tropical and subtropical countries worldwide, and many virus-induced diseases impact its production. From a large-scale genomic study targeting viruses infecting Passiflora spp. in Brazil, we detected a de novo-assembled contig with similarity to other plant-associated mitoviruses. The contig is â¼2.6 kb long, with a single open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRP). This contig has been named "passion fruit mitovirus-like 1" (PfMv1). An alignment of the predicted amino acid sequence of the RdRP of PfMv1 and those of other plant-associated mitoviruses revealed the presence of the six conserved motifs of mitovirus RdRPs. PfMv1 has 79% coverage and 50.14% identity to Humulus lupulus mitovirus 1. Phylogenetic analysis showed that PfMV1 clustered with other plant-associated mitoviruses in the genus Duamitovirus. Using RT-PCR, we detected a PfMv1-derived fragment, but no corresponding DNA was identified, thus excluding the possibility that this is an endogenized viral-like sequence. This is the first evidence of a replicating mitovirus associated with Passiflora edulis, and it should be classified as a member of a new species, for which we propose the name "Duamitovirus passiflorae".
Subject(s)
Genome, Viral , Open Reading Frames , Passiflora , Phylogeny , Plant Diseases , RNA-Dependent RNA Polymerase , Passiflora/virology , Genome, Viral/genetics , Plant Diseases/virology , Brazil , RNA-Dependent RNA Polymerase/genetics , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Viral Proteins/genetics , RNA, Viral/genetics , Amino Acid SequenceABSTRACT
In Argentina, migratory activity in search of floral diversity has become a common approach to maximizing honey production. The Entre Ríos province possesses a floral diversity that allows beekeepers to perform migratory or stationary management. Beyond the impact caused by transhumance, migratory colonies in this province start and end the season in monoculture areas. To study the effect of these practices on viral infection, we assayed for the presence, abundance and genetic characterization of the Deformed Wing Virus (DWV) in honey bees from apiaries with both types of management. In migratory apiaries, DWV was detectable in 86.2% of the colonies at the beginning of the season (September 2018), and 66% at the end of the season (March 2019). On the other hand, DWV was detected in 44.11% and 53.12% of stationary samples, at the beginning and the end of the season, respectively. Sequence analysis from migratory and stationary colonies revealed that all samples belonged to DWV-A type. The highest viral loads were detected in migratory samples collected in September. Higher DWV presence and abundance were associated with migratory management and the sampling time. Based on our findings we propose that the benefit of migration to wild flowering areas can be dissipated when the bee colonies end the season with monoculture.
Subject(s)
RNA Viruses , Animals , Bees/virology , Argentina , RNA Viruses/genetics , RNA Viruses/isolation & purification , Animal Migration , Seasons , Phylogeny , Beekeeping , Viral LoadABSTRACT
Mosquitoes can transmit several pathogenic viruses to humans, but their natural viral community is also composed of a myriad of other viruses such as insect-specific viruses (ISVs) and those that infect symbiotic microorganisms. Besides a growing number of studies investigating the mosquito virome, the majority are focused on few urban species, and relatively little is known about the virome of sylvatic mosquitoes, particularly in high biodiverse biomes such as the Brazilian biomes. Here, we characterized the RNA virome of 10 sylvatic mosquito species from Atlantic forest remains at a sylvatic-urban interface in Northeast Brazil employing a metatranscriptomic approach. A total of 16 viral families were detected. The phylogenetic reconstructions of 14 viral families revealed that the majority of the sequences are putative ISVs. The phylogenetic positioning and, in most cases, the association with a high RNA-dependent RNA polymerase amino acid divergence from other known viruses suggests that the viruses characterized here represent at least 34 new viral species. Therefore, the sylvatic mosquito viral community is predominantly composed of highly divergent viruses highlighting the limited knowledge we still have about the natural virome of mosquitoes in general. Moreover, we found that none of the viruses recovered were shared between the species investigated, and only one showed high identity to a virus detected in a mosquito sampled in Peru, South America. These findings add further in-depth understanding about the interactions and coevolution between mosquitoes and viruses in natural environments. IMPORTANCE: Mosquitoes are medically important insects as they transmit pathogenic viruses to humans and animals during blood feeding. However, their natural microbiota is also composed of a diverse set of viruses that cause no harm to the insect and other hosts, such as insect-specific viruses. In this study, we characterized the RNA virome of sylvatic mosquitoes from Northeast Brazil using unbiased metatranscriptomic sequencing and in-depth bioinformatic approaches. Our analysis revealed that these mosquitoes species harbor a diverse set of highly divergent viruses, and the majority comprises new viral species. Our findings revealed many new virus lineages characterized for the first time broadening our understanding about the natural interaction between mosquitoes and viruses. Finally, it also provided several complete genomes that warrant further assessment for mosquito and vertebrate host pathogenicity and their potential interference with pathogenic arboviruses.
Subject(s)
Culicidae , Phylogeny , Virome , Animals , Brazil , Virome/genetics , Culicidae/virology , Mosquito Vectors/virology , Genome, Viral , RNA, Viral/genetics , Insect Viruses/genetics , Insect Viruses/classification , Insect Viruses/isolation & purification , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purificationABSTRACT
A new fusagra-like virus infecting papaya (Carica papaya L.) was genetically characterized. The genome of the virus, provisionally named "papaya sticky fruit-associated virus" (PSFaV), is a single molecule of double-stranded RNA, 9,199 nucleotides (nt) in length, containing two discontinuous open reading frames. Pairwise sequence comparisons based on complete RNA-dependent-RNA-polymerase (RdRp) sequences revealed identity of 79.4% and 83.3% at the nt and amino acid (aa) level, respectively, to babaco meleira-like virus (BabMelV), an uncharacterized virus sequence discovered in babaco (Vasconcellea x heilbornii) in Ecuador. Additional plant-associated viruses with sequence identity in the 50% range included papaya meleira virus (PMeV) isolates from Brazil. Phylogenetic analysis based on the amino acid sequences of the capsid protein (CP), RdRp, and CP-RdRp fusion protein genes placed PSFaV in a group within a well-supported clade that shares a recent ancestor with Sclerotium rolfsii RNA virus 2 and Phlebiopsis gigantea mycovirus dsRNA 2, two fungus-associated fusagraviruses. Genomic features and phylogenetic relatedness suggest that PSFaV, along with its closest relative BabMelV, represent a species of novel plant-associated virus classified within the recently established family Fusagraviridae.
Subject(s)
Carica , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , RNA, Viral , Carica/virology , Genome, Viral/genetics , Ecuador , Plant Diseases/virology , RNA, Viral/genetics , Whole Genome Sequencing , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Capsid Proteins/geneticsABSTRACT
Zika (ZIKV) and Chikungunya (CHIKV) viruses are mosquito-transmitted infections, or vector-borne pathogens, that emerged a few years ago. Reliable diagnostic tools for ZIKV and CHIKV-inexpensive, multiplexed, rapid, highly sensitive, and specific point-of-care (POC) systems-are vital for appropriate risk management and therapy. We recently studied a detection system with great success in Mexico (Villahermosa, state of Tabasco), working with human sera from patients infected with those viruses. The research conducted in Mexico validated the efficacy of a novel two-step rapid isothermal amplification technique (RAMP). This approach, which encompasses recombinase polymerase amplification (RPA) followed by loop-mediated isothermal amplification (LAMP), had been previously established in the lab using lab-derived Zika (ZIKV) and Chikungunya (CHIKV) viruses. Crucially, our findings confirmed that this technique is also effective when applied to human sera samples collected from locally infected individuals in Mexico.
Subject(s)
Chikungunya virus , Nucleic Acid Amplification Techniques , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Zika Virus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Zika Virus Infection/blood , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Chikungunya Fever/blood , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , RNA, Viral/blood , Mexico , Sensitivity and Specificity , RNA Viruses/genetics , RNA Viruses/isolation & purificationABSTRACT
The FTA card has emerged as a promising alternative for nucleic acid extraction. The FTA card is a filter paper impregnated with chemicals that preserve and stabilize the genetic material present in the sample, allowing for its storage and transport at room temperature. The aim of this study was to test the card for the detection of RNA and DNA nucleic acids. Two RNA viruses (Senecavirus A and classical swine fever virus) and two DNA viruses (African swine fever virus and suid alphaherpesvirus 1) were tested, and in all cases, there was a decrease in sensitivity. The methods exhibited good repeatability and demonstrated a rapid and practical use for sample transport and nucleic acid extraction.
Subject(s)
African Swine Fever Virus , Animals , Swine , African Swine Fever Virus/isolation & purification , African Swine Fever Virus/genetics , Classical Swine Fever Virus/genetics , Classical Swine Fever Virus/isolation & purification , Herpesvirus 1, Suid/isolation & purification , Herpesvirus 1, Suid/genetics , RNA, Viral/genetics , RNA, Viral/isolation & purification , Veterinary Medicine/methods , Swine Diseases/virology , Swine Diseases/diagnosis , DNA Viruses/genetics , DNA Viruses/isolation & purification , Picornaviridae/genetics , Picornaviridae/isolation & purification , Picornaviridae/classification , Sensitivity and Specificity , DNA, Viral/genetics , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , DNA Virus Infections/veterinary , DNA Virus Infections/diagnosis , DNA Virus Infections/virology , Specimen Handling/methods , Specimen Handling/instrumentationABSTRACT
Single-cell RNA sequencing (scRNA-seq) offers the possibility to monitor both host and pathogens transcriptomes at the cellular level. Here, public scRNA-seq datasets from Drosophila melanogaster midgut cells were used to compare the differences in replication strategy and cellular responses between two fly picorna-like viruses, Thika virus (TV) and D. melanogaster Nora virus (DMelNV). TV exhibited lower levels of viral RNA accumulation but infected a higher number of cells compared to DMelNV. In both cases, viral RNA accumulation varied according to cell subtype. The cellular heat shock response to TV and DMelNV infection was cell-subtype- and virus-specific. Disruption of bottleneck genes at later stages of infection in the systemic response, as well as of translation-related genes in the cellular response to DMelNV in two cell subtypes, may affect the virus replication.
Subject(s)
Drosophila melanogaster/virology , RNA Viruses/classification , RNA Viruses/physiology , Animals , Genetic Heterogeneity , Phylogeny , RNA Viruses/isolation & purification , RNA, Viral/chemistry , RNA, Viral/classification , RNA, Viral/genetics , Virus Diseases/veterinary , Virus ReplicationABSTRACT
Currently, there are increasing concerns about the possibility of a new epidemic due to emerging reports of Mayaro virus (MAYV) fever outbreaks in areas of South and Central America. Haemagogus mosquitoes, the primary sylvan vectors of MAYV are poorly characterized and a better understanding of the mosquito's viral transmission dynamics and interactions with MAYV and other microorganisms would be important in devising effective control strategies. In this study, a metatranscriptomic based approach was utilized to determine the prevalence of RNA viruses in field-caught mosquitoes morphologically identified as Haemagogus janthinomys from twelve (12) forest locations in Trinidad, West Indies. Known insect specific viruses including the Phasi Charoen-like and Humaiata-Tubiacanga virus dominated the virome of the mosquitoes throughout sampling locations while other viruses such as the avian leukosis virus, MAYV and several unclassified viruses had a narrower distribution. Additionally, assembled contigs from the Ecclesville location suggests the presence of a unique uncharacterized picorna-like virus. Mapping of RNA sequencing reads to reference mitochondrial sequences of potential feeding host animals showed hits against avian and rodent sequences, which putatively adds to the growing body of evidence of a potentially wide feeding host-range for the Haemagogus mosquito vector.
Subject(s)
Culicidae/virology , RNA Viruses/isolation & purification , Virome , Alphavirus Infections/epidemiology , Alphavirus Infections/virology , Animals , Base Sequence , Birds , Culicidae/microbiology , Disease Outbreaks , Disease Reservoirs/virology , Geography, Medical , Host Specificity , Insect Vectors/virology , Phylogeny , Proteobacteria/genetics , RNA Viruses/classification , RNA Viruses/genetics , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , RNA, Viral/genetics , RNA, Viral/isolation & purification , Rodentia , Togaviridae/genetics , Togaviridae/isolation & purification , Trinidad and Tobago/epidemiology , Virome/geneticsABSTRACT
Beekeeping is a widespread activity in Argentina, mainly producing honey that has gained both national and international recognition. There are more than 3,000,000 hives in the country, mainly concentrated in Buenos Aires Province (approximately 1,000,000 hives). In recent decades, worrying rates of hive loss have been observed in many countries around the world. In Latin America, the estimated loss of hives is between 13% (Peru and Ecuador) and 53% (Chile). Argentina had annual losses of 34% for the period of October 1, 2016 to October 1, 2017. The causes of these losses are not clear but probably involve multiple stressors that can act simultaneously. One of the main causes of loss of bee colonies worldwide is infestation by the ectoparasitic mite Varroa destructor in combination with viral infections. To date, 10 viruses have been detected that affect honey bees (Apis mellifera) in Argentina. Of these, deformed wing virus, sacbrood virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute bee paralysis can be transmitted by mites. Deformed wing virus and the AIK complex are the viruses most often associated with loss of hives worldwide. Considering that bee viruses have been detected in Argentina in several hymenopteran and non-hymenopteran insects, these hosts could act as important natural reservoirs for viruses and play an important role in their dispersal in the environment. Further studies to investigate the different mechanisms by which viruses spread in the environment will enable us to develop various strategies for the control of infected colonies and the spread of viruses in the habitat where they are found.
Subject(s)
Bees/virology , Animals , Argentina , DNA Viruses/genetics , DNA Viruses/isolation & purification , Host-Pathogen Interactions , RNA Viruses/genetics , RNA Viruses/isolation & purificationABSTRACT
Apis mellifera is infected by more than 24 virus species worldwide, mainly positive-sense, single-stranded RNA viruses of the Dicistroviridae and Iflaviridae families. Among the viruses that infect honey bees, Deformed wing virus is the most prevalent and is present as three master variants DWV-A, B, and C. Given that the ectoparasitic mite Varroa destructor vectors these virus variants, recombination events between them are expected, and variants and their recombinants can co-exist in mites and honeybees at the same time. In this study, we detect, through RT-qPCR, the presence of DWV-A and B in the same samples of adult bees from colonies of Argentina. Total RNA was extracted from pools of ten adult bees from 45 apiaries distributed across the main beekeeping Provinces of Argentina (Buenos Aires, Santa Fe, Córdoba, Santiago del Estero, Río Negro, and Mendoza); then RT-qPCR reactions were performed to detect DWV-A and B, with specific primer pairs. After the amplifications, PCR products (204 and 660 bp amplicons for DWV-B, and ~250 bp for DWV-A) were purified and sequenced to verify that they corresponded to reported sequences, analyzing them using the Blast software. Of the 45 samples analyzed by RT-qPCR, over 90% were infected with DWV-A and 47% were also positive for DWV-B, where it was found in high prevalence specifically in colonies of A. mellifera of the Buenos Aires Province. Future studies will determine the impact of this type of the virus and its ability to recombine with the other DWV types in the apiaries of our country.
Subject(s)
Bees/virology , RNA Viruses/isolation & purification , Animals , Argentina , RNA Viruses/classification , RNA Viruses/genetics , RNA, Viral/analysis , Real-Time Polymerase Chain ReactionABSTRACT
The genomes of two putative new RNA viruses (macula-like virus and bunya-like virus) were identified in total RNA extracted from dead eucalyptus snout beetles (Gonipterus spp.) from a laboratory colony. However, only bunya-like virus was detected in field-collected insects. The macula-like virus has a monopartite single-stranded RNA genome that contains three open reading frames (ORFs) encoding an RNA-dependent RNA polymerase (RdRp), a capsid protein (CP), protein with unknown function. The bunya-like virus genome was predicted to consist of two RNA segments: a large segment (L) encoding a single protein (RdRp) and a small segment (S) encoding a putative nucleocapsid protein.
Subject(s)
Genome, Viral , Phylogeny , RNA Viruses/classification , Weevils/virology , Animals , Open Reading Frames , RNA Viruses/isolation & purification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/geneticsABSTRACT
Chronic bee paralysis virus (CBPV) is a positive single-stranded RNA virus that exhibits a worldwide distribution. Although the effects of this virus on honeybees' health are well known, its presence in other bee species has not been fully studied. In this work, CBPV was detected in several native bees from Argentina, including Bombus pauloensis, Halictillus amplilobus, Peponapis fervens, and members of the genus Xylocopa. Here, we report for the first time the presence of CBPV in native bees from South America.
Subject(s)
Bees/virology , Insect Viruses/isolation & purification , RNA Viruses/isolation & purification , Animals , Argentina , Bees/classification , Insect Viruses/classification , Insect Viruses/genetics , Phylogeny , RNA Viruses/classification , RNA Viruses/geneticsABSTRACT
Ticks transmit a wide variety of pathogens including bacteria, parasites and viruses. Over the last decade, numerous novel viruses have been described in arthropods, including ticks, and their characterization has provided new insights into RNA virus diversity and evolution. However, little is known about their ability to infect vertebrates. As very few studies have described the diversity of viruses present in ticks from the Caribbean, we implemented an RNA-sequencing approach on Amblyomma variegatum and Rhipicephalus microplus ticks collected from cattle in Guadeloupe and Martinique. Among the viral communities infecting Caribbean ticks, we selected four viruses belonging to the Chuviridae, Phenuiviridae and Flaviviridae families for further characterization and designing antibody screening tests. While viral prevalence in individual tick samples revealed high infection rates, suggesting a high level of exposure of Caribbean cattle to these viruses, no seropositive animals were detected. These results suggest that the Chuviridae- and Phenuiviridae-related viruses identified in the present study are more likely tick endosymbionts, raising the question of the epidemiological significance of their occurrence in ticks, especially regarding their possible impact on tick biology and vector capacity. The characterization of these viruses might open the door to new ways of preventing and controlling tick-borne diseases.
Subject(s)
Cattle Diseases , Flaviviridae/isolation & purification , Ixodidae/virology , RNA Viruses/classification , RNA Viruses/isolation & purification , Rhipicephalus/virology , Tick Infestations/veterinary , Animals , Antibodies, Viral/blood , Cattle/immunology , Cattle Diseases/immunology , Cattle Diseases/parasitology , Disease Susceptibility , Flaviviridae/genetics , Flaviviridae/immunology , Genome, Viral , Martinique , Phylogeny , RNA Viruses/genetics , RNA Viruses/immunology , RNA, Viral/analysis , RNA, Viral/genetics , Seroepidemiologic Studies , Tick Infestations/immunology , West IndiesABSTRACT
The genus Tobravirus comprises three species: Tobacco rattle virus, Pea early-browning virus and Pepper ringspot virus. The genomes of tobraviruses consist of two positive-sense single-stranded RNA segments (RNA1 and RNA2). Infectious clones of TRV are extensively used as virus-induced gene-silencing (VIGS) vectors for studies of virus-host interactions and functions of plant genes. Complete infectious clones of pepper ringspot virus (PepRSV), the only tobravirus present in Brazil, however, have not yet been reported. Infectious clones will help to identify unique features of PepRSV RNA2 and provide another option for development of VIGS vectors. We constructed infectious clones based on two PepRSV isolates, CAM (RNA1 and RNA2) and LAV (RNA2). The cDNA constructs for both homologous (RNA1 and RNA2 of the CAM isolate) and heterologous (RNA1/CAM and RNA2/LAV) combinations were infectious in Nicotiana benthamiana plants. VIGS vector constructs with green fluorescent protein or phytoene desaturase genes inserted in RNA2 silenced the target genes. The systemic translocation of the PepRSV RNA1 construct alone (nonmultiple infection) was also confirmed in an N. benthamiana plant. These results are similar to those reported for tobacco rattle virus.
Subject(s)
Genetic Vectors , Plant Diseases/virology , RNA Viruses/growth & development , RNA Viruses/genetics , Brazil , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Oxidoreductases/analysis , Oxidoreductases/genetics , RNA Viruses/isolation & purification , Reverse Genetics , Staining and Labeling , Nicotiana/virologyABSTRACT
We determined the presence of six viruses in different bee species collected in subtropical environments. Deformed wing virus (DWV) and black queen cell virus (BQCV) were detected in >90% of honey bee samples and in 50-100% of four stingless bee, two bumble bee and one solitary bee species. Additionally, minus DWV and BQCV RNA strands were detected, indicating that the viruses replicate in several hosts. This is the first report of honey bee viruses replicating in six wild bee species in the tropics. If pathogenic to them, viral infections could result in negative impacts in agricultural and unmanaged ecosystems.
Subject(s)
Bees/virology , Dicistroviridae/isolation & purification , RNA Viruses/isolation & purification , Virus Diseases/transmission , Animals , Animals, Wild , Disease Reservoirs , Ecosystem , Mexico , Pollination , Virus ReplicationABSTRACT
Zoysia japonica, in Brazil, is commonly infected by Rhizoctonia solani (R. solani) in humid and cool weather conditions. Eight isolates of R. solani, previously identified as belonging to the AG2-2 LP anastomosis group, isolated from samples from large path symptoms, were collected from three counties in São Paulo state (Brazil) and investigated for the presence of mycoviruses. After detection of double-strand RNA (dsRNA) in all samples, RNA_Seq analysis of ribosomal RNA-depleted total RNA from in vitro cultivated mycelia was performed. Forty-seven partial or complete viral unique RNA dependent-RNA polymerase (RdRp) sequences were obtained with a high prevalence of positive sense ssRNA viruses. Sequences were sufficiently different from the first match in BLAST searches suggesting that they all qualify as possible new viral species, except for one sequence showing an almost complete match with Rhizoctonia solani dsRNA virus 2, an alphapartitivirus. Surprisingly four large contigs of putative viral RNA could not be assigned to any existing clade of viruses present in the databases, but no DNA was detected corresponding to these fragments confirming their viral replicative nature. This is the first report on the occurrence of mycoviruses in R. solani AG2-2 LP in South America.
Subject(s)
Fungal Viruses/genetics , Genome, Viral , Phylogeny , RNA Viruses/genetics , Rhizoctonia/virology , Viral Proteins/genetics , Brazil , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Genetic Variation , Mycelium/virology , Open Reading Frames , Plant Diseases/microbiology , Poaceae/microbiology , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Rhizoctonia/classification , Rhizoctonia/genetics , Sequence Analysis, RNAABSTRACT
BACKGROUND: Early viral detection in acute respiratory infections (ARI) is essential to establish appropriate therapy and prevent nosocomial transmission. OBJECTIVE: To compare the efficacy of indirect immunofluorescence technique (IIF) with the polymerase chain reaction (PCR) to identify respiratory viruses in children hospitalized for ARI. METHODS: 47 nasopharyngeal aspirates of children ≤ 2 years with ARI were included. IFI included respiratory syncytial virus (RSV), adenovirus, influenza A and B and parainfluenza. PCR also included the detection of metapneumovirus, enterovirus/rhinovirus, bocavirus and coronavirus. Sensitivity, specificity, positive and negative predictive value (VPP/NPV) and kappa correlation for RSV were estimated by IIF compared to PCR. RESULTS: The IIF detected only RSV (29; 61.7%). PCR detected several viruses, including RSV in 26 cases (55.3%), followed by bocavirus (29.8%), rhinovirus/enterovirus (21.3%), adenovirus (14.9%) and parainfluenza (4,3%) among others, with 35.5% of coinfection. The IIF presented sensitivity: 85.7%, specificity: 73.6%, PPV: 82.7%, NPV: 77.7% and kappa: 0.5990 (95% CI, 0.3636-0.8346) for RSV. CONCLUSION: The IIF presents good sensitivity, but moderate specificity for RSV. However, IIF fails to detect other respiratory viruses. The introduction of PCR would improve the etiological diagnosis of ARI of viral origin.
Subject(s)
Fluorescent Antibody Technique, Indirect/methods , Nasopharynx/virology , Polymerase Chain Reaction/methods , Viruses/isolation & purification , Adolescent , Child , Child, Preschool , Chile , Cross-Sectional Studies , DNA Viruses/isolation & purification , Female , Humans , Infant , Male , Prospective Studies , RNA Viruses/isolation & purification , Reproducibility of Results , Respiratory Tract Infections/virology , Sensitivity and SpecificityABSTRACT
The red imported fire ant (Solenopsis invicta) escaped its natural enemies when it was introduced into North America in the 1930s from South America. US efforts have focused on discovery of natural enemies, like viruses, to provide sustainable control of the ant. Nine new virus genomes were sequenced from the invasive fire ant Solenopsis invicta using metagenomic RNA sequencing. The virus genomes were verified by Sanger sequencing and random amplification of cDNA ends reactions. In addition to the nine new virus genomes, the previously described Solenopsis viruses were also detected, including Solenopsis invicta virus 1 (SINV-1), SINV-2, SINV-3, SINV-4, SINV-5, and Solenopsis invicta densovirus. The virus sequences came from S. invicta workers, larvae, pupae, and dead workers taken from midden piles collected from across the ant's native range in Formosa, Argentina. One of the new virus genomes (Solenopsis invicta virus 6) was also detected in populations of North American S. invicta. Phylogenetic analysis of the RNA dependent RNA polymerase, the entire nonstructural polyprotein, and genome characteristics were used to tentatively taxonomically place these new virus genome sequences; these include four new species of Dicistroviridae, one Polycipiviridae, one Iflaviridae, one Totiviridae, and two genome sequences that were too taxonomically divergent to be placed with certainty. The S. invicta virome is the best characterized from any ant species and includes 13 positive-sense, single-stranded RNA viruses (Solenopsis invicta virus 1 to Solenopsis invicta virus 13), one double-stranded RNA virus (Solenopsis midden virus), and one double-stranded DNA virus (Solenopsis invicta densovirus). These new additions to the S. invicta virome offer potentially new classical biological control agents for S. invicta.
Subject(s)
Ants/virology , Dicistroviridae/genetics , Metagenomics , RNA Viruses/genetics , Animals , Argentina , Dicistroviridae/isolation & purification , Genome, Viral/genetics , RNA Viruses/isolation & purification , RNA, Viral/genetics , Sequence Analysis, RNAABSTRACT
Eight different double-stranded RNA (dsRNA) molecules were found in the wild-type fungal strain Botrytis cinerea CCg427. The electrophoretic profile displayed molecules with approximate sizes of 1, 1.3, 1.6, 1.8, 3.3, 4.1, 6.5, and 12 kbp. Sequences analysis of the molecules in the 6.5-kbp band revealed the presence of two different dsRNA molecules (dsRNA-1 and dsRNA-2) of 6192 and 5567 bp. Each molecule contained a unique ORF (5487 and 4836 nucleotides in dsRNA-1 and dsRNA-2, respectively). The ORF of dsRNA-1 encodes a 205-kDa polypeptide that shares 58% amino acid sequence identity with the RNA-dependent RNA polymerase (RdRp) encoded by dsRNA-1 of Alternaria sp. SCFS-3 botybirnavirus (ABRV1), whereas the ORF of dsRNA-2 encodes a 180-kDa polypeptide that shares 52% amino acid sequence identity with an unclassified protein encoded by dsRNA-2 of ABRV1. Genome organization and phylogenetic analysis based on the amino acid sequences of RdRps in members of different dsRNA virus families showed that the dsRNAs in the 6.5-kbp band correspond to the genome of a new botybirnavirus that we have named "Botrytis cinerea botybirnavirus 1".
Subject(s)
Botrytis/virology , Fungal Viruses/genetics , Genome, Viral/genetics , RNA Viruses/genetics , RNA, Viral/genetics , Amino Acid Sequence , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Phylogeny , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/geneticsABSTRACT
Resumen Introducción: La temprana detección viral en infecciones respiratorias agudas (IRA) es esencial para establecer una terapia apropiada y prevenir el contagio intrahospitalario. Objetivo: Comparar la eficacia de la técnica de inmunofluorescencia indirecta (IFI) con la reacción de polimerasa en cadena (RPC) para identificar virus respiratorios en niños hospitalizados por IRA. Métodos: Se incluyeron 47 aspirados nasofaríngeos de niños ≤ 2 años con IRA. La IFI incluyó virus respiratorio sincicial (VRS), adenovirus, influenza A y B y parainfluenza. La RPC incluyó, además, la detección de metapneumovirus, enterovirus/rinovirus, bocavirus y coronavirus. Se estimó sensibilidad, especificidad, valor predictor positivo y negativo (VPP/VPN) y correlación kappa para VRS mediante IFI en comparación a la RPC. Resultados: La IFI detectó únicamente VRS (29; 61,7%). La RPC detectó diversos virus, entre ellos VRS en 26 casos (55,3%), seguido por bocavirus (29,8%), enterovirus/ rinovirus (21,3%), adenovirus (14,9%) y parainfluenza (4,3%) entre otros, con 35,5% de co-infección. La IFI presentó sensibilidad: 85,7%, especificidad: 73,6%, VPP: 82,7%, VPN: 77,7% y kappa: 0,5990 (IC 95%; 0,36360,8346) para VRS. Conclusión: La IFI presenta buena sensibilidad, pero moderada especificidad para VRS. Sin embargo, falla en la detección de otros virus respiratorios. La introducción de RPC permitiría mejorar el diagnóstico etiológico de las IRA de origen viral.
Background: Early viral detection in acute respiratory infections (ARI) is essential to establish appropriate therapy and prevent nosocomial transmission. Objective: To compare the efficacy of indirect immunofluorescence technique (IIF) with the polymerase chain reaction (PCR) to identify respiratory viruses in children hospitalized for ARI. Methods: 47 nasopharyngeal aspirates of children ≤ 2 years with ARI were included. IFI included respiratory syncytial virus (RSV), adenovirus, influenza A and B and parainfluenza. PCR also included the detection of metapneumovirus, enterovirus/rhinovirus, bocavirus and coronavirus. Sensitivity, specificity, positive and negative predictive value (VPP/NPV) and kappa correlation for RSV were estimated by IIF compared to PCR. Results: The IIF detected only RSV (29; 61.7%). PCR detected several viruses, including RSV in 26 cases (55.3%), followed by bocavirus (29.8%), rhinovirus/enterovirus (21.3%), adenovirus (14.9%) and parainfluenza (4,3%) among others, with 35.5% of coinfection. The IIF presented sensitivity: 85.7%, specificity: 73.6%, PPV: 82.7%, NPV: 77.7% and kappa: 0.5990 (95% CI, 0.3636-0.8346) for RSV. Conclusion: The IIF presents good sensitivity, but moderate specificity for RSV. However, IIF fails to detect other respiratory viruses. The introduction of PCR would improve the etiological diagnosis of ARI of viral origin.