Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.133
Filter
1.
Arch Virol ; 169(8): 159, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972922

ABSTRACT

In this study, we identified a novel partitivirus, named "Cordyceps militaris partitivirus 1" (CmPV1), in Cordyceps militaris strain RCEF7506. The complete genome of CmPV1 comprises two segments, dsRNA1 and dsRNA2, each encoding a single protein. dsRNA1 (2,206 bp) encodes an RNA-dependent RNA polymerase (RdRp), and dsRNA2 (2,256 bp) encodes a coat protein (CP). Sequence analysis revealed that dsRNA1 has the highest similarity to that of Bipolaris maydis partitivirus 2 (BmPV2), whereas dsRNA2 shows the highest similarity to human blood-associated partitivirus (HuBPV). Phylogenetic analysis based on RdRp sequences suggests that CmPV1 is a new member of the genus Betapartitivirus of the family Partitiviridae. This is the first documentation of a betapartitivirus infecting the entomopathogenic fungus C. militaris.


Subject(s)
Cordyceps , Fungal Viruses , Genome, Viral , Phylogeny , RNA Viruses , Cordyceps/genetics , Cordyceps/virology , Cordyceps/isolation & purification , Genome, Viral/genetics , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Viral Proteins/genetics , Capsid Proteins/genetics
2.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995418

ABSTRACT

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Subject(s)
Cordyceps , Genome, Viral , Phylogeny , RNA, Viral , Cordyceps/genetics , RNA, Viral/genetics , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Viral Proteins/genetics , Negative-Sense RNA Viruses/genetics , Negative-Sense RNA Viruses/classification , RNA-Dependent RNA Polymerase/genetics , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Amino Acid Sequence , Open Reading Frames
3.
Arch Virol ; 169(8): 160, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981875

ABSTRACT

A novel monopartite dsRNA virus, tentatively named "sponge gourd amalgavirus 1" (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.


Subject(s)
Genome, Viral , Luffa , Open Reading Frames , Phylogeny , Genome, Viral/genetics , Luffa/virology , Animals , China , Double Stranded RNA Viruses/genetics , Double Stranded RNA Viruses/classification , Double Stranded RNA Viruses/isolation & purification , Whole Genome Sequencing , Viral Proteins/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics
4.
Arch Virol ; 169(8): 161, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981885

ABSTRACT

Here, we report a novel ourmia-like mycovirus, named "Phomopsis asparagi magoulivirus 1" (PaMV1), derived from the phytopathogenic fungus Phomopsis asparagi. The genome of PaMV1 consists of a positive-sense single-stranded RNA (+ ssRNA) that is 2,639 nucleotides in length, with a GC content of 57.13%. It contains a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) consisting of 686 amino acids with a molecular mass of 78.57 kDa. Phylogenetic analysis based on RdRp sequences revealed that PaMV1 grouped together with Diaporthe gulyae magoulivirus 1 (DgMV1) in a distinct clade. Sequence comparisons and phylogenetic analysis suggest that PaMV1 is a novel member of the genus Magoulivirus, family Botourmiaviridae.


Subject(s)
Fungal Viruses , Genome, Viral , Open Reading Frames , Phomopsis , Phylogeny , RNA, Viral , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Phomopsis/virology , RNA, Viral/genetics , Whole Genome Sequencing , RNA-Dependent RNA Polymerase/genetics , Base Composition , Plant Diseases/microbiology , Plant Diseases/virology , Viral Proteins/genetics , Base Sequence , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification
5.
Arch Virol ; 169(8): 165, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990253

ABSTRACT

Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.


Subject(s)
Ascomycota , Fungal Viruses , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Ascomycota/virology , Ascomycota/genetics , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Plant Diseases/microbiology , Plant Diseases/virology , RNA, Viral/genetics , Viral Proteins/genetics , Whole Genome Sequencing , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Amino Acid Sequence
6.
Nat Commun ; 15(1): 5799, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987544

ABSTRACT

Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cytoplasmic Granules , Germ Cells , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals , Germ Cells/metabolism , Cytoplasmic Granules/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 121(29): e2317977121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990941

ABSTRACT

In a recent characterization of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variability present in 30 diagnostic samples from patients of the first COVID-19 pandemic wave, 41 amino acid substitutions were documented in the RNA-dependent RNA polymerase (RdRp) nsp12. Eight substitutions were selected in this work to determine whether they had an impact on the RdRp activity of the SARS-CoV-2 nsp12-nsp8-nsp7 replication complex. Three of these substitutions were found around the polymerase central cavity, in the template entry channel (D499G and M668V), and within the motif B (V560A), and they showed polymerization rates similar to the wild type RdRp. The remaining five mutations (P323L, L372F, L372P, V373A, and L527H) were placed near the nsp12-nsp8F contact surface; residues L372, V373, and L527 participated in a large hydrophobic cluster involving contacts between two helices in the nsp12 fingers and the long α-helix of nsp8F. The presence of any of these five amino acid substitutions resulted in important alterations in the RNA polymerization activity. Comparative primer elongation assays showed different behavior depending on the hydrophobicity of their side chains. The substitution of L by the bulkier F side chain at position 372 slightly promoted RdRp activity. However, this activity was dramatically reduced with the L372P, and L527H mutations, and to a lesser extent with V373A, all of which weaken the hydrophobic interactions within the cluster. Additional mutations, specifically designed to disrupt the nsp12-nsp8F interactions (nsp12-V330S, nsp12-V341S, and nsp8-R111A/D112A), also resulted in an impaired RdRp activity, further illustrating the importance of this contact interface in the regulation of RNA synthesis.


Subject(s)
Point Mutation , RNA, Viral , SARS-CoV-2 , Viral Nonstructural Proteins , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Polymerization , COVID-19/virology , Amino Acid Substitution , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Models, Molecular
8.
ACS Chem Biol ; 19(7): 1648-1660, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38954741

ABSTRACT

Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.


Subject(s)
Hepacivirus , RNA, Viral , Virus Replication , Y-Box-Binding Protein 1 , Hepacivirus/physiology , Hepacivirus/drug effects , Y-Box-Binding Protein 1/metabolism , Humans , Virus Replication/drug effects , RNA, Viral/metabolism , RNA, Viral/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , RNA Replication , RNA-Dependent RNA Polymerase
9.
Sci Rep ; 14(1): 16363, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013947

ABSTRACT

Resistance-associated substitutions (RASs) of hepatitis C virus (HCV) affect the efficacy of direct-acting antivirals (DAAs). In this study, we aimed to clarify the susceptibility of the coexistence of nonstructural (NS) 5A Q24K/L28M/R30Q (or R30E)/A92K RASs, which were observed in patients with DAAs re-treatment failure and to consider new therapeutic agents. We used a subgenomic replicon system in which HCV genotype 1B strain 1B-4 was electroporated into OR6c cells derived from HuH-7 cells (Wild-type [WT]). We converted WT genes to NS5A Q24K/L28M/R30Q/A92K or Q24/L28K/R30E/A92K. Compared with the WT, the Q24K/L28M/R30Q/A92K RASs was 36,000-fold resistant to daclatasvir, 440,000-fold resistant to ledipasvir, 6300-fold resistant to velpatasvir, 3100-fold resistant to elbasvir, and 1.8-fold resistant to pibrentasvir. Compared with the WT, the Q24K/L28M/R30E/A92K RASs was 640,000-fold resistant to daclatasvir and ledipasvir, 150,000-fold resistant to velpatasvir, 44,000-fold resistant to elbasvir, and 1500-fold resistant to pibrentasvir. The Q24K/L28M/R30E/A92K RASs was 816.3 times more resistant to pibrentasvir than the Q24K/L28M/R30Q/A92K RASs. Furthermore, a combination of pibrentasvir and sofosbuvir showed therapeutic efficacy against these RASs. Combination regimens may eradicate HCV with NS5A Q24K/L28M/R30E/A92K RASs.


Subject(s)
Antiviral Agents , Benzimidazoles , Drug Resistance, Viral , Hepacivirus , Imidazoles , Viral Nonstructural Proteins , Hepacivirus/drug effects , Hepacivirus/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/antagonists & inhibitors , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Drug Resistance, Viral/drug effects , Benzimidazoles/pharmacology , Imidazoles/pharmacology , Carbamates/pharmacology , Fluorenes/pharmacology , Sofosbuvir/pharmacology , Pyrrolidines/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Valine/analogs & derivatives , Valine/pharmacology , Genotype , Replicon/drug effects , Replicon/genetics , Sulfonamides/pharmacology , Benzofurans/pharmacology , Pyrazines/pharmacology , Benzopyrans , RNA-Dependent RNA Polymerase
10.
Viruses ; 16(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39066290

ABSTRACT

Foot-and-mouth disease virus (FMDV) belongs to the Picornaviridae family and is an important pathogen affecting cloven-hoof livestock. However, neither effective vaccines covering all serotypes nor specific antivirals against FMDV infections are currently available. In this study, we employed virtual screening to screen for secondary metabolite terpenoids targeting the RNA-dependent RNA polymerase (RdRp), or 3Dpol, of FMDV. Subsequently, we identified the potential antiviral activity of the 32 top-ranked terpenoids, revealing that continentalic acid, dehydroabietic acid (abietic diterpenoids), brusatol, bruceine D, and bruceine E (tetracyclic triterpenoids) significantly reduced cytopathic effects and viral infection in the terpenoid-treated, FMDV-infected BHK-21 cells in a dose-dependent manner, with nanomolar to low micromolar levels. The FMDV minigenome assay demonstrated that brusatol and bruceine D, in particular, effectively blocked FMDV 3Dpol activity, exhibiting IC50 values in the range of 0.37-0.39 µM and surpassing the efficacy of the antiviral drug control, ribavirin. Continentalic acid and bruceine E exhibited moderate inhibition of FMDV 3Dpol. The predicted protein-ligand interaction confirmed that these potential terpenoids interacted with the main catalytic and bystander residues of FMDV 3Dpol. Additionally, brusatol and bruceine D exhibited additive effects when combined with ribavirin. In conclusion, terpenoids from natural resources show promise for the development of anti-FMD agents.


Subject(s)
Antiviral Agents , Foot-and-Mouth Disease Virus , Terpenes , Foot-and-Mouth Disease Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Animals , Terpenes/pharmacology , Terpenes/chemistry , Cell Line , Virus Replication/drug effects , Computer Simulation , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Cricetinae , Molecular Docking Simulation , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease/drug therapy , Diterpenes/pharmacology , Diterpenes/chemistry
11.
Drug Dev Res ; 85(5): e22237, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032059

ABSTRACT

The global prevalence of RNA virus infections has presented significant challenges to public health in recent years, necessitating the expansion of its alternative therapeutic library. Due to its evolutional conservation, RNA-dependent RNA polymerase (RdRp) has emerged as a potential target for broad-spectrum antiviral nucleoside analogues. However, after over half a century of structural modification, exploring unclaimed chemical space using frequently-used structural substitution methods to design new nucleoside analogues is challenging. In this study, we explore the use of the "ring-opening" strategy to design new base mimics, thereby using these base mimics to design new nucleoside analogues with broad-spectrum antiviral activities. A total of 29 compounds were synthesized. Their activity against viral RdRp was initially screened using an influenza A virus RdRp high-throughput screening model. Then, the antiviral activity of 38a was verified against influenza virus strain A/PR/8/34 (H1N1), demonstrating a 50% inhibitory concentration (IC50) value of 9.95 µM, which was superior to that of ribavirin (the positive control, IC50 = 11.43 µM). Moreover, 38a also has inhibitory activity against coronavirus 229E with an IC50 of 30.82 µM. In addition, compounds 42 and 46f exhibit an 82% inhibition rate against vesicular stomatitis virus at a concentration of 20 µM and hardly induce cytotoxicity in host cells. This work demonstrates the feasibility of designing nucleoside analogues with "ring-opening" bases and suggests the "ring-opening" nucleosides may have greater polarity, and designing prodrugs is an important aspect of optimizing their antiviral activity. Future research should focus on enhancing the conformational restriction of open-loop bases to mimic Watson-Crick base pairing better and improve antiviral activity.


Subject(s)
Antiviral Agents , Drug Design , Nucleosides , RNA-Dependent RNA Polymerase , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Nucleosides/chemistry , Nucleosides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Influenza A Virus, H1N1 Subtype/drug effects , Humans , Animals , Madin Darby Canine Kidney Cells , Dogs , Structure-Activity Relationship
12.
PLoS Pathog ; 20(6): e1011642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875296

ABSTRACT

Influenza viruses transcribe and replicate their genome in the nucleus of the infected cells, two functions that are supported by the viral RNA-dependent RNA-polymerase (FluPol). FluPol displays structural flexibility related to distinct functional states, from an inactive form to conformations competent for replication and transcription. FluPol machinery is constituted by a structurally-invariant core comprising the PB1 subunit stabilized with PA and PB2 domains, whereas the PA endonuclease and PB2 C-domains can pack in different configurations around the core. To get insights into the functioning of FluPol, we selected single-domain nanobodies (VHHs) specific of the influenza A FluPol core. When expressed intracellularly, some of them exhibited inhibitory activity on type A FluPol, but not on the type B one. The most potent VHH (VHH16) binds PA and the PA-PB1 dimer with an affinity below the nanomolar range. Ectopic intracellular expression of VHH16 in virus permissive cells blocks multiplication of different influenza A subtypes, even when induced at late times post-infection. VHH16 was found to interfere with the transport of the PA-PB1 dimer to the nucleus, without affecting its handling by the importin ß RanBP5 and subsequent steps in FluPol assembly. Using FluPol mutants selected after passaging in VHH16-expressing cells, we identified the VHH16 binding site at the interface formed by PA residues with the N-terminus of PB1, overlapping or close to binding sites of two host proteins, ANP32A and RNA-polymerase II RPB1 subunit which are critical for virus replication and transcription, respectively. These data suggest that the VHH16 neutralization is likely due to several activities, altering the import of the PA-PB1 dimer into the nucleus as well as inhibiting specifically virus transcription and replication. Thus, the VHH16 binding site represents a new Achilles' heel for FluPol and as such, a potential target for antiviral development.


Subject(s)
Antiviral Agents , Influenza A virus , RNA-Dependent RNA Polymerase , Single-Domain Antibodies , Virus Replication , Single-Domain Antibodies/immunology , Humans , Antiviral Agents/pharmacology , Influenza A virus/immunology , Animals , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Influenza, Human/immunology , Influenza, Human/virology , HEK293 Cells , Dogs , Madin Darby Canine Kidney Cells
13.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891989

ABSTRACT

Negeviruses are insect-specific enveloped RNA viruses that exhibit a wide geographic distribution. A novel nege-like virus, tentatively named Aphis gossypii nege-like virus (AGNLV, GenBank: OR880429.1), was isolated from aphids (Aphis gossypii) in Lijiang City, Yunnan, China. AGNLV has a genome sequence of 9258 nt (excluding the polyA tail) encoding three open reading frames (ORFs). ORF1 (7149 nt) encodes a viral methyltransferase, a viral RNA helicase, and an RNA-dependent RNA polymerase. ORF2 (1422 nt) encodes a DiSB-ORF2_chro domain and ORF3 encodes an SP24 domain. The genome sequence of AGNLV shares the highest nucleotide identity of 60.0% and 59.5% with Wuhan house centipede virus 1 (WHCV1) and Astegopteryx formosana nege-like virus (AFNLV), respectively. Phylogenetic analysis based on the RNA-dependent RNA polymerase shows that AGNLV is clustered with other negeviruses and nege-like viruses discovered in aphids, forming a distinct "unclassified clade". Interestingly, AGNLV only encodes three ORFs, whereas AFNLV and WHCV1 have four ORFs. Structure and transmembrane domain predictions show the presence of eight alpha helices and five transmembrane helices in the AGNLV ORF3. Translational enhancement of the AGNLV 5' UTR was similar to that of the 5' UTR of plant viruses. Our findings provide evidence of the diversity and structure of nege-like viruses and are the first record of such a virus from a member of the genus Aphis.


Subject(s)
Aphids , Genome, Viral , Open Reading Frames , Phylogeny , Animals , Aphids/virology , China , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Viral Proteins/chemistry , Insect Viruses/genetics , Insect Viruses/isolation & purification , Insect Viruses/classification , RNA, Viral/genetics
14.
Antiviral Res ; 228: 105925, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944160

ABSTRACT

Influenza A virus (IAV) continuously poses a considerable threat to global health through seasonal epidemics and recurring pandemics. IAV RNA-dependent RNA polymerases (FluPol) mediate the transcription of RNA and replication of the viral genome. Searching for targets that inhibit viral polymerase activity helps us develop better antiviral drugs. Here, we identified heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) as an anti-influenza host factor. hnRNPAB interacts with NP of IAV to inhibit the interaction between PB1 and NP, which is dependent on the 5-amino-acid peptide of the hnRNPAB C-terminal domain (aa 318-322). We further found that the 5-amino-acid peptide blocks the interaction between PB1 and NP to destroy the FluPol activity. In vivo studies demonstrate that hnRNPAB-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. These data demonstrate that hnRNPAB perturbs FluPol complex conformation to inhibit IAV infection, providing insights into anti-influenza defense mechanisms.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , RNA-Dependent RNA Polymerase , Virus Replication , Animals , Dogs , Humans , Mice , A549 Cells , Antiviral Agents/pharmacology , HEK293 Cells , Influenza A virus/drug effects , Influenza, Human/virology , Influenza, Human/drug therapy , Madin Darby Canine Kidney Cells , Mice, Inbred C57BL , Mice, Knockout , Nucleocapsid Proteins , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication/drug effects
15.
Arch Virol ; 169(7): 140, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850451

ABSTRACT

A novel totivirus, named "birch toti-like virus" (BTLV), was discovered in European white birch (Betula pendula) plants. The genome of BTLV is 4,967 nucleotides long and contains two overlapping open reading frames (ORFs) coding for the capsid protein (CP) and an RNA-dependent RNA-polymerase (RdRP). The encoded CP and RdRP proteins shared 46.9% and 60.2% amino acid sequence identity, respectively, with those of Panax notoginseng virus B. The presence of a putative slippery heptamer signal 82 nt upstream of the stop codon of ORF1 suggests that a -1 translational frameshifting strategy is involved in the expression of ORF2, like in other totiviruses. Phylogenetic analysis based on the CP and RdRP amino acid sequences placed this virus within a clade of plant-associated totiviruses, with taro-associated virus as its closest relative. Hence, based on its distinct host and the amino acid sequence similarity between BTLV and its relatives, we conclude that birch toti-like virus is a new member of the genus Totivirus.


Subject(s)
Betula , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Betula/virology , Genome, Viral/genetics , Plant Diseases/virology , Capsid Proteins/genetics , Totiviridae/genetics , Totiviridae/classification , Totiviridae/isolation & purification , Amino Acid Sequence , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , RNA, Viral/genetics
16.
Arch Virol ; 169(7): 151, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902586

ABSTRACT

A new fusagra-like virus infecting papaya (Carica papaya L.) was genetically characterized. The genome of the virus, provisionally named "papaya sticky fruit-associated virus" (PSFaV), is a single molecule of double-stranded RNA, 9,199 nucleotides (nt) in length, containing two discontinuous open reading frames. Pairwise sequence comparisons based on complete RNA-dependent-RNA-polymerase (RdRp) sequences revealed identity of 79.4% and 83.3% at the nt and amino acid (aa) level, respectively, to babaco meleira-like virus (BabMelV), an uncharacterized virus sequence discovered in babaco (Vasconcellea x heilbornii) in Ecuador. Additional plant-associated viruses with sequence identity in the 50% range included papaya meleira virus (PMeV) isolates from Brazil. Phylogenetic analysis based on the amino acid sequences of the capsid protein (CP), RdRp, and CP-RdRp fusion protein genes placed PSFaV in a group within a well-supported clade that shares a recent ancestor with Sclerotium rolfsii RNA virus 2 and Phlebiopsis gigantea mycovirus dsRNA 2, two fungus-associated fusagraviruses. Genomic features and phylogenetic relatedness suggest that PSFaV, along with its closest relative BabMelV, represent a species of novel plant-associated virus classified within the recently established family Fusagraviridae.


Subject(s)
Carica , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , RNA, Viral , Carica/virology , Genome, Viral/genetics , Ecuador , Plant Diseases/virology , RNA, Viral/genetics , Whole Genome Sequencing , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Capsid Proteins/genetics
17.
J Virol ; 98(7): e0083124, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38856119

ABSTRACT

Fungi harbor a vast diversity of mobile genetic elements (MGEs). Recently, novel fungal MGEs, tentatively referred to as 'ambiviruses,' were described. 'Ambiviruses' have single-stranded RNA genomes of about 4-5 kb in length that contain at least two open reading frames (ORFs) in non-overlapping ambisense orientation. Both ORFs are conserved among all currently known 'ambiviruses,' and one of them encodes a distinct viral RNA-directed RNA polymerase (RdRP), the hallmark gene of ribovirian kingdom Orthornavirae. However, 'ambivirus' genomes are circular and predicted to replicate via a rolling-circle mechanism. Their genomes are also predicted to form rod-like structures and contain ribozymes in various combinations in both sense and antisense orientations-features reminiscent of viroids, virusoids, ribozyvirian kolmiovirids, and yet-unclassified MGEs (such as 'epsilonviruses,' 'zetaviruses,' and some 'obelisks'). As a first step toward the formal classification of 'ambiviruses,' the International Committee on Taxonomy of Viruses (ICTV) recently approved the establishment of a novel ribovirian phylum, Ambiviricota, to accommodate an initial set of 20 members with well-annotated genome sequences.


Subject(s)
Genome, Viral , Open Reading Frames , Viroids , Viroids/genetics , Viroids/classification , Phylogeny , RNA, Viral/genetics , RNA Viruses/genetics , RNA Viruses/classification , Fungi/genetics , Fungi/virology , RNA-Dependent RNA Polymerase/genetics , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification
18.
J Gen Virol ; 105(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38888587

ABSTRACT

Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, and Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions.


Subject(s)
Genetic Variation , Phylogeny , Potexvirus , Potexvirus/genetics , Potexvirus/isolation & purification , Potexvirus/classification , Gulf of Mexico , Plant Diseases/virology , Hydrocharitaceae/virology , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics , Zosteraceae/virology
19.
Front Cell Infect Microbiol ; 14: 1331755, 2024.
Article in English | MEDLINE | ID: mdl-38800833

ABSTRACT

The mosquito-borne Rift Valley fever virus (RVFV) from the Phenuiviridae family is a single-stranded RNA virus that causes the re-emerging zoonotic disease Rift Valley fever (RVF). Classified as a Category A agent by the NIH, RVFV infection can cause debilitating disease or death in humans and lead to devastating economic impacts by causing abortion storms in pregnant cattle. In a previous study, we showed that the host chaperone protein HSP90 is an RVFV-associated host factor that plays a critical role post viral entry, during the active phase of viral genome replication/transcription. In this study, we have elucidated the molecular mechanisms behind the regulatory effect of HSP90 during infection with RVFV. Our results demonstrate that during the early infection phase, host HSP90 associates with the viral RNA-dependent RNA polymerase (L protein) and prevents its degradation through the proteasome, resulting in increased viral replication.


Subject(s)
HSP90 Heat-Shock Proteins , Proteasome Endopeptidase Complex , Proteolysis , Rift Valley fever virus , Virus Replication , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Rift Valley fever virus/genetics , Rift Valley fever virus/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Genome, Viral , Humans , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Host-Pathogen Interactions , Viral Proteins/metabolism , Viral Proteins/genetics , Transcription, Genetic , Rift Valley Fever/virology , Rift Valley Fever/metabolism , Cell Line
20.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793558

ABSTRACT

The cucumber mosaic virus (CMV) 2b protein is a suppressor of plant defenses and a pathogenicity determinant. Amongst the 2b protein's host targets is the RNA silencing factor Argonaute 1 (AGO1), which it binds to and inhibits. In Arabidopsis thaliana, if 2b-induced inhibition of AGO1 is too efficient, it induces reinforcement of antiviral silencing by AGO2 and triggers increased resistance against aphids, CMV's insect vectors. These effects would be deleterious to CMV replication and transmission, respectively, but are moderated by the CMV 1a protein, which sequesters sufficient 2b protein molecules into P-bodies to prevent excessive inhibition of AGO1. Mutant 2b protein variants were generated, and red and green fluorescent protein fusions were used to investigate subcellular colocalization with AGO1 and the 1a protein. The effects of mutations on complex formation with the 1a protein and AGO1 were investigated using bimolecular fluorescence complementation and co-immunoprecipitation assays. Although we found that residues 56-60 influenced the 2b protein's interactions with the 1a protein and AGO1, it appears unlikely that any single residue or sequence domain is solely responsible. In silico predictions of intrinsic disorder within the 2b protein secondary structure were supported by circular dichroism (CD) but not by nuclear magnetic resonance (NMR) spectroscopy. Intrinsic disorder provides a plausible model to explain the 2b protein's ability to interact with AGO1, the 1a protein, and other factors. However, the reasons for the conflicting conclusions provided by CD and NMR must first be resolved.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Cucumovirus , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Cucumovirus/metabolism , Cucumovirus/genetics , Cucumovirus/physiology , Arabidopsis/metabolism , Arabidopsis/virology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Binding , Viral Proteins/metabolism , Viral Proteins/genetics , Host-Pathogen Interactions , Viral Replicase Complex Proteins/metabolism , Viral Replicase Complex Proteins/genetics , Plant Diseases/virology , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , Methyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL