Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.443
Filter
1.
Genes (Basel) ; 15(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38927624

ABSTRACT

Molecular radiotherapy (MRT), also known as radioimmunotherapy or targeted radiotherapy, is the delivery of radionuclides to tumours by targeting receptors overexpressed on the cancer cell. Currently it is used in the treatment of a few cancer types including lymphoma, neuroendocrine, and prostate cancer. Recently reported outcomes demonstrating improvements in patient survival have led to an upsurge in interest in MRT particularly for the treatment of prostate cancer. Unfortunately, between 30% and 40% of patients do not respond. Further normal tissue exposure, especially kidney and salivary gland due to receptor expression, result in toxicity, including dry mouth. Predictive biomarkers to select patients who will benefit from MRT are crucial. Whilst pre-treatment imaging with imaging versions of the therapeutic agents is useful in demonstrating tumour binding and potentially organ toxicity, they do not necessarily predict patient benefit, which is dependent on tumour radiosensitivity. Transcript-based biomarkers have proven useful in tailoring external beam radiotherapy and adjuvant treatment. However, few studies have attempted to derive signatures for MRT response prediction. Here, transcriptomic studies that have identified genes associated with clinical radionuclide exposure have been reviewed. These studies will provide potential features for seeding multi-component biomarkers of MRT response.


Subject(s)
Biomarkers, Tumor , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Radioimmunotherapy/methods , Male , Gene Expression Regulation, Neoplastic/radiation effects , Neoplasms/radiotherapy , Neoplasms/genetics , Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Radioisotopes/therapeutic use
2.
J Nanobiotechnology ; 22(1): 306, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825717

ABSTRACT

Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.


Subject(s)
Actinium , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Actinium/chemistry , Humans , Cell Line, Tumor , Animals , Alpha Particles/therapeutic use , Mice , Female , Biocompatible Materials/chemistry , Breast Neoplasms/drug therapy , Radioimmunotherapy/methods
3.
Mol Cancer ; 23(1): 97, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730427

ABSTRACT

DLL3 acts as an inhibitory ligand that downregulates Notch signaling and is upregulated by ASCL1, a transcription factor prevalent in the small-cell lung cancer (SCLC) subtype SCLC-A. Currently, the therapeutic strategies targeting DLL3 are varied, including antibody-drug conjugates (ADCs), bispecific T-cell engagers (BiTEs), and chimeric antigen receptor (CAR) T-cell therapies. Although rovalpituzumab tesirine (Rova-T) showed promise in a phase II study, it failed to produce favorable results in subsequent phase III trials, leading to the cessation of its development. Conversely, DLL3-targeted BiTEs have garnered significant clinical interest. Tarlatamab, for instance, demonstrated enhanced response rates and progression-free survival compared to the standard of care in a phase II trial; its biologics license application (BLA) is currently under US Food and Drug Administration (FDA) review. Numerous ongoing phase III studies aim to further evaluate tarlatamab's clinical efficacy, alongside the development of novel DLL3-targeted T-cell engagers, both bispecific and trispecific. CAR-T cell therapies targeting DLL3 have recently emerged and are undergoing various preclinical and early-phase clinical studies. Additionally, preclinical studies have shown promising efficacy for DLL3-targeted radiotherapy, which employs ß-particle-emitting therapeutic radioisotopes conjugated to DLL3-targeting antibodies. DLL3-targeted therapies hold substantial potential for SCLC management. Future clinical trials will be crucial for comparing treatment outcomes among various approaches and exploring combination therapies to improve patient survival outcomes.


Subject(s)
Immunoconjugates , Intracellular Signaling Peptides and Proteins , Lung Neoplasms , Radioimmunotherapy , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/radiotherapy , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Radioimmunotherapy/methods , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Membrane Proteins/metabolism , Immunotherapy/methods , Precision Medicine , Molecular Targeted Therapy
6.
J Natl Cancer Inst ; 116(7): 1008-1011, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38539049

ABSTRACT

Radiation therapy may induce off-target antitumor "abscopal" immunostimulatory and immunosuppressive effects. Several preclinical and early clinical studies revealed promising results when combining radiation therapy with immunostimulatory agents. Most radioimmunotherapy randomized trials showed disappointing results in patients with advanced tumors. In contrast, outcomes were encouraging when immunotherapy was delivered on top of gross disease elimination with curative-intent radiation therapy. In this review, we highlight available results from randomized trials and discuss the potential impact of overall tumor burden on the observed efficacy of radioimmunotherapy.


Subject(s)
Neoplasms , Radioimmunotherapy , Humans , Radioimmunotherapy/methods , Neoplasms/radiotherapy , Neoplasms/immunology , Immunotherapy/methods , Randomized Controlled Trials as Topic , Tumor Burden/radiation effects
7.
Adv Mater ; 36(26): e2401384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521987

ABSTRACT

Genome editing has the potential to improve the unsatisfactory therapeutic effect of antitumor immunotherapy. However, the cell plasma membrane prevents the entry of almost all free genome-manipulation agents. Therefore, a system can be spatiotemporally controlled and can instantly open the cellular membrane to allow the entry of genome-editing agents into target cells is needed. Here, inspired by the ability of T cells to deliver cytotoxins to cancer cells by perforation, an ultrasound (US)-controlled perforation system (UPS) is established to enhance the delivery of free genome-manipulating agents. The UPS can perforate the tumor cell membrane while maintaining cell viability via a controllable lipid peroxidation reaction. In vitro, transmembrane-incapable plasmids can enter cells and perform genome editing with the assistance of UPS, achieving an efficiency of up to 90%. In vivo, the UPS is biodegradable, nonimmunogenic, and tumor-targeting, enabling the puncturing of tumor cells under US. With the application of UPS-assisted genome editing, gasdermin-E expression in 4T1 tumor-bearing mice is successfully restored, which leads to pyroptosis-mediated antitumor immunotherapy via low-dose X-ray irradiation. This study provides new insights for designing a sonoporation system for genome editing. Moreover, the results demonstrate that restoring gasdermin expression by genome editing significantly improves the efficacy of radioimmunotherapy.


Subject(s)
Pyroptosis , Radioimmunotherapy , T-Lymphocytes , Animals , Mice , Cell Line, Tumor , Humans , Radioimmunotherapy/methods , T-Lymphocytes/metabolism , X-Rays , Gene Editing , Pore Forming Cytotoxic Proteins/metabolism , Female , Ultrasonic Waves , Gasdermins
8.
Small ; 20(25): e2306263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38221757

ABSTRACT

Intrinsic or acquired radioresistance remained an important challenge in the successful management of cancer. Herein, a novel "smart" multifunctional copper-based nanocomposite (RCL@Pd@CuZ) to improve radiotherapy (RT) sensitivity is designed and developed. In this nanoplatform, DSPE-PEG-RGD modified on the liposome surface enhanced tumor targeting and permeability; capsaicin inserted into the phospholipid bilayer improved the hypoxic conditions in the tumor microenvironment (TME) by inhibiting mitochondrial respiration; a Cu MOF porous cube encapsulated in liposome generated highly active hydroxyl radicals (OH·), consumed GSH and promoted cuproptosis by releasing Cu2+; the ultrasmall palladium (Pd) nanozyme within the cubes exhibited peroxidase activity, catalyzing toxic OH· generation and releasing oxygen from hydrogen peroxide; and lastly, Pd, as an element with a relatively high atomic number (Z) enhanced the photoelectric and Compton effects of X-rays. Therefore, RCL@Pd@CuZ enhance RT sensitivity by ameliorating hypoxia, promoting cuproptosis, depleting GSH, amplifying oxidative stress, and enhancing X-ray absorption  , consequently potently magnifying immunogenic cell death (ICD). In a mouse model , RCL@Pd@CuZ combined with RT yielded >90% inhibition compared with that obtained by RT alone in addition to a greater quantity of DC maturation and CD8+ T cell infiltration. This nanoplatform offered a promising remedial modality to facilitate cuproptosis-related cancer radioimmunotherapy.


Subject(s)
Copper , Radioimmunotherapy , Animals , Radioimmunotherapy/methods , Copper/chemistry , Mice , Cell Respiration/drug effects , Tumor Microenvironment/drug effects , Humans , Cell Line, Tumor , Palladium/chemistry , Palladium/pharmacology , Liposomes/chemistry , Nanocomposites/chemistry , Nanocomposites/therapeutic use
9.
Eur J Nucl Med Mol Imaging ; 51(5): 1221-1232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38062170

ABSTRACT

PURPOSE: Gastric cancer (GC), one of the most prevalent and deadliest tumors worldwide, is often diagnosed at an advanced stage with limited treatment options and poor prognosis. The development of a CLDN18.2-targeted radioimmunotherapy probe is a potential treatment option for GC. METHODS: The CLDN18.2 antibody TST001 (provided by Transcenta) was conjugated with DOTA and radiolabeled with the radioactive nuclide 177Lu. The specificity and targeting ability were evaluated by cell uptake, imaging and biodistribution experiments. In BGC823CLDN18.2/AGSCLDN18.2 mouse models, the efficacy of [177Lu]Lu-TST001 against CLDN18.2-expressing tumors was demonstrated, and toxicity was evaluated by H&E staining and blood sample testing. RESULTS: [177Lu]Lu-TST001 was labeled with an 99.17%±0.32 radiochemical purity, an 18.50 ± 1.27 MBq/nmol specific activity and a stability of ≥ 94% after 7 days. It exhibited specific and high tumor uptake in CLDN18.2-positive xenografts of GC mouse models. Survival studies in BGC823CLDN18.2 and AGSCLDN18.2 tumor-bearing mouse models indicated that a low dose of 5.55 MBq and a high dose of 11.10 MBq [177Lu]Lu-TST001 significantly inhibited tumor growth compared to the saline control group, with the 11.1 MBq group showing better therapeutic efficacy. Histological staining with hematoxylin and eosin (H&E) and Ki67 immunohistochemistry of residual tissues confirmed tumor tissue destruction and reduced tumor cell proliferation following treatment. H&E showed that there was no significant short-term toxicity observed in the heart, spleen, stomach or other important organs when treated with a high dose of [177Lu]Lu-TST001, and no apparent hematotoxicity or liver toxicity was observed. CONCLUSION: In preclinical studies, [177Lu]Lu-TST001 demonstrated significant antitumor efficacy with acceptable toxicity. It exhibits strong potential for clinical translation, providing a new promising treatment option for CLDN18.2-overexpressing tumors, including GC.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Animals , Mice , Radioimmunotherapy/methods , Heterografts , Stomach Neoplasms/radiotherapy , Tissue Distribution , Xenograft Model Antitumor Assays , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Lutetium/therapeutic use , Claudins
10.
J Nucl Med ; 64(7): 1009-1016, 2023 07.
Article in English | MEDLINE | ID: mdl-37290799

ABSTRACT

In the early 2000s, major clinical trials provided evidence of a favorable outcome from antibody-mediated radioimmunotherapy for hematologic neoplasms, which then led to Food and Drug Administration approval. For instance, the theranostic armamentarium for the referring hematooncologist now includes 90Y-ibritumomab tiuxetan for refractory low-grade follicular lymphoma or transformed B-cell non-Hodgkin lymphoma, as well as 131I-tositumomab for rituximab-refractory follicular lymphoma. Moreover, the first interim results of the SIERRA phase III trial reported beneficial effects from the use of 131I-anti-CD45 antibodies (Iomab-B) in refractory or relapsed acute myeloid leukemia. During the last decade, the concept of theranostics in hematooncology has been further expanded by C-X-C motif chemokine receptor 4-directed molecular imaging. Beyond improved detection rates of putative sites of disease, C-X-C motif chemokine receptor 4-directed PET/CT also selects candidates for radioligand therapy using ß-emitting radioisotopes targeting the identical chemokine receptor on the lymphoma cell surface. Such image-piloted therapeutic strategies provided robust antilymphoma efficacy, along with desired eradication of the bone marrow niche, such as in patients with T- or B-cell lymphoma. As an integral part of the treatment plan, such radioligand therapy-mediated myeloablation also allows one to line up patients for stem cell transplantation, which leads to successful engraftment during the further treatment course. In this continuing education article, we provide an overview of the current advent of theranostics in hematooncology and highlight emerging clinical applications.


Subject(s)
Lymphoma, B-Cell , Lymphoma, Follicular , Lymphoma, Non-Hodgkin , Humans , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/pathology , Lymphoma, Non-Hodgkin/diagnostic imaging , Lymphoma, Non-Hodgkin/radiotherapy , Precision Medicine , Positron Emission Tomography Computed Tomography , Lymphoma, B-Cell/diagnostic imaging , Lymphoma, B-Cell/radiotherapy , Radioimmunotherapy/methods , Yttrium Radioisotopes/therapeutic use
11.
J Nucl Med ; 64(9): 1439-1445, 2023 09.
Article in English | MEDLINE | ID: mdl-37348919

ABSTRACT

Epithelial ovarian cancer (EOC) is often asymptomatic and presents clinically in an advanced stage as widespread peritoneal microscopic disease that is generally considered to be surgically incurable. Targeted α-therapy with the α-particle-emitting radionuclide 225Ac (half-life, 9.92 d) is a high-linear-energy-transfer treatment approach effective for small-volume disease and even single cells. Here, we report the use of human epidermal growth factor receptor 2 (HER2) 225Ac-pretargeted radioimmunotherapy (PRIT) to treat a mouse model of human EOC SKOV3 xenografts growing as peritoneal carcinomatosis (PC). Methods: On day 0, 105 SKOV3 cells transduced with a luciferase reporter gene were implanted intraperitoneally in nude mice, and tumor engraftment was verified by bioluminescent imaging (BLI). On day 15, treatment was started using 1 or 2 cycles of 3-step anti-HER2 225Ac-PRIT (37 kBq/cycle as 225Ac-Proteus DOTA), separated by a 1-wk interval. Efficacy and toxicity were monitored for up to 154 d. Results: Untreated PC-tumor-bearing nude mice showed a median survival of 112 d. We used 2 independent measures of response to evaluate the efficacy of 225Ac-PRIT. First, a greater proportion of the treated mice (9/10 1-cycle and 8/10 2-cycle; total, 17/20; 85%) survived long-term compared with controls (9/27, 33%), and significantly prolonged survival was documented (log-rank [Mantel-Cox] P = 0.0042). Second, using BLI, a significant difference in the integrated BLI signal area to 98 d was noted between controls and treated groups (P = 0.0354). Of a total of 8 mice from the 2-cycle treatment group (74 kBq total) that were evaluated by necropsy, kidney radiotoxicity was mild and did not manifest itself clinically (normal serum blood urea nitrogen and creatinine). Dosimetry estimates (relative biological effectiveness-weighted dose, where relative biological effectiveness = 5) per 37 kBq administered for tumors and kidneys were 56.9 and 16.1 Gy, respectively. One-cycle and 2-cycle treatments were equally effective. With immunohistology, mild tubular changes attributable to α-toxicity were observed in both therapeutic groups. Conclusion: Treatment of EOC PC-tumor-bearing mice with anti-HER2 225Ac-PRIT resulted in histologic cures and prolonged survival with minimal toxicity. Targeted α-therapy using the anti-HER2 225Ac-PRIT system is a potential treatment for otherwise incurable EOC.


Subject(s)
Peritoneal Neoplasms , Radioimmunotherapy , Humans , Animals , Mice , Radioimmunotherapy/methods , Mice, Nude , Peritoneal Neoplasms/diagnostic imaging , Peritoneal Neoplasms/radiotherapy , Peritoneal Neoplasms/drug therapy , Radioisotopes/therapeutic use , Cell Line, Tumor
12.
Front Immunol ; 14: 1105180, 2023.
Article in English | MEDLINE | ID: mdl-37234164

ABSTRACT

Colorectal cancer (CRC) is a deadly form of cancer worldwide. Patients with locally advanced rectal cancer and metastatic CRC have a poor long-term prognosis, and rational and effective treatment remains a major challenge. Common treatments include multi-modal combinations of surgery, radiotherapy, and chemotherapy; however, recurrence and metastasis rates remain high. The combination of radiotherapy and immunotherapy (radioimmunotherapy [RIT]) may offer new solutions to this problem, but its prospects remain uncertain. This review aimed to summarize the current applications of radiotherapy and immunotherapy, elaborate on the underlying mechanisms, and systematically review the preliminary results of RIT-related clinical trials for CRC. Studies have identified several key predictors of RIT efficacy. Summarily, rational RIT regimens can improve the outcomes of some patients with CRC, but current study designs have limitations. Further studies on RIT should focus on including larger sample sizes and optimizing the combination therapy regimen based on underlying influencing factors.


Subject(s)
Colorectal Neoplasms , Radioimmunotherapy , Humans , Radioimmunotherapy/methods , Combined Modality Therapy , Immunotherapy , Treatment Outcome , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology
13.
J Nucl Med ; 64(7): 1062-1068, 2023 07.
Article in English | MEDLINE | ID: mdl-37142300

ABSTRACT

227Th is a promising radioisotope for targeted α-particle therapy. It produces 5 α-particles through its decay, with the clinically approved 223Ra as its first daughter. There is an ample supply of 227Th, allowing for clinical use; however, the chemical challenges of chelating this large tetravalent f-block cation are considerable. Using the CD20-targeting antibody ofatumumab, we evaluated chelation of 227Th4+ for α-particle-emitting and radiotheranostic applications. Methods: We compared 4 bifunctional chelators for thorium radiopharmaceutical preparation: S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 2-(4-isothicyanatobenzyl)-1,2,7,10,13-hexaazacyclooctadecane-1,4,7,10,13,16-hexaacetic acid (p-SCN-Bn-HEHA), p-isothiacyanatophenyl-1-hydroxy-2-oxopiperidine-desferrioxamine (DFOcyclo*-p-Phe-NCS), and macrocyclic 1,2-HOPO N-hydroxysuccinimide (L804-NHS). Immunoconstructs were evaluated for yield, purity, and stability in vitro and in vivo. Tumor targeting of the lead 227Th-labeled compound in vivo was performed in CD20-expressing models and compared with a companion 89Zr-labeled PET agent. Results: 227Th-labeled ofatumumab-chelator constructs were synthesized to a radiochemical purity of more than 95%, excepting HEHA. 227Th-HEHA-ofatumumab showed moderate in vitro stability. 227Th-DFOcyclo*-ofatumumab presented excellent 227Th labeling efficiency; however, high liver and spleen uptake was revealed in vivo, indicative of aggregation. 227Th-DOTA-ofatumumab labeled poorly, yielding no more than 5%, with low specific activity (0.08 GBq/g) and modest long-term in vitro stability (<80%). 227Th-L804-ofatumumab coordinated 227Th rapidly and efficiently at high yields, purity, and specific activity (8 GBq/g) and demonstrated extended stability. In vivo tumor targeting confirmed the utility of this chelator, and the diagnostic analog, 89Zr-L804-ofatumumab, showed organ distribution matching that of 227Th to delineate SU-DHL-6 tumors. Conclusion: Commercially available and novel chelators for 227Th showed a range of performances. The L804 chelator can be used with potent radiotheranostic capabilities for 89Zr/227Th quantitative imaging and α-particle therapy.


Subject(s)
Lymphoma , Radioimmunotherapy , Humans , Radioimmunotherapy/methods , Precision Medicine , Radioisotopes/therapeutic use , Radioisotopes/chemistry , Chelating Agents/chemistry , Radiopharmaceuticals/therapeutic use , Lymphoma/pathology , Cell Line, Tumor , Zirconium/chemistry
14.
EMBO Mol Med ; 15(4): e16732, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36876343

ABSTRACT

Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.


Subject(s)
Neoplasms , Radioimmunotherapy , Animals , Mice , Cell Line, Tumor , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radioimmunotherapy/methods , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Netrin-1/metabolism
15.
J Exp Clin Cancer Res ; 42(1): 61, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906664

ABSTRACT

We recently identified CD46 as a novel prostate cancer cell surface antigen that shows lineage independent expression in both adenocarcinoma and small cell neuroendocrine subtypes of metastatic castration resistant prostate cancer (mCRPC), discovered an internalizing human monoclonal antibody YS5 that binds to a tumor selective CD46 epitope, and developed a microtubule inhibitor-based antibody drug conjugate that is in a multi-center phase I trial for mCRPC (NCT03575819). Here we report the development of a novel CD46-targeted alpha therapy based on YS5. We conjugated 212Pb, an in vivo generator of alpha-emitting 212Bi and 212Po, to YS5 through the chelator TCMC to create the radioimmunoconjugate, 212Pb-TCMC-YS5. We characterized 212Pb-TCMC-YS5 in vitro and established a safe dose in vivo. We next studied therapeutic efficacy of a single dose of 212Pb-TCMC-YS5 using three prostate cancer small animal models: a subcutaneous mCRPC cell line-derived xenograft (CDX) model (subcu-CDX), an orthotopically grafted mCRPC CDX model (ortho-CDX), and a prostate cancer patient-derived xenograft model (PDX). In all three models, a single dose of 0.74 MBq (20 µCi) 212Pb-TCMC-YS5 was well tolerated and caused potent and sustained inhibition of established tumors, with significant increases of survival in treated animals. A lower dose (0.37 MBq or 10 µCi 212Pb-TCMC-YS5) was also studied on the PDX model, which also showed a significant effect on tumor growth inhibition and prolongation of animal survival. These results demonstrate that 212Pb-TCMC-YS5 has an excellent therapeutic window in preclinical models including PDXs, opening a direct path for clinical translation of this novel CD46-targeted alpha radioimmunotherapy for mCRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Radioimmunotherapy , Male , Animals , Humans , Radioimmunotherapy/methods , Lead , Alpha Particles , Prostatic Neoplasms, Castration-Resistant/drug therapy , Lead Radioisotopes/therapeutic use , Membrane Cofactor Protein
16.
Asia Pac J Clin Oncol ; 19(6): 690-696, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36915956

ABSTRACT

AIM: This study aimed to evaluate the safety and efficacy of 131 I-rituximab in patients with relapsed or refractory follicular or mantle cell lymphoma. METHODS: Twenty-four patients with relapsed or refractory follicular or mantle cell lymphoma were administered unlabeled rituximab (70 mg) immediately before receiving a therapeutic dose of 131 I-rituximab. Contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography was used a month later to assess tumor response. RESULTS: This study enrolled 24 patients between June 2012 and 2022. Depending on how they responded to radioimmunotherapy (RIT), 131 I-rituximab was administered one to five times. Of the 24 patients, 9 achieved complete response after RIT and 8 achieved partial response. The median progression-free and overall survival was 5.9 and 37.9 months, respectively. During the follow-up period of 64.2 months, three patients were diagnosed with a secondary malignancy. Among treatment-related adverse events, hematologic toxicities were common, and grade 3-4 thrombocytopenia and neutropenia were reported in 66.6% of cases. CONCLUSION: 131 I-rituximab has an effective and favorable safety profile in patients with relapsed or refractory follicular lymphoma and mantle cell lymphoma. This suggests that RIT may also be considered a treatment option for patients with relapsed or refractory follicular lymphoma and mantle cell lymphoma.


Subject(s)
Lymphoma, Follicular , Lymphoma, Mantle-Cell , Humans , Adult , Rituximab/therapeutic use , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/radiotherapy , Lymphoma, Mantle-Cell/etiology , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/radiotherapy , Radioimmunotherapy/adverse effects , Radioimmunotherapy/methods , Antibodies, Monoclonal, Murine-Derived/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Treatment Outcome
17.
Adv Mater ; 35(17): e2208546, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36745572

ABSTRACT

Immunotherapy shows immense promise for improving cancer treatment. Combining immunotherapy with radiotherapy provides a conspicuous advantage due to its enhanced abscopal effect. However, established immune tolerance mechanisms in the tumor microenvironment can hamper the generation of a sufficient abscopal effect. Herein, a type of DNA nanocluster (DNAnc) that is self-assembled by a CpG-ODNs-loaded Y-shaped double-stranded DNA vector based on the unique complementary base-pairing rules is designed. The unique structure of DNAnc makes it load more than ≈8125.5 ± 822.5 copies of CpG ODNs within one single nanostructure, which effectively increases resistance to nuclease degradation and elevates the efficiency of repolarizing macrophages to an M1-like phenotype. Mechanistic studies reveal that more DNAncs are endocytosed by macrophages in the cancer tissue and repolarized macrophages to elicit a robust abscopal effect with the accumulation of macrophages induced by radiotherapy, generating potent, long-term, and durable antitumor immunity for the inhibition of tumor metastasis and the prevention of tumor recurrence, which provides a novel strategy to boost cancer immunotherapy.


Subject(s)
Neoplasms , Radioimmunotherapy , Radioimmunotherapy/methods , DNA/chemistry , DNA/genetics , Nanostructures , Humans , Animals , Mice , Cell Line , Chemical Phenomena , Immunologic Memory , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy
18.
Curr Radiopharm ; 16(3): 233-242, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36809934

ABSTRACT

INTRODUCTION: The feasibility of preparing the "in-house" generators and the Th- DTPA(DOTA)-Nimotuzumab radioimmunoconjugate was evaluated. 226Th is perspective for TAT, however, due to short half-life it is preferable to apply this radionuclide for readily available epithelial malignancies. Nimotuzumab being specific for EGFR expressing cells as a targeting moiety is considered to be suitable for thorium delivery. METHODS: TEVA extraction chromatographic resin and anion exchange resin AG 1x8 were used as sorbents for 226Th generator. In order to determine features of labeling by Th4+ we applied 234Th as a longer-lived analog of short-lived 226Th and the immunoconjugates DTPA(DOTA)-Nimotuzumab were used for radiolabeling. RESULTS: The generator on the base of TEVA resin has shown higher volume activity of the product compared to the AG 1x8. The 226Th volume concentration was up to 80%/mL. The radiolabeling of BFCA by thorium radioisotopes reached 95% at the MR(Th:p-SCN-Bn-DTPA) = 1:100 and 86% for MR(Th:p-SCN-Bn-DOTA) = 1:5000 at 90°C. The procedure of Nimotuzumab labeling with Th4+ for radiotherapy of EGFR-overexpressing carcinomas was established. The overall labeling yield in both radioimmunoconjugates - DTPA and DOTA functionalized - was in the range of 45-50%. The immunoconjugate Nimotuzumab-p-SCN-Bn-DTPA was obtained with a molar ratio 1:25 (Nimotuzumab: BFCA), within 1 hour of conjugation at 25°C and labelled via postconjugation approach. Whereas Nimotuzumab-p-SCN-Bn-DOTA was obtained at the same conditions, but radiolabeled by the method of pre-conjugation. CONCLUSION: Thorium-234 incorporation into both radioimmunoconjugates reached 45-50%. It has been shown that Th-DTPA-Nimotuzumab radioimmunoconjugate specifically bound with EGFR overexpressing epidermoid carcinoma A431 cells.


Subject(s)
Carcinoma , Immunoconjugates , Humans , Radioimmunotherapy/methods , Thorium , Radiopharmaceuticals , Radioisotopes , Immunoconjugates/chemistry , Pentetic Acid , ErbB Receptors/metabolism , Cell Line, Tumor
19.
Expert Rev Anti Infect Ther ; 21(4): 365-374, 2023 04.
Article in English | MEDLINE | ID: mdl-36815406

ABSTRACT

INTRODUCTION: Corona Virus Disease of 2019 (COVID-19) pandemic has renewed interest in monoclonal antibodies for treating infectious diseases. During last two decades experimental data has been accumulated showing the potential of radioimmunotherapy (RIT) of infectious diseases. In addition, COVID-19 pandemic has created a novel landscape for opportunistic fungal infections in post-COVID-19 patients resulting from severe immune suppression. AREAS COVERED: We analyze recent results on targeting "pan-antigens" shared by fungal pathogens in mouse models and in healthy dogs; on developing RIT of prosthetic joint infections (PJI); examine RIT as potential human immunodeficiency virus (HIV) cure strategy and analyze its mechanisms and safety. Literature review was performed using PubMed and Google Scholar and includes relevant articles from 2000 to 2022. EXPERT OPINION: Some of the RIT of infection applications can, hopefully, be moved into the clinic earlier than others after preclinical development: (1) RIT of opportunistic fungal infections might contribute to saving lives as current antifungal drugs do not work in severely immunocompromised patients; (2) RIT of patients with PJI. Success of RIT in these patients will allow to expand the application of RIT to other similarly vulnerable patients' populations such as cancer patients with weakened immune system and organ transplant recipients.


Subject(s)
COVID-19 , Communicable Diseases , Mycoses , Mice , Humans , Animals , Dogs , Radioimmunotherapy/methods , Pandemics , Communicable Diseases/therapy
20.
Int J Radiat Biol ; 99(1): 109-118, 2023.
Article in English | MEDLINE | ID: mdl-34270378

ABSTRACT

PURPOSE: Non-targeted effects, including bystander and systemic effects, play a crucial role during Auger targeted radionuclide therapy. Here, we investigated whether small extracellular vesicles (sEVs) produced by irradiated cells could contribute to the bystander cytotoxic effects in vitro and also to therapeutic efficacy in vivo, after their injection in tumor xenografts. MATERIALS AND METHODS: B16F10 melanoma donor cells were exposed to radiolabeled antibodies (Auger radioimmunotherapy, RIT) for 48 h or to X-rays (donor cells). Then, donor cells were incubated with fresh medium for 2 h to prepare conditioned medium (CM) that was transferred onto recipient cells for bystander effect assessment, or used for sEVs enrichment. Resulting sEVs were incubated in vitro with recipient cells for determining bystander cytotoxicity, or injected in B16F10 melanoma tumors harbored by athymic and C57BL/6 mice. RESULTS: In vitro analysis of bystander cytotoxic effects showed that CM killed about 30-40% of melanoma cells. SEVs isolated from CM contributed to this effect. Moreover, the double-stranded DNA (dsDNA) content was increased in sEVs isolated from CM of exposed cells compared to control (not exposed), but the difference was significant only for the X-ray condition. These results were supported by immunodetection of cytosolic dsDNA in donor cells, a phenomenon that should precede dsDNA enrichment in sEVs. However, sEVs cytotoxicity could not be detected in vivo. Indeed, in athymic and in immunocompetent mice that received four intratumoral injections of sEVs (1/day), tumor growth was not delayed compared with untreated controls. Tumor growth was slightly (not significantly) delayed in immunocompetent mice treated with sEVs from X-ray-exposed cells, and significantly with sEVs purified from CM collected after 48 h of incubation. These results highlight the need to determine the optimal conditions, including radiation absorbed dose and sEVs collection time, to obtain the strongest cytotoxic effects. CONCLUSIONS: This study demonstrates that sEVs could play a role during Auger RIT through bystander effects in vitro. No systemic effects were observed in vivo, under our experimental conditions. However, X-rays experiments showed that sEVs collection time might be influencing the nature of sEVs, a parameter that should also be investigated during Auger RIT.


Subject(s)
Extracellular Vesicles , Melanoma , Radioimmunotherapy , Animals , Mice , Extracellular Vesicles/physiology , Melanoma/radiotherapy , Mice, Inbred C57BL , Radiation Dosage , Radioimmunotherapy/methods , Cell Communication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...