Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.774
1.
Sci Rep ; 14(1): 10789, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734719

Brown adipocytes are potential therapeutic targets for the prevention of obesity-associated metabolic diseases because they consume circulating glucose and fatty acids for heat production. Angiotensin II (Ang II) peptide is involved in the pathogenesis of obesity- and cold-induced hypertension; however, the mechanism underlying the direct effects of Ang II on human brown adipocytes remains unclear. Our transcriptome analysis of chemical compound-induced brown adipocytes (ciBAs) showed that the Ang II type 1 receptor (AGTR1), but not AGTR2 and MAS1 receptors, was expressed. The Ang II/AGTR1 axis downregulated the expression of mitochondrial uncoupling protein 1 (UCP1). The simultaneous treatment with ß-adrenergic receptor agonists and Ang II attenuated UCP1 expression, triglyceride lipolysis, and cAMP levels, although cAMP response element-binding protein (CREB) phosphorylation was enhanced by Ang II mainly through the protein kinase C pathway. Despite reduced lipolysis, both coupled and uncoupled mitochondrial respiration was enhanced in Ang II-treated ciBAs. Instead, glycolysis and glucose uptake were robustly activated upon treatment with Ang II without a comprehensive transcriptional change in glucose metabolic genes. Elevated mitochondrial energy status induced by Ang II was likely associated with UCP1 repression. Our findings suggest that the Ang II/AGTR1 axis participates in mitochondrial thermogenic functions via glycolysis.


Adipocytes, Brown , Angiotensin II , Glycolysis , Mitochondria , Thermogenesis , Uncoupling Protein 1 , Humans , Adipocytes, Brown/metabolism , Adipocytes, Brown/drug effects , Glycolysis/drug effects , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Lipolysis/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Glucose/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
2.
J Hypertens ; 42(7): 1184-1196, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38690916

PURPOSE: Compared with monotherapy, combination therapy with multiple antihypertensive drugs has demonstrated superior efficacy in the management of hypertension. The aim of this study was to explore the efficacy of multitarget combined vaccines in achieving simultaneous antihypertensive and target organ protection effects. METHODS: Our team has developed ATRQß-001 and ADRQß-004 vaccines targeting Ang II type 1 receptor (AT1R) and α1D-adrenergic receptor (α1D-AR), respectively. In NG-nitroarginine methyl ester ( l -NAME) + abilities spontaneously hypertensive rats (SHRs) model, SHRs were simultaneously inoculated with ATRQß-001 and ADRQß-004 vaccines. Histological and biochemical analyses were performed to evaluate the antihypertensive effects and target organ protection of the ATRQß-001 and ADRQß-004 combined vaccines in comparison with those of the single vaccine. RESULTS: Both ATRQß-001 and ADRQß-004 vaccines induced robust antibody production, resulting in persistent high antibody titers in rats. Notably, the combined administration of both vaccines significantly decreased SBP in SHRs compared with treatment with a single vaccine, both before and after l -NAME administration. Furthermore, the combined vaccine regimen demonstrated superior efficacy in protecting against vascular remodeling, myocardial hypertrophy and fibrosis, and kidney injury in SHRs. Mechanistically, the combined vaccines exhibited significantly downregulated the expression of angiotensin II type 1 receptor (AT1R) and α1D-adrenergic receptor (α1D-AR). Importantly, no apparent immune-related adverse effects were observed in animals immunized with the combined vaccines. CONCLUSION: Preliminary findings from this investigation suggest that co-administration of the novel ATRQß-001 and ADRQß-004 vaccines holds potential as a groundbreaking therapeutic strategy for managing hypertension.


Hypertension , Rats, Inbred SHR , Receptor, Angiotensin, Type 1 , Receptors, Adrenergic, alpha-1 , Animals , Receptor, Angiotensin, Type 1/immunology , Rats , Male , Vaccines, Combined/immunology , NG-Nitroarginine Methyl Ester/pharmacology , Blood Pressure/drug effects
3.
Int J Infect Dis ; 144: 107067, 2024 Jul.
Article En | MEDLINE | ID: mdl-38697603

OBJECTIVES: To analyze the gene variants of the renin-angiotensin-aldosterone system and determine their association with the severity and outcome of COVID-19. METHODS: A total of 104 patients were included in the study: 34 asymptomatic patients with COVID-19 as controls and 70 symptomatic patients as cases. The genetic variants ACE rs4343, ACE2 rs2074192, AGTR1 rs5182, and AGT rs4762 were identified using TaqMan genotyping tests. RESULTS: Patients with the T/T genotype of AGTR1 rs5182 have a higher probability of developing symptomatic COVID-19 (odds ratio [OR] 12.25, 95% confidence interval [CI] 1.34-111.9, P ≤0.001) and a higher risk of hospitalization because of disease (OR 14.00, 95% CI 1.53-128.49, P = 0.012). The haplotype CTG (AGTR1 rs5182, ACE2 rs2074192, ACE rs4343) decreased the odds of death related to COVID-19 in the study population (OR 0.03, 95% CI 0.0-0.06, P = 0.026). CONCLUSIONS: The T/T genotype of the AGTR1 rs5182 variant increased the probability of symptomatic COVID-19 and hospitalization, whereas the haplotype CTG (consisting of AGTR1 rs5182, ACE2 rs2074192, and ACE rs4343) decreased the odds of death related to COVID-19 by 97% in the hospitalized patients with COVID-19. These results support the participation of renin-angiotensin-aldosterone system gene variants as modifiers of the severity of symptoms associated with SARS-CoV-2 infection and the outcome of COVID-19.


Angiotensin-Converting Enzyme 2 , COVID-19 , Hospitalization , Peptidyl-Dipeptidase A , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/mortality , COVID-19/virology , Male , Female , Middle Aged , Receptor, Angiotensin, Type 1/genetics , Renin-Angiotensin System/genetics , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Peptidyl-Dipeptidase A/genetics , Adult , Polymorphism, Single Nucleotide , Aged , Angiotensinogen/genetics , Genotype , Genetic Predisposition to Disease , Haplotypes , Case-Control Studies
4.
Stem Cell Res Ther ; 15(1): 138, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735991

BACKGROUND: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS: In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS: At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS: The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.


Autoantibodies , Dopaminergic Neurons , Parkinson Disease , Receptor, Angiotensin, Type 1 , Animals , Autoantibodies/immunology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/immunology , Rats , Dopaminergic Neurons/metabolism , Parkinson Disease/therapy , Parkinson Disease/pathology , Disease Models, Animal , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Male , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Oxidopamine/pharmacology , Humans , Rats, Sprague-Dawley
5.
Int J Mol Sci ; 25(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38732244

Cardiovascular outcome in Marfan syndrome (MFS) patients most prominently depends on aortic aneurysm progression with subsequent aortic dissection. Angiotensin II receptor blockers (ARBs) prevent aneurysm formation in MFS mouse models. In patients, ARBs only slow down aortic dilation. Downstream signalling from the angiotensin II type 1 receptor (AT1R) is mediated by G proteins and ß-arrestin recruitment. AT1R also interacts with the monocyte chemoattractant protein-1 (MCP-1) receptor, resulting in inflammation. In this study, we explore the targeting of ß-arrestin signalling in MFS mice by administering TRV027. Furthermore, because high doses of the ARB losartan, which has been proven beneficial in MFS, cannot be achieved in humans, we investigate a potential additive effect by combining lower concentrations of losartan (25 mg/kg/day and 5 mg/kg/day) with barbadin, a ß-arrestin blocker, and DMX20, a C-C chemokine receptor type 2 (CCR2) blocker. A high dose of losartan (50 mg/kg/day) slowed down aneurysm progression compared to untreated MFS mice (1.73 ± 0.12 vs. 1.96 ± 0.08 mm, p = 0.0033). TRV027, the combination of barbadin with losartan (25 mg/kg/day), and DMX-200 (90 mg/kg/day) with a low dose of losartan (5 mg/kg/day) did not show a significant beneficial effect. Our results confirm that while losartan effectively halts aneurysm formation in Fbn1C1041G/+ MFS mice, neither TRV027 alone nor any of the other compounds combined with lower doses of losartan demonstrate a notable impact on aneurysm advancement. It appears that complete blockade of AT1R function, achieved by administrating a high dosage of losartan, may be necessary for inhibiting aneurysm progression in MFS.


Angiotensin II Type 1 Receptor Blockers , Disease Models, Animal , Losartan , Marfan Syndrome , Receptor, Angiotensin, Type 1 , Signal Transduction , Animals , Marfan Syndrome/metabolism , Marfan Syndrome/drug therapy , Marfan Syndrome/complications , Mice , Losartan/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Signal Transduction/drug effects , Angiotensin II Type 1 Receptor Blockers/pharmacology , Aortic Aneurysm/metabolism , Aortic Aneurysm/etiology , Aortic Aneurysm/prevention & control , Aortic Aneurysm/drug therapy , Aortic Aneurysm/pathology , Male , beta-Arrestins/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Mice, Inbred C57BL
6.
Am J Physiol Cell Physiol ; 326(4): C1203-C1211, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38581656

Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.


Angiotensin II , Cardiovascular Diseases , Humans , Dipeptidyl Peptidase 4 , Peptidyl-Dipeptidase A , Receptor, Angiotensin, Type 1 , Inflammation , Fibrosis , Angiotensin I
7.
Transl Neurodegener ; 13(1): 22, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622720

The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.


Parkinson Disease , Renin-Angiotensin System , Animals , Humans , Angiotensin Receptor Antagonists/pharmacology , Angiotensins/metabolism , Blood Pressure , Brain/metabolism , Dopamine , Parkinson Disease/pathology , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System/physiology
8.
Am J Reprod Immunol ; 91(4): e13843, 2024 Apr.
Article En | MEDLINE | ID: mdl-38606700

PROBLEM: Preeclampsia (PE), new-onset hypertension during pregnancy accompanied by organ dysfunction, is associated with chronic inflammation including elevated IL-17, CD4+ T cells, B cells and natural killer (NK) cells. IL-17 can serve as a signal for either the adaptive or innate immune activation. We have previously shown that IL-17 contributes to increased blood pressure in association with elevated TH17 cells, NK cells and B cells secreting angiotensin II type 1 receptor agonistic autoantibodies (AT1-AA) during pregnancy. Moreover, we have shown an important role for CD4+T cells and AT1-AA in multiorgan dysfunction as measured by mitochondrial oxidative stress (mt ROS). However, we do not know the role of adaptive immune cells such as T cells or B cells secreting AT1-AA in mediating the PE phenotype in response to elevated IL-17. METHOD OF STUDY: In order to answer this question, we infused IL-17 (150 pg/day i.p.) into either Sprague Dawley (SD) or athymic nude rats via mini-osmotic pump from gestational day (GD) 14-19 of pregnancy. On GD 19, blood pressure was determined and NK cells, mtROS and respiration and AT1-AA production from B cells were measured. RESULTS: Infusion of IL-17 increased blood pressure in the presence or absence of T cells. Mean arterial pressure (MAP) increased with IL-17 from 98 ± 2 mm Hg (n = 12) to 114 ± 2 (n = 12) in SD rats and from 99 ± 4 mm Hg (n = 7) versus 115 ± 2 mm Hg (n = 7) in athymic nude rats. Similar trends were seen in NK cells and placental mt ROS. Knowing that IL-17 stimulates AT1-AA in SD pregnant rats, we included a group of SD and athymic nude pregnant rats infused with IL-17 and the AT1-AA inhibitor peptide ('n7AAc'). The inhibitor attenuated blood pressure (104.9 ± 3.2, p = .0001) and normalized NK cells and mt function in SD pregnant rats. Importantly, the AT1-AA was not produced in pregnant nude IL-17 treated rats, nor did 'n7AAc' effect MAP, in nude athymic rats. CONCLUSION: These findings suggest two conclusions; one is that IL-17 causes hypertension and multiorgan dysfunction in the absence of T cells and AT1-AA, possibly through its activation of innate cells and secondly, in the presence of T cells, blockade of the AT1-AA attenuates the effect of IL-17. This study indicates the critical effects of elevated IL-17 during pregnancy and suggest treatment modalities to consider for PE women.


Autoantibodies , Hypertension , Interleukin-17 , Receptor, Angiotensin, Type 1 , Animals , Female , Humans , Pregnancy , Rats , Interleukin-17/metabolism , Placenta/metabolism , Pre-Eclampsia , Rats, Nude , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/metabolism
9.
Eur J Pharmacol ; 973: 176605, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38653362

The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 µg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-ß (TGF-ß). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-ß). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.


Hippo Signaling Pathway , Kidney Diseases , Kidney , Metabolic Syndrome , Telmisartan , Animals , Telmisartan/pharmacology , Telmisartan/therapeutic use , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Metabolic Syndrome/complications , Metabolic Syndrome/pathology , Male , Rats , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , NF-kappa B/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Rats, Wistar , Matrix Metalloproteinase 9/metabolism , PTEN Phosphohydrolase/metabolism , PPAR gamma/metabolism , Oxidative Stress/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Malondialdehyde/metabolism , Interleukin-6/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use
10.
Microbes Infect ; 26(4): 105333, 2024.
Article En | MEDLINE | ID: mdl-38570086

Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of ß-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of ß-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/ß-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/ß-arteether alone treatment.


Disease Models, Animal , Irbesartan , Malaria, Cerebral , Mice, Inbred C57BL , Animals , Malaria, Cerebral/drug therapy , Malaria, Cerebral/parasitology , Mice , Irbesartan/pharmacology , Irbesartan/therapeutic use , Losartan/pharmacology , Losartan/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/parasitology , Blood-Brain Barrier/drug effects , Cytokines/metabolism , Artemisinins/pharmacology , Artemisinins/therapeutic use , Receptor, Angiotensin, Type 1/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use
11.
Eur J Med Chem ; 271: 116452, 2024 May 05.
Article En | MEDLINE | ID: mdl-38685142

Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.


Colorectal Neoplasms , Liver Neoplasms , Molecular Probes , Optical Imaging , Receptor, Angiotensin, Type 1 , Animals , Colorectal Neoplasms/pathology , Humans , Mice , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Molecular Probes/chemistry , Molecular Probes/chemical synthesis , Molecular Probes/pharmacokinetics , Receptor, Angiotensin, Type 1/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure , Tissue Distribution , Mice, Nude
12.
Hypertension ; 81(6): 1332-1344, 2024 Jun.
Article En | MEDLINE | ID: mdl-38629290

BACKGROUND: ANG (angiotensin II) elicits dipsogenic and pressor responses via activation of the canonical Gαq (G-protein component of the AT1R [angiotensin type 1 receptor])-mediated AT1R in the subfornical organ. Recently, we demonstrated that ARRB2 (ß-arrestin 2) global knockout mice exhibit a higher preference for salt and exacerbated pressor response to deoxycorticosterone acetate salt. However, whether ARRB2 within selective neuroanatomical nuclei alters physiological responses to ANG is unknown. Therefore, we hypothesized that ARRB2, specifically in the subfornical organ, counterbalances maladaptive dipsogenic and pressor responses to the canonical AT1R signaling. METHODS: Male and female Arrb2FLOX mice received intracerebroventricular injection of either adeno-associated virus (AAV)-Cre-GFP (green fluorescent protein) to induce brain-specific deletion of ARRB2 (Arrb2ICV-Cre). Arrb2FLOX mice receiving ICV-AAV-GFP were used as control (Arrb2ICV-Control). Infection with ICV-AAV-Cre primarily targeted the subfornical organ with few off targets. Fluid intake was evaluated using the 2-bottle choice paradigm with 1 bottle containing water and 1 containing 0.15 mol/L NaCl. RESULTS: Arrb2ICV-Cre mice exhibited a greater pressor response to acute ICV-ANG infusion. At baseline conditions, Arrb2ICV-Cre mice exhibited a significant increase in saline intake compared with controls, resulting in a saline preference. Furthermore, when mice were subjected to water-deprived or sodium-depleted conditions, which would naturally increase endogenous ANG levels, Arrb2ICV-Cre mice exhibited elevated saline intake. CONCLUSIONS: Overall, these data indicate that ARRB2 in selective cardiovascular nuclei in the brain, including the subfornical organ, counterbalances canonical AT1R responses to both exogenous and endogenous ANG. Stimulation of the AT1R/ARRB axis in the brain may represent a novel strategy to treat hypertension.


Blood Pressure , Homeostasis , Subfornical Organ , beta-Arrestin 2 , Animals , Subfornical Organ/metabolism , Mice , Blood Pressure/physiology , Blood Pressure/genetics , Male , Homeostasis/physiology , beta-Arrestin 2/metabolism , beta-Arrestin 2/genetics , Female , Mice, Knockout , Angiotensin II/pharmacology , Brain/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism
13.
BMC Nephrol ; 25(1): 139, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649831

BACKGROUND: Renal tubular dysgenesis (RTD) is a severe disorder with poor prognosis significantly impacting the proximal tubules of the kidney while maintaining an anatomically normal gross structure. The genetic origin of RTD, involving variants in the ACE, REN, AGT, and AGTR1 genes, affects various enzymes or receptors within the Renin angiotensin system (RAS). This condition manifests prenatally with oligohydramninos and postnatally with persistent anuria, severe refractory hypotension, and defects in skull ossification. CASE PRESENTATION: In this report, we describe a case of a female patient who, despite receiving multi vasopressor treatment, experienced persistent hypotension, ultimately resulting in early death at five days of age. While there was a history of parental consanguinity, no reported family history of renal disease existed. Blood samples from the parents and the remaining DNA sample of the patient underwent Whole Genome Sequencing (WGS). The genetic analysis revealed a rare homozygous loss of function variant (NM_000685.5; c.415C > T; p.Arg139*) in the Angiotensin II Receptor Type 1 (AGTR1) gene. CONCLUSION: This case highlights the consequence of loss-of-function variants in AGTR1 gene leading to RTD, which is characterized by high mortality rate at birth or during the neonatal period. Furthermore, we provide a comprehensive review of previously reported variants in the AGTR1 gene, which is the least encountered genetic cause of RTD, along with their associated clinical features.


Kidney Tubules, Proximal/abnormalities , Receptor, Angiotensin, Type 1 , Urogenital Abnormalities , Humans , Female , Receptor, Angiotensin, Type 1/genetics , Infant, Newborn , Loss of Function Mutation , Fatal Outcome , Hypotension/genetics
14.
Pediatr Transplant ; 28(3): e14762, 2024 May.
Article En | MEDLINE | ID: mdl-38650537

Antibodies to angiotensin II type 1 receptor (AT1R-Abs) are among the most well-studied non-HLA antibodies in renal transplantation. These antibodies have been shown to be common in pediatric kidney transplantation and associated with antibody-mediated rejection (AMR), vascular inflammation, development of human leukocyte donor-specific antibodies (HLA DSA), and allograft loss. As AT1R-Ab testing becomes more readily accessible, evidence to guide clinical practice for testing and treating AT1R-Ab positivity in pediatric kidney transplant recipients remains limited. This review discusses the clinical complexities of evaluating AT1R-Abs given the current available evidence.


Graft Rejection , Kidney Transplantation , Receptor, Angiotensin, Type 1 , Humans , Receptor, Angiotensin, Type 1/immunology , Graft Rejection/immunology , Child , HLA Antigens/immunology , Autoantibodies/immunology , Isoantibodies/immunology
15.
PLoS One ; 19(4): e0300273, 2024.
Article En | MEDLINE | ID: mdl-38635772

The pathogenesis and prognosis of patients with acute myocardial infarction (AMI) may be influenced by both genetic and environmental factors. Findings on the relationship of polymorphisms in various genes encoding the renin-angiotensin-aldosterone system with coronary artery lesions and mortality in AMI patients are inconsistent. The aim of this study was to determine whether the AGTR1 A1166C genetic polymorphism affects coronary artery lesions and 1-year mortality in post-AMI patients. Patients with their first AMI admitted to Cho Ray Hospital, Vietnam, from January 2020 to August 2021 were enrolled in this prospective clinical study. All participants underwent invasive coronary angiography and were identified as having the genotypes of AGTR1 A1166C by way of a polymerase chain reaction method. All patients were followed up for all-cause mortality 12 months after AMI. The association of the AGTR1 A1166C polymorphism with coronary artery lesions and 1-year mortality was evaluated using logistic regression and Cox regression analysis, respectively. Five hundred and thirty-one AMI patients were recruited. The mean age was 63.9 ± 11.6 years, and 71.6% of the patients were male. There were no significant differences in the location and number of diseased coronary artery branches between the AA and AC+CC genotypes. The AC and CC genotypes were independently associated with ≥ 90% diameter stenosis of the left anterior descending (LAD) artery (odds ratio = 1.940; 95% confidence interval (CI): 1.059-3.552, p = 0.032). The 1-year all-cause mortality rate difference between patients with the AC and CC genotypes versus those with the AA genotype was not statistically significant (hazard ratio = 1.000, 95% CI: 0.429-2.328, p = 1.000). The AGTR1 A1166C genetic polymorphism is associated with very severe luminal stenosis of the LAD but not with mortality in AMI patients.


Coronary Vessels , Myocardial Infarction , Humans , Male , Middle Aged , Aged , Female , Constriction, Pathologic , Prospective Studies , Polymorphism, Genetic , Myocardial Infarction/genetics , Receptor, Angiotensin, Type 1/genetics
16.
Int Immunopharmacol ; 131: 111855, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38493697

Mechanical ventilation (MV) is an essential therapy for acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. However, it can also induce mechanical ventilation-induced pulmonary fibrosis (MVPF) and the underlying mechanism remains unknown. Based on a mouse model of MVPF, the present study aimed to explore the role of the angiotensin-converting enzyme/angiotensin II/angiotensin type 1 receptor (ACE/Ang-2/AT1R) axis in the process of MVPF. In addition, recombinant angiotensin-converting enzyme 2(rACE2), AT1R inhibitor valsartan, AGTR1-directed shRNA and ACE inhibitor perindopril were applied to verify the effect of inhibiting ACE/Ang-2/AT1R axis in the treatment of MVPF. Our study found MV induced an inflammatory reaction and collagen deposition in mouse lung tissue accompanied by the activation of ACE in lung tissue, increased concentration of Ang-2 in bronchoalveolar lavage fluid (BALF), and upregulation of AT1R in alveolar epithelial cells. The process of pulmonary fibrosis could be alleviated by the application of the ACE inhibitor perindopril, ATIR inhibitor valsartan and AGTR1-directed shRNA. Meanwhile, rACE2 could also alleviate MVPF through the degradation of Ang-2. Our finding indicated the ACE/Ang-2/AT1R axis played an essential role in the pathogenesis of MVPF. Pharmacological inhibition of the ACE/Ang-2/AT1R axis might be a promising strategy for the treatment of MVPF.


Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Receptor, Angiotensin, Type 1/metabolism , Peptidyl-Dipeptidase A/metabolism , Perindopril/pharmacology , Perindopril/therapeutic use , Respiration, Artificial , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Valsartan/therapeutic use , RNA, Small Interfering/genetics , Angiotensin II/metabolism
17.
J Mol Cell Cardiol ; 190: 24-34, 2024 May.
Article En | MEDLINE | ID: mdl-38527667

Ongoing cardiomyocyte injury is a major mechanism in the progression of heart failure, particularly in dystrophic hearts. Due to the poor regenerative capacity of the adult heart, cardiomyocyte death results in the permanent loss of functional myocardium. Understanding the factors contributing to myocyte injury is essential for the development of effective heart failure therapies. As a model of persistent cardiac injury, we examined mice lacking ß-sarcoglycan (ß-SG), a key component of the dystrophin glycoprotein complex (DGC). The loss of the sarcoglycan complex markedly compromises sarcolemmal integrity in this ß-SG-/- model. Our studies aim to characterize the mechanisms underlying dramatic sex differences in susceptibility to cardiac injury in ß-SG-/- mice. Male ß-SG-/- hearts display significantly greater myocardial injury and death following isoproterenol-induced cardiac stress than female ß-SG-/- hearts. This protection of females was independent of ovarian hormones. Male ß-SG-/- hearts displayed increased susceptibility to exogenous oxidative stress and were significantly protected by angiotensin II type 1 receptor (AT1R) antagonism. Increasing general antioxidative defenses or increasing the levels of S-nitrosylation both provided protection to the hearts of ß-SG-/- male mice. Here we demonstrate that increased susceptibility to oxidative damage leads to an AT1R-mediated amplification of workload-induced myocardial injury in male ß-SG-/- mice. Improving oxidative defenses, specifically by increasing S-nitrosylation, provided protection to the male ß-SG-/- heart from workload-induced injury. These studies describe a unique susceptibility of the male heart to injury and may contribute to the sex differences in other forms of cardiac injury.


Antioxidants , Cardiomyopathies , Myocardium , Oxidative Stress , Sarcoglycans , Animals , Male , Sarcoglycans/metabolism , Sarcoglycans/genetics , Female , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/etiology , Mice , Antioxidants/metabolism , Myocardium/metabolism , Myocardium/pathology , Mice, Knockout , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Disease Susceptibility , Isoproterenol , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics
18.
Eur J Neurosci ; 59(10): 2450-2464, 2024 May.
Article En | MEDLINE | ID: mdl-38480476

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.


Amphetamine , Angiotensin II Type 1 Receptor Blockers , Angiotensin II , Benzimidazoles , Biphenyl Compounds , Corpus Striatum , Dopamine , Animals , Amphetamine/pharmacology , Male , Dopamine/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Angiotensin II/pharmacology , Biphenyl Compounds/pharmacology , Benzimidazoles/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Rats, Wistar , Rats , Receptor, Angiotensin, Type 1/metabolism , Tetrazoles/pharmacology , Central Nervous System Stimulants/pharmacology , Social Interaction/drug effects , Motor Activity/drug effects , Proto-Oncogene Proteins c-fos/metabolism
19.
Neuroscience ; 545: 125-140, 2024 May 03.
Article En | MEDLINE | ID: mdl-38484837

Chronic cerebral hypoperfusion (CCH) can cause vascular cognitive impairment and dementia. AT1R, angiotensin II type I receptor, plays a vital role in central nervous system pathologies, but its concrete function in vascular dementia is still unclear. Herein, we investigated the effects of AT1R during CCH by conditional knockout of the microglial AT1R and candesartan treatment. Using the bilateral carotid artery stenosis (BCAS) model, we found that the AT1R is crucial in exacerbating CCH-induced cognitive impairment via regulating microglial activation. The levels of AT1R were increased in the hippocampus and the hippocampal microglia after CCH induction. Microglial AT1R conditional knockout ameliorated cognitive impairment by reducing inflammatory responses and microglial activation, and so did candesartan treatment. However, we observed restoration of cerebral blood flow (CBF) but no significant neuronal loss in the hippocampus at 28 days after BCAS. Finally, we screened three hub genes (Ctss, Fcer1g, Tyrobp) associated with CCH. Our findings indicated that microglial expression of AT1R is critical for regulating neuroinflammation in CCH, and AT1R antagonism may be a feasible and promising method for ameliorating CCH-caused cognitive impairment.


Cognitive Dysfunction , Mice, Knockout , Microglia , Receptor, Angiotensin, Type 1 , Animals , Male , Mice , Benzimidazoles/pharmacology , Biphenyl Compounds/pharmacology , Carotid Stenosis/complications , Cerebrovascular Circulation/physiology , Cerebrovascular Circulation/drug effects , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Tetrazoles/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
20.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38474055

Angiotensin-converting enzyme (ACE) plays a crucial role in the pathogenesis of hypertension. Piper sarmentosum Roxb., an herb known for its antihypertensive effect, lacks a comprehensive understanding of the mechanism underlying its antihypertensive action. This study aimed to elucidate the antihypertensive mechanism of aqueous extract of P. sarmentosum leaves (AEPS) via its modulation of the ACE pathway in phorbol 12-myristate-13-acetate (PMA)-induced human umbilical vein endothelial cells (HUVECs). HUVECs were divided into five groups: control, treatment with 200 µg/mL AEPS, induction 200 nM PMA, concomitant treatment with 200 nM PMA and 200 µg/mL AEPS, and treatment with 200 nM PMA and 0.06 µM captopril. Subsequently, ACE mRNA expression, protein level and activity, angiotensin II (Ang II) levels, and angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) mRNA expression in HUVECs were determined. AEPS successfully inhibited ACE mRNA expression, protein and activity, and angiotensin II levels in PMA-induced HUVECs. Additionally, AT1R expression was downregulated, whereas AT2R expression was upregulated. In conclusion, AEPS reduces the levels of ACE mRNA, protein and activity, Ang II, and AT1R expression in PMA-induced HUVECs. Thus, AEPS has the potential to be developed as an ACE inhibitor in the future.


Phorbols , Piper , Humans , Antihypertensive Agents/pharmacology , Myristates/metabolism , Myristates/pharmacology , Angiotensin II/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Peptidyl-Dipeptidase A/metabolism , Receptor, Angiotensin, Type 1/metabolism , RNA, Messenger/metabolism , Acetates/pharmacology , Phorbols/metabolism , Phorbols/pharmacology
...