Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.673
Filter
1.
Nat Commun ; 15(1): 6124, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033137

ABSTRACT

Insulin icodec is a once-weekly insulin analogue that has a long half-life of approximately 7 days, making it suitable for once weekly dosing. The Insulin icodec molecule was developed based on the hypothesis that lowering insulin receptor affinity and introducing a strong albumin-binding moiety would result in a long insulin half-life, provided that non-receptor-mediated clearance is diminished. Here, we report an insulin clearance mechanism, resulting in the splitting of insulin molecules into its A-chain and B-chain by a thiol-disulphide exchange reaction. Even though the substitutions in insulin icodec significantly stabilise insulin against such degradation, some free B-chain is observed in plasma samples from minipigs and people with type 2 diabetes. In summary, we identify thiol-disulphide exchange reactions to be an important insulin clearance mechanism and find that stabilising insulin icodec towards this reaction significantly contributes to its long pharmacokinetic/pharmacodynamic profile.


Subject(s)
Diabetes Mellitus, Type 2 , Disulfides , Insulin , Swine, Miniature , Animals , Swine , Disulfides/chemistry , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Insulin/administration & dosage , Insulin/metabolism , Insulin/chemistry , Insulin/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/chemistry , Half-Life , Receptor, Insulin/metabolism , Male , Sulfhydryl Compounds/chemistry
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000130

ABSTRACT

Prenatal stress (PNS), which alters the hypothalamic-pituitary-adrenal axis function in the offspring, predisposes to insulin resistance (IR) in later life and is associated with numerous disorders, including cognitive and memory impairments. At present, our main goal is to assess the effects of chronic piromelatine (Pir) administration, a melatonin analogue, on PNS-provoked IR in the periphery and the hippocampus in male and female offspring. Pregnant Sprague-Dawley rats were exposed to chronic stress (one short-term stressor on a daily basis and one long-term stressor on a nightly basis) from the first gestation week until birth. Vehicle or Pir 20 mg/kg were administered intraperitoneally for 21 days. Plasma glucose, serum insulin levels, and the homeostasis model assessment of insulin resistance (HOMA-IR) were determined as markers of peripheral IR. For the hippocampal IR assessment, insulin receptors (IRs) and glucose transporter 4 (GLUT4) were examined. Prenatally stressed offspring of both sexes indicated enhanced plasma glucose and serum insulin concentrations, increased HOMA-IR, and decreased hippocampal GLUT4 only in male rats. The PNS-induced changes were corrected by chronic treatment with Pir. The present results suggest that the melatoninergic compound Pir exerts beneficial effects on altered glucose/insulin homeostasis in PNS-exposed offspring.


Subject(s)
Hippocampus , Insulin Resistance , Insulin , Prenatal Exposure Delayed Effects , Rats, Sprague-Dawley , Animals , Hippocampus/metabolism , Hippocampus/drug effects , Female , Pregnancy , Male , Rats , Prenatal Exposure Delayed Effects/metabolism , Insulin/metabolism , Insulin/blood , Blood Glucose/metabolism , Stress, Psychological/metabolism , Glucose Transporter Type 4/metabolism , Receptor, Insulin/metabolism , Melatonin/pharmacology
3.
Vitam Horm ; 126: 169-190, 2024.
Article in English | MEDLINE | ID: mdl-39029972

ABSTRACT

The blood-brain barrier (BBB) predominantly regulates insulin transport into and levels within the brain. The BBB is also an important site of insulin binding and mediator of insulin receptor (INSR) signaling. The insulin transporter is separate from the INSR, highlighting the important, unique role of each protein in this structure. After a brief introduction on the structure of insulin and the INSR, we discuss the importance of insulin interactions at the BBB, the properties of the insulin transporter and the role of the BBB insulin transporter in various physiological conditions. We go on to further describe insulin BBB signaling and the impact not only within brain endothelial cells but also the cascade into other cell types within the brain. We close with future considerations to advance our knowledge about the importance of insulin at the BBB.


Subject(s)
Blood-Brain Barrier , Insulin , Receptor, Insulin , Blood-Brain Barrier/metabolism , Humans , Insulin/metabolism , Animals , Receptor, Insulin/metabolism , Biological Transport/physiology , Signal Transduction/physiology , Endothelial Cells/metabolism , Brain/metabolism
4.
Vitam Horm ; 126: 113-124, 2024.
Article in English | MEDLINE | ID: mdl-39029970

ABSTRACT

The blood-brain barrier (BBB) is a unique system of the brain microvasculature that limits the exchange between the blood and the brain. Brain microvascular endothelial cells form the BBB as part of the neurovascular unit and express insulin receptors. The insulin receptor at the BBB has been studied in two different functional aspects. These functions include (1) the supplying of blood insulin to the brain and (2) the modulation of BBB function via insulin signaling. The first function involves drug delivery to the brain, while the second function is related to the association between central nervous system diseases and type 2 diabetes through insulin resistance. This chapter summarizes recent progress in research on the function of insulin receptors at the BBB.


Subject(s)
Blood-Brain Barrier , Receptor, Insulin , Signal Transduction , Blood-Brain Barrier/metabolism , Receptor, Insulin/metabolism , Humans , Signal Transduction/physiology , Animals , Biological Transport/physiology , Insulin/metabolism , Endothelial Cells/metabolism
5.
Methods Enzymol ; 700: 485-507, 2024.
Article in English | MEDLINE | ID: mdl-38971611

ABSTRACT

Signaling receptors on the plasma membrane, such as insulin receptor, can have their activity modulated to some extent by their surrounding lipids. Studying the contribution of membrane lipid properties such as presence of ordered lipid domains or bilayer thickness on the activity of receptors has been a challenging objective in living cells. Using methyl-alpha cyclodextrin-mediated lipid exchange, we are able to alter the lipids of the outer leaflet plasma membrane of mammalian cells to investigate the effect of the properties of the exchanged lipid upon receptor function in live cells. In this article, we describe the technique of lipid exchange in detail and how it can be applied to better understand lipid-mediated regulation of insulin receptor activity in cells.


Subject(s)
Cell Membrane , Membrane Lipids , Receptor, Insulin , Receptor, Insulin/metabolism , Cell Membrane/metabolism , Humans , Animals , Membrane Lipids/metabolism , Membrane Lipids/chemistry
6.
Cardiovasc Diabetol ; 23(1): 258, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026321

ABSTRACT

BACKGROUND: Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS: Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS: We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION: We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.


Subject(s)
Insulin , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac , Phosphoproteins , Proteomics , Signal Transduction , Animals , Myocytes, Cardiac/metabolism , Male , Insulin/metabolism , Phosphorylation , Phosphoproteins/metabolism , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Receptor, Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice
7.
J Chem Inf Model ; 64(14): 5657-5670, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38963805

ABSTRACT

Insulin Wakayama is a clinical insulin variant where a conserved valine at the third residue on insulin's A chain (ValA3) is replaced with a leucine (LeuA3), weakening insulin receptor (IR) binding by 140-500-fold. This severe impact on binding from a subtle modification has posed an intriguing problem for decades. Although experimental investigations of natural and unnatural A3 mutations have highlighted the sensitivity of insulin-IR binding at this site, atomistic explanations of these binding trends have remained elusive. We investigate this problem computationally using λ-dynamics free energy calculations to model structural changes in response to perturbations of the ValA3 side chain and to calculate associated relative changes in binding free energy (ΔΔGbind). The Wakayama LeuA3 mutation and seven other A3 substitutions were studied in this work. The calculated ΔΔGbind results showed high agreement compared to experimental binding potencies with a Pearson correlation of 0.88 and a mean unsigned error of 0.68 kcal/mol. Extensive structural analyses of λ-dynamics trajectories revealed that critical interactions were disrupted between insulin and the insulin receptor as a result of the A3 mutations. This investigation also quantifies the effect that adding an A3 Cδ atom or losing an A3 Cγ atom has on insulin's binding affinity to the IR. Thus, λ-dynamics was able to successfully model the effects of mutations to insulin's A3 side chain on its protein-protein interactions with the IR and shed new light on a decades-old mystery: the exquisite sensitivity of hormone-receptor binding to a subtle modification of an invariant insulin residue.


Subject(s)
Insulin , Molecular Dynamics Simulation , Protein Binding , Receptor, Insulin , Thermodynamics , Receptor, Insulin/metabolism , Receptor, Insulin/chemistry , Receptor, Insulin/genetics , Insulin/metabolism , Insulin/chemistry , Mutation , Humans , Protein Conformation
8.
Proc Natl Acad Sci U S A ; 121(29): e2400666121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976738

ABSTRACT

Urinary tract infection (UTI) commonly afflicts people with diabetes. This augmented infection risk is partly due to deregulated insulin receptor (IR) signaling in the kidney collecting duct. The collecting duct is composed of intercalated cells (ICs) and principal cells (PCs). Evidence suggests that ICs contribute to UTI defenses. Here, we interrogate how IR deletion in ICs impacts antibacterial defenses against uropathogenic Escherichia coli. We also explore how IR deletion affects immune responses in neighboring PCs with intact IR expression. To accomplish this objective, we profile the transcriptomes of IC and PC populations enriched from kidneys of wild-type and IC-specific IR knock-out mice that have increased UTI susceptibility. Transcriptomic analysis demonstrates that IR deletion suppresses IC-integrated stress responses and innate immune defenses. To define how IR shapes these immune defenses, we employ murine and human kidney cultures. When challenged with bacteria, murine ICs and human kidney cells with deregulated IR signaling cannot engage central components of the integrated stress response-including activating transcriptional factor 4 (ATF4). Silencing ATF4 impairs NFkB activation and promotes infection. In turn, NFkB silencing augments infection and suppresses antimicrobial peptide expression. In diabetic mice and people with diabetes, collecting duct cells show reduced IR expression, impaired integrated stress response engagement, and compromised immunity. Collectively, these translational data illustrate how IR orchestrates collecting duct antibacterial responses and the communication between ICs and PCs.


Subject(s)
Mice, Knockout , Receptor, Insulin , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Humans , Mice , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Immunity, Innate , Kidney/metabolism , Kidney Tubules, Collecting/metabolism , Mice, Inbred C57BL , Receptor, Insulin/metabolism , Signal Transduction , Urinary Tract Infections/microbiology , Urinary Tract Infections/metabolism , Urinary Tract Infections/immunology , Uropathogenic Escherichia coli/immunology
9.
Int J Oral Sci ; 16(1): 53, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085196

ABSTRACT

Periodontitis is a critical risk factor for the occurrence and development of diabetes. Porphyromonas gingivalis may participate in insulin resistance (IR) caused by periodontal inflammation, but the functional role and specific mechanisms of P. gingivalis in IR remain unclear. In the present study, clinical samples were analysed to determine the statistical correlation between P. gingivalis and IR occurrence. Through culturing of hepatocytes, myocytes, and adipocytes, and feeding mice P. gingivalis orally, the functional correlation between P. gingivalis and IR occurrence was further studied both in vitro and in vivo. Clinical data suggested that the amount of P. gingivalis isolated was correlated with the Homeostatic Model Assessment for IR score. In vitro studies suggested that coculture with P. gingivalis decreased glucose uptake and insulin receptor (INSR) protein expression in hepatocytes, myocytes, and adipocytes. Mice fed P. gingivalis tended to undergo IR. P. gingivalis was detectable in the liver, skeletal muscle, and adipose tissue of experimental mice. The distribution sites of gingipain coincided with the downregulation of INSR. Gingipain proteolysed the functional insulin-binding region of INSR. Coculture with P. gingivalis significantly decreased the INSR-insulin binding ability. Knocking out gingipain from P. gingivalis alleviated the negative effects of P. gingivalis on IR in vivo. Taken together, these findings indicate that distantly migrated P. gingivalis may directly proteolytically degrade INSR through gingipain, thereby leading to IR. The results provide a new strategy for preventing diabetes by targeting periodontal pathogens and provide new ideas for exploring novel mechanisms by which periodontal inflammation affects the systemic metabolic state.


Subject(s)
Gingipain Cysteine Endopeptidases , Insulin Resistance , Porphyromonas gingivalis , Receptor, Insulin , Porphyromonas gingivalis/metabolism , Receptor, Insulin/metabolism , Animals , Mice , Gingipain Cysteine Endopeptidases/metabolism , Humans , Male , Adhesins, Bacterial/metabolism , Cysteine Endopeptidases/metabolism , Proteolysis , Female , Adipocytes/metabolism , Periodontitis/microbiology , Coculture Techniques
10.
Nat Commun ; 15(1): 4909, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851766

ABSTRACT

Tobacco smoking (TS) is implicated in lung cancer (LC) progression through the development of metabolic syndrome. However, direct evidence linking metabolic syndrome to TS-mediated LC progression remains to be established. Our findings demonstrate that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (NNK and BaP; NB), components of tobacco smoke, induce metabolic syndrome characteristics, particularly hyperglycemia, promoting lung cancer progression in male C57BL/6 J mice. NB enhances glucose uptake in tumor-associated macrophages by increasing the expression and surface localization of glucose transporter (GLUT) 1 and 3, thereby leading to transcriptional upregulation of insulin-like growth factor 2 (IGF2), which subsequently activates insulin receptor (IR) in LC cells in a paracrine manner, promoting its nuclear import. Nuclear IR binds to nucleophosmin (NPM1), resulting in IR/NPM1-mediated activation of the CD274 promoter and expression of programmed death ligand-1 (PD-L1). Restricting glycolysis, depleting macrophages, or blocking PD-L1 inhibits NB-mediated LC progression. Analysis of patient tissues and public databases reveals elevated levels of IGF2 and GLUT1 in tumor-associated macrophages, as well as tumoral PD-L1 and phosphorylated insulin-like growth factor 1 receptor/insulin receptor (pIGF-1R/IR) expression, suggesting potential poor prognostic biomarkers for LC patients. Our data indicate that paracrine IGF2/IR/NPM1/PD-L1 signaling, facilitated by NB-induced dysregulation of glucose levels and metabolic reprogramming of macrophages, contributes to TS-mediated LC progression.


Subject(s)
B7-H1 Antigen , Benzo(a)pyrene , Disease Progression , Hyperglycemia , Insulin-Like Growth Factor II , Lung Neoplasms , Mice, Inbred C57BL , Nuclear Proteins , Nucleophosmin , Receptor, Insulin , Animals , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Male , Humans , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Hyperglycemia/metabolism , Benzo(a)pyrene/toxicity , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nitrosamines/toxicity , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Paracrine Communication , Gene Expression Regulation, Neoplastic , Smoking/adverse effects , Macrophages/metabolism
11.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892230

ABSTRACT

Marine natural products constitute a great source of potential new antidiabetic drugs. The aim of this study was to evaluate the role of phosphoeleganin (PE), a polyketide purified from the Mediterranean ascidian Sidnyum elegans, and its derivatives PE/2 and PE/3 on insulin sensitivity in human hepatocellular carcinoma (HepG2) cells. In our experiments, insulin stimulates the phosphorylation of its receptor (INSR) and AKT by 1.5- and 3.5-fold, respectively, whereas in the presence of PE, PE/2, and PE/3, the insulin induced INSR phosphorylation is increased by 2.1-, 2-, and 1.5-fold and AKT phosphorylation by 7.1-, 6.0-, and 5.1-fold, respectively. Interestingly, PE and PE/2 have an additive effect on insulin-mediated reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression. Finally, PE and PE/2, but not PE/3, decrease interleukin 6 (IL6) secretion and expression before and after palmitic acid incubation, while in the presence of high glucose (HG), only PE reduces IL6. Levels of other cytokines are not significantly affected by PE and its derivates. All these data suggest that PE and its synthetic-derived compound, PE/2, significantly decrease IL6 and improve hepatic insulin signaling. As IL6 impairs insulin action, it could be hypothesized that PE and PE/2, by inhibiting IL6, may improve the hepatic insulin pathway.


Subject(s)
Carcinoma, Hepatocellular , Insulin , Interleukin-6 , Liver Neoplasms , Signal Transduction , Humans , Interleukin-6/metabolism , Insulin/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Signal Transduction/drug effects , Hep G2 Cells , Animals , Receptor, Insulin/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Insulin Resistance , Antigens, CD
12.
Elife ; 132024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922671

ABSTRACT

Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cognitive Aging , Forkhead Transcription Factors , Neurons , Transcriptome , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Neurons/metabolism , Neurons/physiology , Aging/genetics , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Signal Transduction , Gene Expression Regulation , Memory/physiology , Gene Expression Profiling
13.
Eur J Pharm Biopharm ; 201: 114375, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897553

ABSTRACT

An inter-drug approach, applying pharmacokinetic information for insulin analogs in different animal species, rat, dog and pig, performed better compared to allometric scaling for human translation of intra-venous half-life and only required data from a single animal species for reliable predictions. Average fold error (AFE) between 1.2-1.7 were determined for all species and for multispecies allometric scaling AFE was 1.9. A slightly larger prediction error for human half-life was determined from in vitro human insulin receptor affinity data (AFE on 2.3-2.6). The requirements for the inter-drug approach were shown to be a span of at least 2 orders of magnitude in half-life for the included drugs and a shared clearance mechanism. The insulin analogs in this study were the five fatty acid protracted analogs: Insulin degludec, insulin icodec, insulin 320, insulin 338 and insulin 362, as well as the non-acylated analog insulin aspart.


Subject(s)
Hypoglycemic Agents , Insulin , Animals , Humans , Rats , Dogs , Half-Life , Swine , Insulin/pharmacokinetics , Insulin/administration & dosage , Insulin/analogs & derivatives , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Insulin, Long-Acting/pharmacokinetics , Insulin, Long-Acting/administration & dosage , Species Specificity , Receptor, Insulin/metabolism , Insulin Aspart/pharmacokinetics , Insulin Aspart/administration & dosage
14.
Arch Biochem Biophys ; 758: 110062, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880320

ABSTRACT

Carvacrol (CV) is an organic compound found in the essential oils of many aromatic herbs. It is nearly unfeasible to analyze all the current human proteins for a query ligand using in vitro and in vivo methods. This study aimed to clarify whether CV possesses an anti-diabetic feature via Docking-based inverse docking and molecular dynamic (MD) simulation and in vitro characterization against a set of novel human protein targets. Herein, the best poses of CV docking simulations according to binding energy ranged from -7.9 to -3.5 (kcal/mol). After pathway analysis of the protein list through GeneMANIA and WebGestalt, eight interacting proteins (DPP4, FBP1, GCK, HSD11ß1, INSR, PYGL, PPARA, and PPARG) with CV were determined, and these proteins exhibited stable structures during the MD process with CV. In vitro application, statistically significant results were achieved only in combined doses with CV or metformin. Considering all these findings, PPARG and INSR, among these target proteins of CV, are FDA-approved targets for treating diabetes. Therefore, CV may be on its way to becoming a promising therapeutic compound for treating Diabetes Mellitus (DM). Our outcomes expose formerly unexplored potential target human proteins, whose association with diabetic disorders might guide new potential treatments for DM.


Subject(s)
Cymenes , Hypoglycemic Agents , Metformin , Molecular Docking Simulation , Molecular Dynamics Simulation , Monoterpenes , Humans , Cymenes/pharmacology , Cymenes/chemistry , Metformin/pharmacology , Metformin/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Monoterpenes/pharmacology , Monoterpenes/chemistry , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Receptor, Insulin/metabolism , PPAR gamma/metabolism , PPAR gamma/chemistry , Protein Binding , Computer Simulation , Antigens, CD
15.
J Agric Food Chem ; 72(27): 15248-15255, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38940702

ABSTRACT

Egg white hydrolysates (EWH) and ovotransferrin-derived peptides have distinct beneficial effects on glucose metabolism. This research aims to investigate whether ovalbumin hydrolysates (OVAHs), without ovotransferrin can improve insulin signaling pathway in high-fat diet (HFD)-fed mice. Two types of ovalbumin hydrolysates were produced, either using thermoase (OVAT), or thermoase + pepsin (OVATP). Both OVAHs-supplemented groups exhibited lower body weight gain (P < 0.001) and enhanced oral glucose tolerance (P < 0.05) compared with HFD. Moreover, diet supplementation with either hydrolysate increased the insulin-stimulated activation of protein kinase B (AKT) and insulin receptor ß (IRß) (P < 0.0001) in skeletal muscle. In conclusion, OVAHs improved glucose tolerance and insulin-dependent signaling pathway in HFD-fed mice.


Subject(s)
Diet, High-Fat , Insulin , Mice, Inbred C57BL , Muscle, Skeletal , Ovalbumin , Protein Hydrolysates , Signal Transduction , Animals , Diet, High-Fat/adverse effects , Insulin/metabolism , Mice , Signal Transduction/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Male , Protein Hydrolysates/chemistry , Protein Hydrolysates/administration & dosage , Protein Hydrolysates/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Insulin Resistance , Receptor, Insulin/metabolism , Receptor, Insulin/genetics
16.
Sci Rep ; 14(1): 14780, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926439

ABSTRACT

Previously, we demonstrated the expression of visfatin in porcine reproductive tissues and its effect on pituitary endocrinology. The objective of this study was to examine the visfatin effect on the secretion of steroid (P4, E2) and prostaglandin (PGE2, PGF2α), the mRNA and protein abundance of steroidogenic markers (STAR, CYP11A1, HSD3B, CYP19A1), prostaglandin receptors (PTGER2, PTGFR), insulin receptor (INSR), and activity of kinases (MAPK/ERK1/2, AKT, AMPK) in the porcine corpus luteum. We noted that the visfatin effect strongly depends on the phase of the estrous cycle: on days 2-3 and 14-16 it reduced P4, while on days 10-12 it stimulated P4. Visfatin increased secretion of E2 on days 2-3, PGE2 on days 2-3 and 10-12, reduced PGF2α release on days 14-16, as well as stimulated the expression of steroidogenic markers on days 10-12 of the estrous cycle. Moreover, visfatin elevated PTGER mRNA expression and decreased its protein level, while we noted the opposite changes for PTGFR. Additionally, visfatin activated ERK1/2, AKT, and AMPK, while reduced INSR phosphorylation. Interestingly, after inhibition of INSR and signalling pathways visfatin action was abolished. These findings suggest a regulatory role of visfatin in the porcine corpus luteum.


Subject(s)
Corpus Luteum , Nicotinamide Phosphoribosyltransferase , Animals , Corpus Luteum/metabolism , Corpus Luteum/drug effects , Female , Swine , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Estrous Cycle/metabolism , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Progesterone/metabolism , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/genetics , Dinoprost/metabolism
17.
BMC Biol ; 22(1): 127, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816743

ABSTRACT

BACKGROUND: Optimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role. RESULTS: Should Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types. CONCLUSIONS: Grb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth.


Subject(s)
Fetal Development , GRB10 Adaptor Protein , Mice, Knockout , Receptor, IGF Type 1 , Receptor, Insulin , Animals , GRB10 Adaptor Protein/genetics , GRB10 Adaptor Protein/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Mice , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Fetal Development/genetics , Genomic Imprinting , Female , Male , Insulin-Like Peptides
18.
Neurobiol Learn Mem ; 212: 107938, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772444

ABSTRACT

Insulin is transported across the blood-brain barrier (BBB) endothelium to regulate aspects of metabolism and cognition. Brain insulin resistance often results from high-fat diet (HFD) consumption and is thought to contribute to spatial cognition deficits. To target BBB insulin function, we used Cre-LoxP genetic excision of the insulin receptor (InsR) from endothelial cells in adult male mice. We hypothesized that this excision would impair spatial cognition, and that high-fat diet consumption would exacerbate these effects. Excision of the endothelial InsR did not impair performance in two spatial cognition tasks, the Y-Maze and Morris Water Maze, in tests held both before and after 14 weeks of access to high-fat (or chow control) diet. The HFD increased body weight gain and induced glucose intolerance but did not impair spatial cognition. Endothelial InsR excision tended to increase body weight and reduce sensitivity to peripheral insulin, but these metabolic effects were not associated with impairments to spatial cognition and did not interact with HFD exposure. Instead, all mice showed intact spatial cognitive performance regardless of whether they had been fed chow or a HFD, and whether the InsR had been excised or not. Overall, the results indicate that loss of the endothelial InsR does not impact spatial cognition, which is in line with pharmacological evidence that other mechanisms at the BBB facilitate insulin transport and allow it to exert its pro-cognitive effects.


Subject(s)
Blood-Brain Barrier , Cognition , Diet, High-Fat , Receptor, Insulin , Animals , Receptor, Insulin/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Male , Mice , Cognition/physiology , Cognition/drug effects , Insulin Resistance/physiology , Endothelial Cells/metabolism , Maze Learning/physiology , Mice, Inbred C57BL
19.
Age Ageing ; 53(5)2024 05 01.
Article in English | MEDLINE | ID: mdl-38752921

ABSTRACT

OBJECTIVE: To investigate longitudinal associations between variations in the co-expression-based brain insulin receptor polygenic risk score and frailty, as well as change in frailty across follow-up. METHODS: This longitudinal study included 1605 participants from the Helsinki Birth Cohort Study. Biologically informed expression-based polygenic risk scores for the insulin receptor gene network, which measure genetic variation in the function of the insulin receptor, were calculated for the hippocampal (hePRS-IR) and the mesocorticolimbic (mePRS-IR) regions. Frailty was assessed in at baseline in 2001-2004, 2011-2013 and 2017-2018 by applying a deficit accumulation-based frailty index. Analyses were carried out by applying linear mixed models and logistical regression models adjusted for adult socioeconomic status, birthweight, smoking and their interactions with age. RESULTS: The FI levels of women were 1.19%-points (95% CI 0.12-2.26, P = 0.029) higher than in men. Both categorical and continuous hePRS-IR in women were associated with higher FI levels than in men at baseline (P < 0.05). In women with high hePRS-IR, the rate of change was steeper with increasing age compared to those with low or moderate hePRS-IR (P < 0.05). No associations were detected between mePRS-IR and frailty at baseline, nor between mePRS-IR and the increase in mean FI levels per year in either sex (P > 0.43). CONCLUSIONS: Higher variation in the function of the insulin receptor gene network in the hippocampus is associated with increasing frailty in women. This could potentially offer novel targets for future drug development aimed at frailty and ageing.


Subject(s)
Frailty , Gene Regulatory Networks , Receptor, Insulin , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Age Factors , Aging/genetics , Antigens, CD , Brain/metabolism , Finland , Frailty/genetics , Frailty/diagnosis , Geriatric Assessment , Hippocampus/metabolism , Longitudinal Studies , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Risk Factors , Sex Factors
20.
Mol Cell Endocrinol ; 591: 112269, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38763428

ABSTRACT

Polypeptide N-Acetylgalactosaminyl transferase 14 (GALNT14) plays important roles in cancer progression and chemotherapy response. Here, we show that GALNT14 is highly expressed in pancreatic ß cells and regulates ß cell function and growth. We found that the expression level of Ganlt14 was significantly decreased in the primary islets from three rodent type-2 diabetic models. Single-Cell sequencing defined that Galnt14 was mainly expressed in ß cells of mouse islets. Galnt14 knockout (G14KO) INS-1 cell line, constructed by using CRISPR/Cas9 technology were growth normal, but showed blunt shape, and increased basal insulin secretion. Combined proteomics and glycoproteomics demonstrated that G14KO altered cell-to-cell junctions, communication, and adhesion. Insulin receptor (IR) and IGF1-1R were indirectly confirmed for GALNT14 substrates, contributed to diminished IGF1-induced p-AKT levels and cell growth in G14KO cells. Overall, this study uncovers that GALNT14 is a novel modulator in regulating ß cells biology, providing a missing link of ß cells O-glycosylation to diabetes development.


Subject(s)
Cell Proliferation , Insulin-Secreting Cells , N-Acetylgalactosaminyltransferases , Polypeptide N-acetylgalactosaminyltransferase , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Animals , Insulin-Secreting Cells/metabolism , Mice , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Mice, Inbred C57BL , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Male , Cell Line , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , Rats , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Signal Transduction , Insulin/metabolism , Insulin Secretion/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL