Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.083
Filter
1.
Transl Psychiatry ; 14(1): 269, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956048

ABSTRACT

Addiction is a complex behavioral disorder characterized by compulsive drug-seeking and drug use despite harmful consequences. The prefrontal cortex (PFC) plays a crucial role in cocaine addiction, involving decision-making, impulse control, memory, and emotional regulation. The PFC interacts with the brain's reward system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc). The PFC also projects to the lateral habenula (LHb), a brain region critical for encoding negative reward and regulating the reward system. In the current study, we examined the role of PFC-LHb projections in regulating cocaine reward-related behaviors. We found that optogenetic stimulation of the PFC-LHb circuit during cocaine conditioning abolished cocaine preference without causing aversion. In addition, increased c-fos expression in LHb neurons was observed in animals that received optic stimulation during cocaine conditioning, supporting the circuit's involvement in cocaine preference regulation. Molecular analysis in animals that received optic stimulation revealed that cocaine-induced alterations in the expression of GluA1 subunit of AMPA receptor was normalized to saline levels in a region-specific manner. Moreover, GluA1 serine phosphorylation on S845 and S831 were differentially altered in LHb and VTA but not in the PFC. Together these findings highlight the critical role of the PFC-LHb circuit in controlling cocaine reward-related behaviors and shed light on the underlying mechanisms. Understanding this circuit's function may provide valuable insights into addiction and contribute to developing targeted treatments for substance use disorders.


Subject(s)
Cocaine , Habenula , Neurons , Optogenetics , Prefrontal Cortex , Receptors, AMPA , Reward , Animals , Prefrontal Cortex/metabolism , Cocaine/pharmacology , Male , Habenula/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Cocaine-Related Disorders/physiopathology , Cocaine-Related Disorders/metabolism , Neural Pathways , Rats , Proto-Oncogene Proteins c-fos/metabolism , Phosphorylation , Ventral Tegmental Area/metabolism , Behavior, Animal
2.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961250

ABSTRACT

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Subject(s)
Cerebellum , Receptors, Metabotropic Glutamate , Synapses , Animals , Cerebellum/metabolism , Cerebellum/physiology , Cerebellum/cytology , Synapses/physiology , Synapses/metabolism , Mice , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Purkinje Cells/metabolism , Purkinje Cells/physiology , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Interneurons/metabolism , Interneurons/physiology , Mice, Knockout , Mice, Inbred C57BL
3.
Mol Autism ; 15(1): 28, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877552

ABSTRACT

BACKGROUND: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.


Subject(s)
Disease Models, Animal , Long-Term Potentiation , Protein Serine-Threonine Kinases , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Spasms, Infantile , Animals , Male , Rats , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Epileptic Syndromes/genetics , Epileptic Syndromes/metabolism , Excitatory Postsynaptic Potentials , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Genetic Diseases, X-Linked/physiopathology , Hippocampus/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Synapses/metabolism
4.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891774

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Glutamic Acid , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Humans , Glutamic Acid/metabolism , Animals , Motor Neurons/metabolism , Motor Neurons/pathology , Aging/metabolism , Receptors, AMPA/metabolism , Endoplasmic Reticulum Stress , Mitochondria/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Astrocytes/metabolism , Reactive Oxygen Species/metabolism
5.
Phytomedicine ; 131: 155802, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852473

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a serious neurodegenerative disease and brings a serious burden to society and families. Due to lack of effective drugs for the treatment of AD, it's urgent to develop new and effective drug for the treatment of AD. PURPOSE: The study aimed to investigate the potential of Zexieyin formula (ZXYF), a Chinese medicine formula, for the treatment of AD and its potential mechanism of action. METHODS: We used chronic scopolamine (SCOP) induction mice model and APP/PS1 mice to reveal and confirm ZXYF for the treatment of AD with donepezil (DON) as a positive reference. The learning and memory function were detected by morris water maze test (MWM) and y-maze test. Moreover, western blot and immunofluorescence were used to detect the molecular mechanism of ZXYF for the alleviation of AD in hippocampus. Lastly, pharmacological technology was applied to evaluate AMPA receptor involved in the role of ZXYF in the treatment of AD. RESULTS: The results showed that ZXYF could improve memory and learning deficits both in two AD models including scopolamine (SCOP)-induced mice model and APP/PS1mice. Moreover, ZXYF or not DON increased expressions of BrdU/DCX and Ki67 positive cells in dentate gyrus (DG), up-regulated the levels of AMPA subunit type (GluA1) and PKA in hippocampus in SCOP-induced mice model, although ZXYF and DON activated CaMKII, CaMKII-phosphorylation, CREB, CREB-phosphorylation and PSD95 in hippocampus in SCOP-induced mice model. ZXYF also activated CaMKII, CaMKII-phosphorylation and GluA1 in HT22 cells. Furthermore, transient inhibiting AMPA receptor was capable of blocking the effects of ZXYF to treat AD in MWM and suppressing the number of BrdU/DCX positive cells increased by ZXYF in DG in SCOP-induced mice model, but had no effect on the alteration of Ki67 positive cells. CONCLUSION: ZXYF had the therapeutic effects on AD-treatment, which activated CaMKII to promote AMPA receptor (GluA1) and subsequently up-regulated PKA/CREB signaling to facilitate neurogenesis to achieve enhanced postsynaptic protein.


Subject(s)
Alzheimer Disease , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Disease Models, Animal , Drugs, Chinese Herbal , Hippocampus , Neurogenesis , Neuronal Plasticity , Receptors, AMPA , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Receptors, AMPA/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Neurogenesis/drug effects , Mice , Male , Neuronal Plasticity/drug effects , Scopolamine , Mice, Transgenic , Maze Learning/drug effects , Donepezil/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Memory/drug effects , Mice, Inbred C57BL
6.
Article in Russian | MEDLINE | ID: mdl-38884426

ABSTRACT

Depression is a leading cause of disability and reduced work capacity worldwide. The monoamine theory of the pathogenesis of depression has remained dominant for many decades, however, drugs developed on its basis have limited efficacy. Exploring alternative mechanisms underlying this pathology could illuminate new avenues for pharmacological intervention. Targeting glutamatergic pathways in the CNS, particularly through modulation of NMDA and AMPA receptors, demonstrates promising results. This review presents some existing drugs with glutamatergic activity and novel developments based on it to enhance the efficacy of pharmacotherapy for depressive disorders.


Subject(s)
Depressive Disorder , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, AMPA/metabolism , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Antidepressive Agents/therapeutic use , Animals
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853554

ABSTRACT

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Adiponectin , Dentate Gyrus , Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mice, Knockout , Neuronal Plasticity , Animals , Fragile X Syndrome/physiopathology , Fragile X Syndrome/drug therapy , Fragile X Syndrome/metabolism , Dentate Gyrus/metabolism , Dentate Gyrus/drug effects , Mice , Neuronal Plasticity/drug effects , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Adiponectin/metabolism , Long-Term Potentiation/drug effects , Male , Receptors, AMPA/metabolism
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230240, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853555

ABSTRACT

Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Gyrus Cinguli , Long-Term Potentiation , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Tupaiidae , Animals , Long-Term Potentiation/physiology , Gyrus Cinguli/physiology , Tupaiidae/physiology , Mice , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, AMPA/metabolism , Adenylyl Cyclases/metabolism , Glutamic Acid/metabolism , Male
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230220, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853553

ABSTRACT

This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Long-Term Potentiation , Receptors, AMPA , Long-Term Potentiation/physiology , Receptors, AMPA/metabolism , Animals , Synapses/physiology , Synapses/metabolism , Diffusion , Humans , Post-Synaptic Density/metabolism
10.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839340

ABSTRACT

A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.


Subject(s)
Receptors, AMPA , Synapses , Receptors, AMPA/metabolism , Receptors, AMPA/chemistry , Synapses/metabolism , Synapses/ultrastructure , Animals , Humans , Synaptic Transmission/physiology , Nanostructures/chemistry
11.
Elife ; 122024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941139

ABSTRACT

Homeostatic plasticity represents a set of mechanisms that are thought to recover some aspect of neural function. One such mechanism called AMPAergic scaling was thought to be a likely candidate to homeostatically control spiking activity. However, recent findings have forced us to reconsider this idea as several studies suggest AMPAergic scaling is not directly triggered by changes in spiking. Moreover, studies examining homeostatic perturbations in vivo have suggested that GABAergic synapses may be more critical in terms of spiking homeostasis. Here, we show results that GABAergic scaling can act to homeostatically control spiking levels. We found that perturbations which increased or decreased spiking in cortical cultures triggered multiplicative GABAergic upscaling and downscaling, respectively. In contrast, we found that changes in AMPA receptor (AMPAR) or GABAR transmission only influence GABAergic scaling through their indirect effect on spiking. We propose that GABAergic scaling represents a stronger candidate for spike rate homeostat than AMPAergic scaling.


Subject(s)
Action Potentials , Receptors, AMPA , Receptors, AMPA/metabolism , Animals , Action Potentials/physiology , Synapses/physiology , Synapses/metabolism , Neuronal Plasticity/physiology , GABAergic Neurons/physiology , GABAergic Neurons/metabolism , Synaptic Transmission/physiology , Cells, Cultured , gamma-Aminobutyric Acid/metabolism , Homeostasis
12.
Mol Brain ; 17(1): 35, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858726

ABSTRACT

The brain responds to experience through modulation of synaptic transmission, that is synaptic plasticity. An increase in the strength of synaptic transmission is manifested as long-term potentiation (LTP), while a decrease in the strength of synaptic transmission is expressed as long-term depression (LTD). Most of the studies of synaptic plasticity have been carried out by induction via electrophysiological stimulation. It is largely unknown in which behavioural tasks such synaptic plasticity occurs. Moreover, some stimuli can induce both LTP and LTD, thus making it difficult to separately study the different forms of synaptic plasticity. Two studies have shown that an aversive memory task - inhibitory avoidance learning and contextual fear conditioning - physiologically and selectively induce LTP and an LTP-like molecular change, respectively, in the hippocampus in vivo. Here, we show that a non-aversive behavioural task - exploration of new space - physiologically and selectively elicits a biochemical change in the hippocampus that is a hallmark of LTP. Specifically, we found that exploration of new space induces an increase in the phosphorylation of GluA1(Ser831), without affecting the phosphorylation of GluA1(Ser845), which are biomarkers of early-LTP and not NMDAR-mediated LTD. We also show that exploration of new space engenders the phosphorylation of the translational regulator S6K and the expression of Arc, which are features of electrophysiologically-induced late-LTP in the hippocampus. Therefore, our results show that exploration of new space is a novel non-aversive behavioural paradigm that elicits molecular changes in vivo that are analogous to those occurring during early- and late-LTP, but not during NMDAR-mediated LTD.


Subject(s)
Cytoskeletal Proteins , Hippocampus , Long-Term Potentiation , Nerve Tissue Proteins , Receptors, AMPA , Animals , Long-Term Potentiation/physiology , Phosphorylation , Hippocampus/metabolism , Hippocampus/physiology , Receptors, AMPA/metabolism , Male , Nerve Tissue Proteins/metabolism , Cytoskeletal Proteins/metabolism , Exploratory Behavior/physiology , Serine/metabolism
13.
Proc Natl Acad Sci U S A ; 121(26): e2322978121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900791

ABSTRACT

MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.


Subject(s)
Hippocampus , Synapses , Synaptic Transmission , Animals , Synapses/metabolism , Mice , Hippocampus/metabolism , Hippocampus/cytology , Synaptic Transmission/physiology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Mice, Knockout , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cells, Cultured
14.
Bioessays ; 46(7): e2400006, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38693811

ABSTRACT

Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.


Subject(s)
Long-Term Potentiation , Receptors, AMPA , Synapses , Receptors, AMPA/metabolism , Animals , Humans , Synapses/metabolism , Synaptic Transmission/physiology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology
15.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38780087

ABSTRACT

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Subject(s)
Dentate Gyrus , Rats, Wistar , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Sucrose , Animals , Male , Receptors, AMPA/metabolism , Receptors, AMPA/antagonists & inhibitors , Sucrose/administration & dosage , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Excitatory Amino Acid Antagonists/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Rats , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Memory/physiology , Memory/drug effects , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Self Administration , RNA, Messenger/metabolism , Discrimination Learning/drug effects , Discrimination Learning/physiology
16.
Biochem Biophys Res Commun ; 722: 150074, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38805785

ABSTRACT

Genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome enhances the extinction of contextual fear memory, which is attributed to its role in neuronal and synaptic dysregulation, concurrent with neurotransmitter function disturbances. This study aimed to determine whether NLRP3 plays a role in generalizing fear via the inflammatory axis. We established the NLRP3 KO mice model, followed by behavioral and biochemical analyses. The NLRP3 KO mice displayed impaired fear generalization, lower neuroinflammation levels, and dysregulated neurotransmitter function. Additionally, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not the inhibition of NMDA or 5-HT2C receptors, resulted in fear generalization in NLRP3 KO mice because TAT-GluA2 3Y, but not SB242084 and D-cycloserine, treated blocked NLRP3 deprivation effects on fear generalization. Thus, global knockout of NLRP3 is associated with aberrant fear generalization, possibly through AMPA receptor signaling.


Subject(s)
Fear , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, AMPA , Animals , Male , Mice , Fear/physiology , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Receptors, AMPA/metabolism , Receptors, AMPA/genetics
17.
ACS Chem Neurosci ; 15(11): 2334-2349, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38747411

ABSTRACT

Parkinson's disease (PD) is a significant health issue because it gradually damages the nervous system. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play a significant role in the development of PD. The current investigation employed hybrid benzodioxole-propanamide (BDZ-P) compounds to get information on AMPA receptors, analyze their biochemical and biophysical properties, and assess their neuroprotective effects. Examining the biophysical characteristics of all the subunits of the AMPA receptor offers insights into the impact of BDZ-P on the desensitization and deactivation rate. It demonstrates a partial improvement in the locomotor capacities in a mouse model of Parkinson's disease. In addition, the in vivo experiment assessed the locomotor activity by utilizing the open-field test. Our findings demonstrated that BDZ-P7 stands out with its remarkable potency, inhibiting the GluA2 subunit nearly 8-fold with an IC50 of 3.03 µM, GluA1/2 by 7.5-fold with an IC50 of 3.14 µM, GluA2/3 by nearly 7-fold with an IC50 of 3.19 µM, and GluA1 by 6.5-fold with an IC50 of 3.2 µM, significantly impacting the desensitization and deactivation rate of the AMPA receptor. BDZ-P7 showed an in vivo impact of partially reinstating locomotor abilities in a mouse model of PD. The results above suggest that the BDZ-P7 compounds show great promise as top contenders for the development of novel neuroprotective therapies.


Subject(s)
Neuroprotective Agents , Receptors, AMPA , Receptors, AMPA/metabolism , Receptors, AMPA/drug effects , Animals , Neuroprotective Agents/pharmacology , Mice , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Mice, Inbred C57BL , Male , Humans , Disease Models, Animal
18.
Neuroscience ; 549: 42-54, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38729599

ABSTRACT

Depression, affecting individuals worldwide, is a prevalent mental disease, with an increasing incidence. Numerous studies have been conducted on depression, yet its pathogenesis remains elusive. Recent advancements in research indicate that disturbances in synaptic transmission, synaptic plasticity, and reduced neurotrophic factor expression significantly contribute to depression's pathogenesis. In our study, we utilized adult male C57BL/6J mice. Lipopolysaccharide (LPS) can induce both chronic and acute depression-like symptoms in mice, a widely used model for studying depression associated with inflammation. N-acetylcysteine (NAC) exhibits anti-inflammatory and ameliorative effects on depressive symptoms. This study sought to determine whether NAC use could mitigate inflammatory depressive behavior through the enhancement of synaptic transmission, synaptic plasticity, and increasing levels of brain-derived neurotrophic factor (BDNF). In this study, we discovered that in mice modeled with depression-like symptoms, the expression levels of dendrites, BDNF, and miniature excitatory postsynaptic potential (mEPSC) in glutamatergic neurons, as well as the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPARs) GluA1 and GluA2 subunits, were significantly decreased. These findings suggest an impairment in the synaptic transmission of glutamatergic neurons. Following treatment with NAC, the previously mentioned levels improved, indicating an enhancement in both synaptic transmission and synaptic plasticity. Our results suggest that NAC exerts a protective effect on mouse models of inflammatory depression, potentially through the enhancement of synaptic transmission and plasticity, as well as the restoration of neurotrophic factor expression. These findings offer vital animal experimental evidence supporting NAC's role in mitigating inflammatory depressive behaviors.


Subject(s)
Acetylcysteine , Brain-Derived Neurotrophic Factor , Depression , Inflammation , Lipopolysaccharides , Mice, Inbred C57BL , Neuronal Plasticity , Animals , Male , Depression/drug therapy , Depression/etiology , Depression/metabolism , Depression/prevention & control , Acetylcysteine/pharmacology , Mice , Brain-Derived Neurotrophic Factor/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Neuronal Plasticity/drug effects , Receptors, AMPA/metabolism , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Synaptic Transmission/drug effects , Behavior, Animal/drug effects , Disease Models, Animal , Neurons/drug effects , Neurons/metabolism
19.
Cancer Lett ; 593: 216925, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718887

ABSTRACT

Alternative polyadenylation (APA), an important post-transcriptional regulatory mechanism, is aberrantly activated in cancer,but how APA functions in tumorigenesis remains elusive. We analyzed APA events in RNA-seq data in TCGA and reported 3'UTR alterations associated with esophageal squamous cell carcinoma (ESCC) patient prognosis and gene expression changes involving loss of tumor-suppressive miRNA binding sites. Moreover, we investigated the expression and function of cleavage and polyadenylation specific factor 3 (CPSF3), a key APA regulator in ESCC. By immunohistochemistry and qRT-PCR, we found that CPSF3 was highly expressed in ESCC tissues and associated with poor patient prognosis. Overexpression of CPSF3 enhanced, while knockdown of CPSF3 inhibited ESCC cell proliferation and migration in vitro and in vivo, as determined by colony formation, transwell assays and animal experiments. Iso-Seq and RNA-seq data analysis indicated that knockdown of CPSF3 favored use of the distal poly (A) site in the 3'UTR of Cornichon family AMPA receptor auxiliary protein 2 (CNIH2), resulting in a long-3'UTR CNIH2 isoform that produced less CNIH2 protein due to miR-125a-5p targeting and downregulating CNIH2 mRNA through a miR-125a-5p binding site in the long CNIH2 mRNA 3'UTR. Moreover, CPSF3-induced ESCC tumorigenicity was mediated by CNIH2. Taken together, CPSF3 promotes ESCC progression by upregulating CNIH2 expression through loss of miR-125a-5p-mediated CNIH2 repression through alternative splicing and polyadenylation of the CNIH2 mRNA 3'UTR.


Subject(s)
Cell Proliferation , Cleavage And Polyadenylation Specificity Factor , Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Polyadenylation , Animals , Female , Humans , Male , Mice , 3' Untranslated Regions , Cell Line, Tumor , Cell Movement , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
20.
Methods Cell Biol ; 187: 57-72, 2024.
Article in English | MEDLINE | ID: mdl-38705630

ABSTRACT

Correlative light and electron microscopy (CLEM) can provide valuable information about a biological sample by giving information on the specific localization of a molecule of interest within an ultrastructural context. In this work, we describe a simple CLEM method to obtain high-resolution images of neurotransmitter receptor distribution in synapses by electron microscopy (EM). We use hippocampal organotypic slices from a previously reported mouse model expressing a modified AMPA receptor (AMPAR) subunit that binds biotin at the surface (Getz et al., 2022). This tag can be recognized by StreptAvidin-Fluoronanogold™ conjugates (SA-FNG), which reach receptors at synapses (synaptic cleft is 50-100nm thick). By using pre-embedding labeling, we found that SA-FNG reliably bind synaptic receptors and penetrate around 10-15µm in depth in live tissue. However, the silver enhancement was only reaching the surface of the slices. We show that permeabilization with triton is highly effective at increasing the in depth-gold amplification and that the membrane integrity is well preserved. Finally, we also apply high-resolution electron tomography, thus providing important information about the 3D organization of surface AMPA receptors in synapses at the nanoscale.


Subject(s)
Hippocampus , Receptors, AMPA , Synapses , Animals , Mice , Hippocampus/metabolism , Hippocampus/cytology , Receptors, AMPA/metabolism , Synapses/metabolism , Synapses/ultrastructure , Membrane Proteins/metabolism , Gold/chemistry , Microscopy, Electron/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...