Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Int J Biol Sci ; 20(8): 2980-2993, 2024.
Article in English | MEDLINE | ID: mdl-38904017

ABSTRACT

Acute kidney injury (AKI) transformed to chronic kidney disease (CKD) is a critical clinical issue characterized by tubulointerstitial inflammation (TII) and fibrosis. However, the exact mechanism remains largely unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to obtain a high-resolution profile of T cells in AKI to CKD transition with a mice model of unilateral ischemia-reperfusion injury (uIRI). We found that T cells accumulated increasingly with the progression of AKI to CKD, which was categorized into 9 clusters. A notably increased proportion of CD8 T cells via self-proliferation occurred in the early stage of AKI was identified. Further study revealed that the CD8 T cells were recruited through CXCL16-CXCR6 pathway mediated by macrophages. Notably, CD8 T cells induced endothelial cell apoptosis via Fas ligand-Fas signaling. Consistently, increased CD8 T cell infiltration accompanied with peritubular capillaries (PTCs) rarefaction was observed in uIRI mice. More impressively, the loss of PTCs and renal fibrosis was remarkably ameliorated after the elimination of CD8 T cells. In summary, our study provides a novel insight into the role of CD8 T cells in the transition from AKI to CKD via induction of PTCs rarefaction, which could suggest a promising therapeutic target for AKI.


Subject(s)
Acute Kidney Injury , CD8-Positive T-Lymphocytes , Renal Insufficiency, Chronic , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Mice , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/immunology , Male , Mice, Inbred C57BL , Disease Models, Animal , Receptors, CXCR6/metabolism , Chemokine CXCL16/metabolism , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Apoptosis
2.
Gut Microbes ; 16(1): 2372881, 2024.
Article in English | MEDLINE | ID: mdl-38940400

ABSTRACT

Despite the observed decrease in liver fat associated with metabolic-associated fatty liver disease (MAFLD) in mice following fecal microbiota transplantation, the clinical effects and underlying mechanisms of washed microbiota transplantation (WMT), a refined method of fecal microbiota transplantation, for the treatment of MAFLD remain unclear. In this study, both patients and mice with MAFLD exhibit an altered gut microbiota composition. WMT increases the levels of beneficial bacteria, decreases the abundance of pathogenic bacteria, and reduces hepatic steatosis in MAFLD-affected patients and mice. Downregulation of the liver-homing chemokine receptor CXCR6 on ILC3s results in an atypical distribution of ILC3s in patients and mice with MAFLD, characterized by a significant reduction in ILC3s in the liver and an increase in ILC3s outside the liver. Moreover, disease severity is negatively correlated with the proportion of hepatic ILC3s. These hepatic ILC3s demonstrate a mitigating effect on hepatic steatosis through the release of IL-22. Mechanistically, WMT upregulates CXCR6 expression on ILC3s, thereby facilitating their migration to the liver of MAFLD mice via the CXCL16/CXCR6 axis, ultimately contributing to the amelioration of MAFLD. Overall, these findings highlight that WMT and targeting of liver-homing ILC3s could be promising strategies for the treatment of MAFLD.


Subject(s)
Chemokine CXCL16 , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Liver , Receptors, CXCR6 , Animals , Receptors, CXCR6/metabolism , Chemokine CXCL16/metabolism , Mice , Humans , Liver/metabolism , Liver/microbiology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Male , Immunity, Innate , Fatty Liver/therapy , Fatty Liver/metabolism , Fatty Liver/microbiology , Interleukin-22 , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/immunology , Interleukins/metabolism , Female
3.
Mol Med ; 30(1): 70, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789926

ABSTRACT

BACKGROUND: The development of pulmonary fibrosis involves a cascade of events, in which inflammation mediated by immune cells plays a pivotal role. Chemotherapeutic drugs have been shown to have dual effects on fibrosis, with bleomycin exacerbating pulmonary fibrosis and bortezomib alleviating tissue fibrotic processes. Understanding the intricate interplay between chemotherapeutic drugs, immune responses, and pulmonary fibrosis is likely to serve as the foundation for crafting tailored therapeutic strategies. METHODS: A model of bleomycin-induced pulmonary fibrosis was established, followed by treatment with bortezomib. Tissue samples were collected for analysis of immune cell subsets and functional assessment by flow cytometry and in vitro cell experiments. Additionally, multi-omics analysis was conducted to further elucidate the expression of chemokines and chemokine receptors, as well as the characteristics of cell populations. RESULTS: Here, we observed that the expression of CXCL16 and CXCR6 was elevated in the lung tissue of a pulmonary fibrosis model. In the context of pulmonary fibrosis or TGF-ß1 stimulation in vitro, macrophages exhibited an M2-polarized phenotype and secreted more CXCL16 than those of the control group. Moreover, flow cytometry revealed increased expression levels of CD69 and CXCR6 in pulmonary CD4 T cells during fibrosis progression. The administration of bortezomib alleviated bleomycin-induced pulmonary fibrosis, accompanied by reduced ratio of M2-polarized macrophages and decreased accumulation of CD4 T cells expressing CXCR6. CONCLUSIONS: Our findings provide insights into the key immune players involved in bleomycin-induced pulmonary fibrosis and offer preclinical evidence supporting the repurposing strategy and combination approaches to reduce lung fibrosis.


Subject(s)
Bleomycin , Bortezomib , CD4-Positive T-Lymphocytes , Chemokine CXCL16 , Pulmonary Fibrosis , Receptors, CXCR6 , Animals , Male , Mice , Antigens, CD , Antigens, Differentiation, T-Lymphocyte/metabolism , Bleomycin/adverse effects , Bortezomib/pharmacology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Chemokine CXCL16/metabolism , Chemotaxis/drug effects , Disease Models, Animal , Lectins, C-Type , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Receptors, CXCR6/metabolism
4.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815582

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Subject(s)
Cell Movement , Fibrosis , Kidney , Lymphocytes , Programmed Cell Death 1 Receptor , Receptors, CXCR6 , Receptors, Interleukin , Signal Transduction , Animals , Fibrosis/immunology , Mice , Receptors, CXCR6/metabolism , Receptors, CXCR6/immunology , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/immunology , Cell Movement/immunology , Humans , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/immunology , Mice, Inbred C57BL , Kidney Diseases/immunology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Immunity, Innate/immunology , Mice, Knockout , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/immunology , Intestines/pathology
5.
J Exp Clin Cancer Res ; 43(1): 134, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698468

ABSTRACT

BACKGROUND: Mucosal-associated invariant T (MAIT) cells have been reported to regulate tumor immunity. However, the immune characteristics of MAIT cells in non-small cell lung cancer (NSCLC) and their correlation with the treatment efficacy of immune checkpoint inhibitors (ICIs) remain unclear. PATIENTS AND METHODS: In this study, we performed single-cell RNA sequencing (scRNA-seq), flow cytometry, and multiplex immunofluorescence assays to determine the proportion and characteristics of CD8+MAIT cells in patients with metastatic NSCLC who did and did not respond to anti-PD-1 therapy. Survival analyses were employed to determine the effects of MAIT proportion and C-X-C chemokine receptor 6 (CXCR6) expression on the prognosis of patients with advanced NSCLC. RESULTS: The proportion of activated and proliferating CD8+MAIT cells were significantly higher in responders-derived peripheral blood mononuclear cells (PBMCs) and lung tissues before anti-PD-1 therapy, with enhanced expression of cytotoxicity-related genes including CCL4, KLRG1, PRF1, NCR3, NKG7, GZMB, and KLRK1. The responders' peripheral and tumor-infiltrating CD8+MAIT cells showed an upregulated CXCR6 expression. Similarly, CXCR6+CD8+MAIT cells from responders showed higher expression of cytotoxicity-related genes, such as CST7, GNLY, KLRG1, NKG7, and PRF1. Patients with ≥15.1% CD8+MAIT cells to CD8+T cells ratio and ≥35.9% CXCR6+CD8+MAIT cells to CD8+MAIT cells ratio in peripheral blood showed better progression-free survival (PFS) after immunotherapy. The role of CD8+MAIT cells in lung cancer immunotherapy was potentially mediated by classical/non-classical monocytes through the CXCL16-CXCR6 axis. CONCLUSION: CD8+MAIT cells are a potential predictive biomarker for patients with NSCLC responding to anti-PD-1 therapy. The correlation between CD8+MAIT cells and immunotherapy sensitivity may be ascribed to high CXCR6 expression.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Immunotherapy , Lung Neoplasms , Mucosal-Associated Invariant T Cells , Receptors, CXCR6 , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Receptors, CXCR6/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Male , Female , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Middle Aged , Aged , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism
6.
Nat Immunol ; 25(5): 802-819, 2024 May.
Article in English | MEDLINE | ID: mdl-38684922

ABSTRACT

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Subject(s)
Macrophages , Neoplasms , Sepsis , Humans , Sepsis/immunology , Macrophages/immunology , Female , Neoplasms/immunology , Neoplasms/therapy , Male , Receptors, CXCR6/metabolism , Animals , T-Lymphocytes/immunology , Receptors, CCR2/metabolism , Middle Aged , Mice , Aged , Chemokines/metabolism , Adult
7.
Int Immunopharmacol ; 132: 111972, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569429

ABSTRACT

The potential of cytotoxic CD4+ T cells and tissue resident memory T cells (Trm) in achieving adult leukemia remission have been highlighted [1,2]. We hypothesized that CXCR6 could serve as a marker for cytotoxic CD4+ Trm cells in the bone marrow (BM) of pediatric B-ALL patients. Flow cytometry (FCM) and published single cell RNA sequencing (scRNA-seq) datasets were employed to characterize CXCR6+CD4+ T cells in the BM and peripheral blood (PB) of pediatric B-ALL patients and healthy donors. FCM, scRNA-seq and co-culture were utilized to explore the cytotoxicity of CXCR6+CD4+ T cells in vitro based on in vitro induction of CXCR6+CD4+ T cells using tumor antigens and peripheral blood mononuclear cells (PBMCs). The ssGSEA based on the cell markers identified according to the in vivo scRNA-seq data, the TARGET-ALL-P2 datasets, and integrated machine learning algorithm were employed to figure out the key cells with prognostic values, followed by simulation of adoptive cell transfer therapy (ACT). Integrated machine learning identified the high-risk cells for disease free survival, and overall survival, while simulation of ACT therapy using CXCR6+CD4+T cells indicated that CXCR6+CD4+ T cells could remodel the bone marrow microenvironments towards anti-tumor. Based on the expression of genes involved in formation of resident memory T cells, CXCR6 is not a marker of resident memory CD4+T cells but defines therapeutic subtypes of CD4+ cytotoxic T cell lineage for pediatric B-ALL.


Subject(s)
Immunotherapy, Adoptive , Receptors, CXCR6 , Humans , Immunotherapy, Adoptive/methods , Child , Receptors, CXCR6/genetics , Receptors, CXCR6/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes, Cytotoxic/immunology , Male , Child, Preschool , Female , CD4-Positive T-Lymphocytes/immunology , Cell Lineage
8.
Int Immunopharmacol ; 132: 112015, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608478

ABSTRACT

CXC chemokine receptor 6 (CXCR6), a seven-transmembrane domain G-protein-coupled receptor, plays a pivotal regulatory role in inflammation and tissue damage through its interaction with CXC chemokine ligand 16 (CXCL16). This axis is implicated in the pathogenesis of various fibrotic diseases and correlates with clinical parameters that indicate disease severity, activity, and prognosis in organ fibrosis, including afflictions of the liver, kidney, lung, cardiovascular system, skin, and intestines. Soluble CXCL16 (sCXCL16) serves as a chemokine, facilitating the migration and recruitment of CXCR6-expressing cells, while membrane-bound CXCL16 (mCXCL16) functions as a transmembrane protein with adhesion properties, facilitating intercellular interactions by binding to CXCR6. The CXCR6/CXCL16 axis is established to regulate the cycle of damage and repair during chronic inflammation, either through modulating immune cell-mediated intercellular communication or by independently influencing fibroblast homing, proliferation, and activation, with each pathway potentially culminating in the onset and progression of fibrotic diseases. However, clinically exploiting the targeting of the CXCR6/CXCL16 axis requires further elucidation of the intricate chemokine interactions within fibrosis pathogenesis. This review explores the biology of CXCR6/CXCL16, its multifaceted effects contributing to fibrosis in various organs, and the prospective clinical implications of these insights.


Subject(s)
Chemokine CXCL16 , Fibrosis , Receptors, CXCR6 , Humans , Receptors, CXCR6/metabolism , Chemokine CXCL16/metabolism , Animals , Signal Transduction
9.
Nat Commun ; 14(1): 3928, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402742

ABSTRACT

Tissue-resident memory (TRM) CD8+ T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of TRM differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8+ T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote TRM differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues. Blimp1 was identified as the critical target of TCR re-stimulation that is necessary to establish this chemotactic switch and for TRM differentiation to efficiently occur. Collectively, our findings show that access to antigen presentation and strength of TCR-signaling required for Blimp1 expression establishes the chemotactic properties of effector CD8+ T cells to promote residency within non-lymphoid tissues.


Subject(s)
CD8-Positive T-Lymphocytes , Immunologic Memory , Receptors, Antigen, T-Cell , Skin , Virus Diseases , CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/metabolism , Skin/immunology , Skin/virology , Virus Diseases/immunology , Cell Movement , Female , Animals , Mice , Mice, Inbred C57BL , Interferon-gamma/metabolism , Positive Regulatory Domain I-Binding Factor 1/metabolism , Receptors, CXCR6/metabolism
10.
Hepatol Commun ; 7(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36972392

ABSTRACT

BACKGROUND: Acute liver failure (ALF) is characterized by rapid clinical deterioration and high mortality. Acetaminophen (APAP or paracetamol) overdose is a leading cause of ALF, resulting in hepatocellular necrosis with subsequent inflammation, inflicting further liver damage. Infiltrating myeloid cells are early drivers of liver inflammation. However, the role of the abundant population of liver-resident innate lymphocytes, which commonly express the chemokine receptor CXCR6, is incompletely understood in ALF. METHODS: We investigated the role of CXCR6-expressing innate lymphocytes using the model of acute APAP toxicity in mice deficient in CXCR6 (Cxcr6gfp/gfp). RESULTS: APAP-induced liver injury was strongly aggravated in Cxcr6gfp/gfp mice compared with wild-type counterparts. Immunophenotyping using flow cytometry revealed a reduction in liver CD4+T cells, natural killer (NK) cells, and most prominently, NKT cells, whereas CXCR6 was dispensable for CD8+ T-cell accumulation. CXCR6-deficient mice exhibited excessive neutrophil and inflammatory macrophage infiltration. Intravital microscopy revealed dense cellular clusters of neutrophils in necrotic liver tissue, with higher numbers of clustering neutrophils in Cxcr6gfp/gfp mice. Gene expression analysis linked hyperinflammation in CXCR6 deficiency to increased IL-17 signaling. Although reduced in overall numbers, CXCR6-deficient mice had a shift in NKT cell subsets with increased RORγt-expressing NKT17 cells as a likely source of IL-17. In patients with ALF, we found a prominent accumulation of IL-17-expressing cells. Accordingly, CXCR6-deficient mice lacking IL-17 (Cxcr6gfp/gfpx Il17-/-) had ameliorated liver damage and reduced inflammatory myeloid infiltrates. CONCLUSIONS: Our study identifies a crucial role of CXCR6-expressing liver innate lymphocytes as orchestrators in acute liver injury containing IL-17-mediated myeloid cell infiltration. Hence, strengthening the CXCR6-axis or downstream inhibition of IL-17 could yield novel therapeutics in ALF.


Subject(s)
Chemical and Drug Induced Liver Injury , Interleukin-17 , Receptors, CXCR6 , Animals , Mice , Acetaminophen/toxicity , Inflammation , Killer Cells, Natural , Receptors, CXCR6/metabolism , Chemical and Drug Induced Liver Injury/immunology , T-Lymphocytes
11.
Int Immunopharmacol ; 114: 109562, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36508914

ABSTRACT

CXC chemokine receptor6 (CXCR6)-based immunotherapy plays a significant role in autoimmune diseases, however, little is known about possible small compounds that inhibit pathogenic CXCR6+ T cells for treating multiple sclerosis (MS). Baicalein, a flavonoid isolated from Scutellarin baicalensis (Huang Qin), was shown to exert therapeutic effects on MS, but the underlying mechanisms are largely unknown. In the current study, we found that baicalein inhibited Th1 and Th17 differentiation in vitro. Oral administration of baicalein (25 mg/kg) significantly reduced the disease severity and the infiltration process, decreased the extent of demyelination in EAE, and selectively blocked IL-17A production and specific antibodies (IgG and IgG3) in MOG35-55-induced specific immune responses. In addition, the expression of CD4 cell effectors (CD44hiCD62Llow) and pathogenic Th17 cells was decreased by baicalein treatment. Furthermore, baicalein treatment largely decreased CXCR6+ CD4 and CD8 cells and prominently inhibited CXCR6+ Th17 cells in EAE. Taken together, the findings of this study suggest for the first time that baicalein may ameliorate EAE by suppressing pathogenetic CXCR6+ CD4 cells.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Chemokines, CXC/metabolism , Th1 Cells , Cell Differentiation , Immunoglobulin G/therapeutic use , Th17 Cells , Mice, Inbred C57BL , Receptors, CXCR6/metabolism
12.
J Cardiovasc Transl Res ; 16(2): 271-286, 2023 04.
Article in English | MEDLINE | ID: mdl-36018423

ABSTRACT

Aortic stiffness is an independent risk factor for aortic diseases such as aortic dissection which commonly occurred with aging and hypertension. Chemokine receptor CXCR6 is critically involved in vascular inflammation and remodeling. Here, we investigated whether and how CXCR6 plays a role in aortic stiffness caused by pressure overload. CXCR6-/- and WT mice underwent transverse aortic constriction (TAC) surgery for 8 weeks. CXCR6 deficiency significantly improved TAC-induced aortic remodeling and endothelial dysfunction by decreasing CD11c+ macrophage infiltration, suppressing VCAM-1 and ICAM-1, reducing collagen deposition, and downregulating MMP12 and osteopontin in the aorta. Consistently, blocking the CXCL16/CXCR6 axis also reduced aortic accumulation of CD11c+ macrophages and vascular stiffness but without affecting the release of TNF-α and IL-6 from the aorta. Furthermore, pressure overload inhibited aortic release of exosomes, which could be reversed by suppressing CXCR6 or CXCL16. Inhibition of exosome release by GW4869 significantly aggravated TAC-induced aortic calcification and stiffness. By exosomal microRNA microarray analysis, we found that microRNA-29b was significantly reduced in aortic endothelial cells (AECs) receiving TAC. Intriguingly, blocking the CXCL16/CXCR6 axis restored the expression of miR-29b in AECs. Finally, overexpression of miR-29b significantly increased eNOS and reduced MMPs and collagen in AECs. By contrast, antagonizing miR-29b in vivo further enhanced TAC-induced expressions of MMP12 and osteopontin, aggravated aortic fibrosis, calcification, and stiffness. Our study demonstrated a key role of the CXCL16/CXCR6 axis in macrophage recruitment and macrophage-mediated aortic stiffness under pressure overload through an exosome-miRNAs-dependent manner.


Subject(s)
Exosomes , MicroRNAs , Vascular Stiffness , Animals , Mice , Receptors, CXCR6/metabolism , Osteopontin/metabolism , Exosomes/metabolism , Endothelial Cells/metabolism , Matrix Metalloproteinase 12/metabolism , Macrophages/metabolism , Collagen/metabolism , Chemokine CXCL16/metabolism , MicroRNAs/metabolism , Mice, Inbred C57BL
13.
Front Immunol ; 14: 1331287, 2023.
Article in English | MEDLINE | ID: mdl-38299146

ABSTRACT

Introduction: Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes. Methods: Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues. Results: Our data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression. Discussion: The dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment.


Subject(s)
Glioblastoma , Humans , Receptors, CXCR6/metabolism , T-Lymphocytes/metabolism , Chemokine CXCL16/metabolism , Microglia/metabolism , Tumor Microenvironment
14.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232370

ABSTRACT

Platelets express the transmembrane chemokine SR-PSOX/CXCL16, proteolytic cleavage of which generates the sCXCL16 soluble-(s) chemokine. The sCXCL16 engages CXCR6 on platelets to synergistically propagate degranulation, aggregation and thrombotic response. Currently, we have investigated the pro-thrombotic and prognostic association of platelet CXCL16−CXCR6 axis in CAD-(n = 240; CCS n = 62; ACS n = 178) patients. Platelet surface-associated-CXCL16 and CXCR6 surface expression ascertained by flow cytometry correlated significantly with platelet activation markers (CD62P denoting degranulation and PAC-1 binding denoting α2bß3-integrin activation). Higher platelet CXCL16 surface association (1st quartile vs. 2nd−4th quartiles) corresponded to significantly elevated collagen-induced platelet aggregation assessed by whole blood impedance aggregometry. Platelet-CXCL16 and CXCR6 expression did not alter with dyslipidemia, triglyceride, total cholesterol, or LDL levels, but higher (>median) plasma HDL levels corresponded with decreased platelet-CXCL16 and CXCR6. Although platelet-CXCL16 and CXCR6 expression did not change significantly with or correlate with troponin I levels, they corresponded with higher Creatine Kinase-(CK) activity and progressively deteriorating left ventricular ejection fraction (LVEF) at admission. Elevated-(4th quartile) platelet-CXCL16 (p = 0.023) and CXCR6 (p = 0.030) measured at admission were significantly associated with a worse prognosis. However, after Cox-PH regression analysis, only platelet-CXCL16 was ascertained as an independent predictor for all-cause of mortality. Therefore, the platelet CXCL16−CXCR6 axis may influence thrombotic propensity and prognosis in CAD patients.


Subject(s)
Blood Platelets , Chemokines, CXC , Coronary Artery Disease , Blood Platelets/metabolism , Chemokine CXCL16 , Chemokines, CXC/metabolism , Cholesterol , Creatine Kinase , Humans , Integrins , Receptors, CXCR6/metabolism , Receptors, Scavenger , Receptors, Virus , Stroke Volume , Triglycerides , Troponin I , Ventricular Function, Left
15.
Genome Med ; 14(1): 108, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153630

ABSTRACT

BACKGROUND: Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TRM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice. The signals involved in T cell-microglia interactions are unknown. METHODS: Here, we examined immune cells within the murine WNV-recovered forebrain using single-cell RNA sequencing to identify putative ligand-receptor pairs involved in intercellular communication between T cells and microglia. Clustering and differential gene analyses were followed by protein validation and genetic and antibody-based approaches utilizing an established murine model of WNV recovery in which microglia and complement promote ongoing hippocampal synaptic loss. RESULTS: Profiling of host transcriptome immune cells at 25 days post-infection in mice revealed a shift in forebrain homeostatic microglia to activated subpopulations with transcriptional signatures that have previously been observed in studies of neurodegenerative diseases. Importantly, CXCL16/CXCR6, a chemokine signaling pathway involved in TRM cell biology, was identified as critically regulating CXCR6 expressing CD8+ TRM cell numbers within the WNV-recovered forebrain. We demonstrate that CXCL16 is highly expressed by all myeloid cells, and its unique receptor, CXCR6, is highly expressed on all CD8+ T cells. Using genetic and pharmacological approaches, we demonstrate that CXCL16/CXCR6 not only is required for the maintenance of WNV-specific CD8 TRM cells in the post-infectious CNS, but also contributes to their expression of TRM cell markers. Moreover, CXCR6+CD8+ T cells are required for glial activation and ongoing synapse elimination. CONCLUSIONS: We provide a comprehensive assessment of the role of CXCL16/CXCR6 as an interaction link between microglia and CD8+ T cells that maintains forebrain TRM cells, microglial and astrocyte activation, and ongoing synapse elimination in virally recovered animals. We also show that therapeutic targeting of CXCL16 in mice during recovery may reduce CNS CD8+ TRM cells.


Subject(s)
CD8-Positive T-Lymphocytes , Transcriptome , Animals , CD8-Positive T-Lymphocytes/metabolism , Central Nervous System/metabolism , Chemokine CXCL16/genetics , Chemokine CXCL16/metabolism , Chemokines/genetics , Chemokines/metabolism , Gene Expression Profiling , Ligands , Mice , RNA/metabolism , Receptors, CXCR6/genetics , Receptors, CXCR6/metabolism , Synapses/metabolism
16.
Genome Med ; 14(1): 16, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35172892

ABSTRACT

BACKGROUND: Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. METHODS: We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. RESULTS: We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. CONCLUSIONS: We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/virology , COVID-19/genetics , COVID-19/pathology , Monocytes/virology , Single-Cell Analysis/methods , COVID-19/immunology , Computational Biology/methods , GPI-Linked Proteins/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Megakaryocyte Progenitor Cells/immunology , Megakaryocyte Progenitor Cells/virology , Monocytes/metabolism , Quantitative Trait Loci , Receptors, CCR1/immunology , Receptors, CCR1/metabolism , Receptors, CXCR6/immunology , Receptors, CXCR6/metabolism , Receptors, IgG/metabolism , Sequence Analysis, RNA , Severity of Illness Index
17.
Front Immunol ; 13: 1095915, 2022.
Article in English | MEDLINE | ID: mdl-36605219

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of liver malignancy with a high incidence and mortality rate. Previous in vitro and in vivo studies have confirmed that liver sinusoidal endothelial cells (LSEC) secrete CXCL16, which acts as a messenger to increase the hepatic accumulation of CXCR6+ natural killer T (NKT) cells and exert potent antitumor effects. However, evidence for this process in humans is lacking and its clinical significance is still unclear. In this study, by dissecting the human HCC single-cell RNA-seq data, we verified this process through cellphoneDB. NKT cells in patients with high expression of CXCL16 exhibited a higher activation state and produced more interferon-γ (IFN-γ) compared with those with low expression. We next investigated the signaling pathways between activated (CD69 high) and unactivated NKT cells (CD69 low) using NKT cell-developmental trajectories and functional enrichment analyses. In vivo experiments, we found that farnesoid X receptor agonist (obeticholic acid) combined with the takeda G protein coupled receptor 5 antagonist (5ß-cholanic acid 3) exhibited significant tumor suppressive effects in the orthotopic liver tumor model and this result may be related to the CXCL16/CXCR6 axis. In conclusion, our study provides the basis and potential strategies for HCC immunotherapy based on NKT cells.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Endothelial Cells/metabolism , Receptors, CXCR6/metabolism , Mice, Inbred C57BL , Chemokine CXCL16
18.
Cells ; 10(12)2021 12 03.
Article in English | MEDLINE | ID: mdl-34943917

ABSTRACT

Adipocytes interact with adipose tissue macrophages (ATMs) that exist as a form of M2 macrophage in healthy adipose tissue and are polarized into M1 macrophages upon cellular stress. ATMs regulate adipose tissue inflammation by secreting cytokines, adipokines, and chemokines. CXC-motif receptor 6 (CXCR6) is the chemokine receptor and interactions with its specific ligand CXC-motif chemokine ligand 16 (CXCL16) modulate the migratory capacities of human adipose-derived mesenchymal stem cells (hADMSCs). CXCR6 is highly expressed on differentiated adipocytes that are non-migratory cells. To evaluate the underlying mechanisms of CXCR6 in adipocytes, THP-1 human monocytes that can be polarized into M1 or M2 macrophages were co-cultured with adipocytes. As results, expression levels of the M1 polarization-inducing factor were decreased, while those of the M2 polarization-inducing factor were significantly increased in differentiated adipocytes in a co-cultured environment with additional CXCL16 treatment. After CXCL16 treatment, the anti-inflammatory factors, including p38 MAPK ad ERK1/2, were upregulated, while the pro-inflammatory pathway mediated by Akt and NF-κB was downregulated in adipocytes in a co-cultured environment. These results revealed that the CXCL16/CXCR6 axis in adipocytes regulates M1 or M2 polarization and displays an immunosuppressive effect by modulating pro-inflammatory or anti-inflammatory pathways. Our results may provide an insight into a potential target as a regulator of the immune response via the CXCL16/CXCR6 axis in adipocytes.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Cell Polarity , Chemokine CXCL16/metabolism , Macrophages/cytology , Mesenchymal Stem Cells/cytology , Receptors, CXCR6/metabolism , Biomarkers/metabolism , Cells, Cultured , Humans , Inflammation/pathology , Interleukin-10/metabolism , Reproducibility of Results , Signal Transduction , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
19.
Cell ; 184(26): 6281-6298.e23, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34875227

ABSTRACT

While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.


Subject(s)
Autoimmunity , Intestines/immunology , Stem Cells/metabolism , Th17 Cells/immunology , Animals , Cell Movement , Clone Cells , Encephalomyelitis, Autoimmune, Experimental/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Homeostasis , Humans , Interferon-gamma/metabolism , Interleukin-17/metabolism , Mice, Inbred C57BL , Organ Specificity , RNA/metabolism , RNA-Seq , Receptors, Antigen, T-Cell/metabolism , Receptors, CXCR6/metabolism , Receptors, Interleukin/metabolism , Reproducibility of Results , Signaling Lymphocytic Activation Molecule Family/metabolism , Single-Cell Analysis , Spleen/metabolism
20.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34607898

ABSTRACT

PURPOSE: Resident memory CD8 T cells, owing to their ability to reside and persist in peripheral tissues, impart adaptive sentinel activity and amplify local immune response, and have beneficial implications for tumor surveillance and control. The current study aimed to clarify the less known chemotactic mechanisms that govern the localization, retention, and residency of memory CD8 T cells in the ovarian tumor microenvironment. EXPERIMENTAL DESIGN: RNA and protein expressions of chemokine receptors in CD8+ resident memory T cells in human ovarian tumor-infiltrating CD8+ T cells and their association with survival were analyzed. The role of CXCR6 on antitumor T cells was investigated using prophylactic vaccine models in murine ovarian cancer. RESULTS: Chemokine receptor profiling of CD8+CD103+ resident memory tumor-infiltrating lymphocytes in patients with ovarian cancer revealed high expression of CXCR6. Analysis of The Cancer Genome Atlas (TCGA) (ovarian cancer database revealed CXCR6 to be associated with CD103 and increased patient survival. Functional studies in mouse models of ovarian cancer revealed that CXCR6 is a marker of resident, but not circulatory, tumor-specific memory CD8+ T cells. CXCR6-deficient tumor-specific CD8+ T cells showed reduced retention in tumor tissues, leading to diminished resident memory responses and poor control of ovarian cancer. CONCLUSIONS: CXCR6, by promoting retention in tumor tissues, serves a critical role in resident memory T cell-mediated immunosurveillance and control of ovarian cancer. Future studies warrant exploiting CXCR6 to promote resident memory responses in cancers.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Monitoring, Immunologic/methods , Ovarian Neoplasms/genetics , Receptors, CXCR6/metabolism , Animals , Female , Humans , Mice , Mice, Knockout , Ovarian Neoplasms/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...