Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 737
1.
FASEB J ; 38(11): e23697, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38842874

Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.


Antimicrobial Cationic Peptides , Cathelicidins , Diabetic Retinopathy , Extracellular Traps , Mice, Inbred C57BL , Neutrophils , Receptors, Formyl Peptide , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Extracellular Traps/metabolism , Animals , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Humans , Neutrophils/metabolism , Mice , Antimicrobial Cationic Peptides/metabolism , Male , Receptors, Lipoxin/metabolism , Receptors, Lipoxin/genetics , Diabetes Mellitus, Experimental/metabolism , Signal Transduction , Reactive Oxygen Species/metabolism , Female , Middle Aged
2.
Commun Biol ; 7(1): 514, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710749

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Acute Lung Injury , Annexin A1 , Epithelial Cells , Extracellular Vesicles , Receptors, Formyl Peptide , Receptors, Lipoxin , Signal Transduction , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Annexin A1/metabolism , Annexin A1/genetics , Animals , Mice , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Epithelial Cells/metabolism , Bronchi/metabolism , Bronchi/cytology , Male , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Cytokines/metabolism , THP-1 Cells
3.
Biomed Pharmacother ; 175: 116670, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692065

Neutrophils are heterogeneous and plastic, with the ability to polarize from antitumour to protumour phenotype and modulate tumour microenvironment components. While some advances have been made, the neutrophil-targeting therapy remains underexplored. Activation of formyl peptide receptors (FPRs) by formylated peptides is needed for local control of infection through the recruitment of activated neutrophils while the potential contribution of antitumour activity remains underexplored. Here, we demonstrate that neutrophils can be harnessed to suppress tumour growth through the action of the formyl peptide (FP) on the formyl peptide receptor (FPR). Mechanistically, FP efficiently recruits neutrophils to produce reactive oxygen species production (ROS), resulting in the direct killing of tumours. Antitumour functions disappeared when neutrophils were depleted by anti-Ly6G antibodies. Interestingly, extensive T-cell activation was observed in mouse tumours treated with FP, showing the potential to alter the immune suppressed tumour microenvironment (TME) and further sensitize mice to anti-PD1 therapy. Transcriptomic and flow cytometry analyses revealed the mechanisms of FP-sensitized anti-PD1 therapy, mainly including stimulated neutrophils and an altered immune-suppressed tumour microenvironment. Collectively, these data establish FP as an effective combination partner for sensitizing anti-PD1 therapy by stimulating tumour-infiltrated neutrophils.


Immunotherapy , Mice, Inbred C57BL , Neutrophils , Receptors, Formyl Peptide , T-Lymphocytes , Tumor Microenvironment , Animals , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Mice , Immunotherapy/methods , Receptors, Formyl Peptide/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Humans , Female , Neutrophil Activation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Lymphocyte Activation/drug effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology
4.
Molecules ; 29(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38792095

This review article assembles key recent advances in the synthetic chemistry and biology of specialised pro-resolving mediators (SPMs). The major medicinal chemistry developments in the design, synthesis and biological evaluation of synthetic SPM analogues of lipoxins and resolvins have been discussed. These include variations in the top and bottom chains, as well as changes to the triene core, of lipoxins, all changes intended to enhance the metabolic stability whilst retaining or improving biological activity. Similar chemical modifications of resolvins are also discussed. The biological evaluation of these synthetic SPMs is also described in some detail. Original investigations into the biological activity of endogenous SPMs led to the pairing of these ligands with the FPR2/LX receptor, and these results have been challenged in more recent work, leading to conflicting results and views, which are again discussed.


Lipoxins , Humans , Lipoxins/metabolism , Lipoxins/chemistry , Animals , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/chemical synthesis , Receptors, Formyl Peptide/metabolism
5.
Life Sci ; 344: 122583, 2024 May 01.
Article En | MEDLINE | ID: mdl-38508232

AIMS: Formyl peptide receptor 1 (FPR1), from a G-protein coupled receptor family, was previously well-characterized in immune cells. But the function of FPR1 in osteogenesis and fracture healing was rarely reported. This study, using the FPR1 knockout (KO) mouse, is one of the first studies that try to investigate FPR1 function to osteogenic differentiation of bone marrow-derived stem cells (BMSCs) in vitro and bone fracture healing in vivo. MATERIALS AND METHODS: Primary BMSCs were isolated from both FPR1 KO and wild type (WT) mice. Cloned mouse BMSCs (D1 cells) were used to examine role of FoxO1 in FPR1 regulation of osteogenesis. A closed, transverse fracture at the femoral midshaft was created to compare bone healing between KO and WT mice. Biomechanical and structural properties of femur were compared between healthy WT and KO mice. KEY FINDINGS: FPR1 expression increased significantly during osteogenesis of both primary and cloned BMSCs. Compared to BMSCs from FPR1 KO mice, WT BMSCs displayed considerably higher levels of osteogenic markers as well as mineralization. Osteogenesis by D1 cells was inhibited by either an FPR1 antagonist cFLFLF or a specific inhibitor of FoxO1, AS1842856. In addition, the femur from WT mice had better biomechanical properties than FPR1 KO mice. Furthermore, bone healing in WT mice was remarkably improved compared to FPR1 KO mice analyzed by X-ray and micro-CT. SIGNIFICANCE: These findings indicated that FPR1 played a vital role in osteogenic differentiation and regenerative capacity of fractured bone, probably through the activation of FoxO1 related signaling pathways.


Osteogenesis , Receptors, Formyl Peptide , Mice , Animals , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Mice, Knockout , Fracture Healing , Femur/metabolism , Cell Differentiation , Bone Marrow Cells
6.
Pharmacol Res ; 202: 107125, 2024 Apr.
Article En | MEDLINE | ID: mdl-38438091

G protein-coupled receptors (GPCRs) are currently the most widely focused drug targets in the clinic, exerting their biological functions by binding to chemicals and activating a series of intracellular signaling pathways. Formyl-peptide receptor 1 (FPR1) has a typical seven-transmembrane structure of GPCRs and can be stimulated by a large number of endogenous or exogenous ligands with different chemical properties, the first of which was identified as formyl-methionine-leucyl-phenylalanine (fMLF). Through receptor-ligand interactions, FPR1 is involved in inflammatory response, immune cell recruitment, and cellular signaling regulation in key cell types, including neutrophils, neural stem cells (NSCs), and microglia. This review outlines the critical roles of FPR1 in a variety of heart and brain diseases, including myocardial infarction (MI), ischemia/reperfusion (I/R) injury, neurodegenerative diseases, and neurological tumors, with particular emphasis on the milestones of FPR1 agonists and antagonists. Therefore, an in-depth study of FPR1 contributes to the research of innovative biomarkers, therapeutic targets for heart and brain diseases, and clinical applications.


Brain Diseases , Receptors, Formyl Peptide , Humans , N-Formylmethionine Leucyl-Phenylalanine/metabolism , Receptors, Formyl Peptide/metabolism , Brain/metabolism
7.
Cell Signal ; 119: 111146, 2024 Jul.
Article En | MEDLINE | ID: mdl-38499232

Intracerebral hemorrhage (ICH) is associated with secondary neuroinflammation, leading to severe central nervous system damage. Exosomes derived from human adipose-derived mesenchymal stem cells (hADSCs-Exo) have shown potential therapeutic effects in regulating inflammatory responses in ICH. This study aims to investigate the role of hADSCs-Exo in ICH and its underlying mechanism involving miRNA-mediated regulation of formyl peptide receptor 1 (FPR1). Flow cytometry was used to identify hADSCs and extract exosomes. Transmission electron microscopy and Western blot were performed to confirm the characteristics of the exosomes. In vitro experiments were conducted to explore the uptake of hADSCs-Exo by microglia cells and their impact on inflammatory responses. In vivo, an ICH mouse model was established, and the therapeutic effects of hADSCs-Exo were evaluated through neurological function scoring, histological staining, and immunofluorescence. Bioinformatics tools and experimental validation were employed to identify miRNAs targeting FPR1. hADSCs-Exo were efficiently taken up by microglia cells and exhibited anti-inflammatory effects by suppressing the release of inflammatory factors and promoting M1 to M2 transition. In the ICH mouse model, hADSCs-Exo significantly improved neurological function, reduced hemorrhage volume, decreased neuronal apoptosis, and regulated microglia polarization. miR-342-3p was identified as a potential regulator of FPR1 involved in the neuroprotective effects of hADSCs-Exo in ICH. hADSCs-Exo alleviate neuroinflammation in ICH through miR-342-3p-dependent targeting of FPR1, providing a new therapeutic strategy for ICH.


Cerebral Hemorrhage , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Microglia , Neuroinflammatory Diseases , Animals , Microglia/metabolism , Microglia/pathology , Mice , Humans , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , Neuroinflammatory Diseases/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , Receptors, Formyl Peptide/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Inflammation/metabolism , Inflammation/pathology
8.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article En | MEDLINE | ID: mdl-38542130

Systemic Sclerosis (SSc) is a heterogeneous autoimmune disease characterized by widespread vasculopathy, the presence of autoantibodies and the progressive fibrosis of skin and visceral organs. There are still many questions about its pathogenesis, particularly related to the complex regulation of the fibrotic process, and to the factors that trigger its onset. Our recent studies supported a key role of N-formyl peptide receptors (FPRs) and their crosstalk with uPAR in the fibrotic phase of the disease. Here, we found that dermal fibroblasts acquire a proliferative phenotype after the activation of FPRs and their interaction with uPAR, leading to both Rac1 and ERK activation, c-Myc phosphorylation and Cyclin D1 upregulation which drive cell cycle progression. The comparison between normal and SSc fibroblasts reveals that SSc fibroblasts exhibit a higher proliferative rate than healthy control, suggesting that an altered fibroblast proliferation could contribute to the initiation and progression of the fibrotic process. Finally, a synthetic compound targeting the FPRs/uPAR interaction significantly inhibits SSc fibroblast proliferation, paving the way for the development of new targeted therapies in fibrotic diseases.


Receptors, Formyl Peptide , Scleroderma, Systemic , Humans , Receptors, Formyl Peptide/metabolism , Scleroderma, Systemic/pathology , Fibrosis , Fibroblasts/metabolism , Autoantibodies/metabolism , Skin/metabolism , Cells, Cultured
9.
Curr Med Sci ; 44(1): 187-194, 2024 Feb.
Article En | MEDLINE | ID: mdl-38300426

OBJECTIVE: Premature rupture of membranes (PROM) is a common pregnancy disorder that is closely associated with structural weakening of fetal membranes. Studies have found that formyl peptide receptor 1 (FPR1) activates inflammatory pathways and amniotic epithelialmesenchymal transition (EMT), stimulates collagen degradation, and leads to membrane weakening and membrane rupture. The purpose of this study was to investigate the anti-inflammatory and EMT inhibitory effects of FPR1 antagonist (BOC-MLF) to provide a basis for clinical prevention of PROM. METHODS: The relationship between PROM, FPR1, and EMT was analyzed in human fetal membrane tissue and plasma samples using Western blotting, PCR, Masson staining, and ELISA assays. Lipopolysaccharide (LPS) was used to establish a fetal membrane inflammation model in pregnant rats, and BOC-MLF was used to treat the LPS rat model. We detected interleukin (IL)-6 in blood from the rat hearts to determine whether the inflammatory model was successful and whether the anti-inflammatory treatment was effective. We used electron microscopy to analyze the structure and collagen expression of rat fetal membrane. RESULTS: Western blotting, PCR and Masson staining indicated that the expression of FPR1 was significantly increased, the expression of collagen was decreased, and EMT appeared in PROM. The rat model indicated that LPS caused the collapse of fetal membrane epithelial cells, increased intercellular gaps, and decreased collagen. BOC-MLF promoted an increase in fetal membrane collagen, inhibited EMT, and reduced the weakening of fetal membranes. CONCLUSION: The expression of FPR1 in the fetal membrane of PROM was significantly increased, and EMT of the amniotic membrane was obvious. BOC-MLF can treat inflammation and inhibit amniotic EMT.


Amnion , Lipopolysaccharides , Pregnancy , Female , Humans , Animals , Rats , Amnion/metabolism , Lipopolysaccharides/pharmacology , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Collagen/metabolism , Anti-Inflammatory Agents , Epithelial-Mesenchymal Transition
10.
Biochem Pharmacol ; 220: 115995, 2024 02.
Article En | MEDLINE | ID: mdl-38151076

Neutrophils express several G protein-coupled receptors (GPCRs) connected to intracellular Gαi or Gαq containing G proteins for down-stream signaling. To dampen GPCR mediated inflammatory processes, several inhibitors targeting the receptors and/or their down-stream signals, have been developed. Potent and selective inhibitors for Gαq containing G proteins are available, but potent and specific inhibitors of Gαi containing G proteins are lacking. Recently, Larixol, a compound extracted from the root of Euphorbia formosana, was shown to abolish human neutrophil functions induced by N-formyl-methionyl-leucyl-phenylalanine (fMLF), an agonist recognized by formyl peptide receptor 1 (FPR1) which couple to Gαi containing G proteins. The inhibitory effect was suggested to be due to interference with/inhibition of signals transmitted by ßγ complexes of the Gαi containing G proteins coupled to FPR1. In this study, we applied Larixol, obtained from two different commercial sources, to determine the receptor- and G protein- selectivity of this compound in human neutrophils. However, our data show that Larixol not only lacks inhibitory effect on neutrophil responses mediated through FPR1, but also on responses mediated through FPR2, a Gαi coupled GPCR closely related to FPR1. Furthermore, Larixol did not display any features as a selective inhibitor of neutrophil responses mediated through the Gαq coupled GPCRs for platelet activating factor and ATP. Hence, our results imply that the inhibitory effects described for the root extract of Euphorbia formosana are not mediated by Larixol and that the search for a selective inhibitor of G protein dependent signals generated by Gαi coupled neutrophil GPCRs must continue.


Neutrophils , Receptors, Formyl Peptide , Humans , Receptors, Formyl Peptide/metabolism , Signal Transduction , GTP-Binding Proteins/metabolism
11.
Cells ; 12(21)2023 11 03.
Article En | MEDLINE | ID: mdl-37947648

Microglial cells have been demonstrated to be significant resident immune cells that maintain homeostasis under physiological conditions. However, prolonged or excessive microglial activation leads to disturbances in the resolution of inflammation (RoI). Formyl peptide receptor 2 (FPR2) is a crucial player in the RoI, interacting with various ligands to induce distinct conformational changes and, consequently, diverse biological effects. Due to the poor pharmacokinetic properties of endogenous FPR2 ligands, the aim of our study was to evaluate the pro-resolving effects of a new ureidopropanamide agonist, compound AMS21, in hippocampal organotypic cultures (OHCs) stimulated with lipopolysaccharide (LPS). Moreover, to assess whether AMS21 exerts its action via FPR2 specifically located on microglial cells, we conducted a set of experiments in OHCs depleted of microglial cells using clodronate. We demonstrated that the protective and anti-inflammatory activity of AMS21 manifested as decreased levels of lactate dehydrogenase (LDH), nitric oxide (NO), and proinflammatory cytokines IL-1ß and IL-6 release evoked by LPS in OHCs. Moreover, in LPS-stimulated OHCs, AMS21 treatment downregulated NLRP3 inflammasome-related factors (CASP1, NLRP3, PYCARD) and this effect was mediated through FPR2 because it was blocked by the FPR2 antagonist WRW4 pre-treatment. Importantly this beneficial effect of AMS21 was only observed in the presence of microglial FPR2, and absent in OHCs depleted with microglial cells using clodronate. Our results strongly suggest that the compound AMS21 exerts, at nanomolar doses, protective and anti-inflammatory properties and an FPR2 receptor located specifically on microglial cells mediates the anti-inflammatory response of AMS21. Therefore, microglial FPR2 represents a promising target for the enhancement of RoI.


Inflammasomes , Microglia , Humans , Inflammasomes/metabolism , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Formyl Peptide/metabolism , Lipopolysaccharides/pharmacology , Clodronic Acid/pharmacology , Clodronic Acid/therapeutic use , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Hippocampus/metabolism
12.
Pharmacol Res ; 197: 106982, 2023 Nov.
Article En | MEDLINE | ID: mdl-37925045

In the aftermath of tissue injury or infection, an efficient resolution mechanism is crucial to allow tissue healing and preserve appropriate organ functioning. Pro-resolving bioactive lipids prevent uncontrolled inflammation and its consequences. Among these mediators, lipoxins were the first described and their pro-resolving actions have been mainly described in immune cells. They exert their actions mostly through formyl-peptide receptor 2 (ALX/FPR2 receptor), a G-protein-coupled receptor whose biological function is tremendously complex, primarily due to its capacity to mediate variable cellular responses. Moreover, lipoxins can also interact with alternative receptors like the cytoplasmic aryl hydrocarbon receptor, the cysteinyl-leukotrienes receptors or GPR32, triggering different intracellular signaling pathways. The available information about this complex response mediated by lipoxins is addressed in this review, going over the different mechanisms used by these molecules to stop the inflammatory reaction and avoid the development of dysregulated and chronic pathologies.


Lipoxins , Humans , Lipoxins/metabolism , Receptors, Formyl Peptide/metabolism , Signal Transduction , Inflammation , Receptors, Lipoxin/metabolism
13.
Eur J Med Chem ; 261: 115854, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37839346

Formyl peptide receptor-1 (FPR1) is a G protein-coupled chemoattractant receptor that plays a crucial role in the trafficking of leukocytes into the sites of bacterial infection and inflammation. Recently, FPR1 was shown to be expressed in different types of tumor cells and could play a significant role in tumor growth and invasiveness. Starting from the previously reported FPR1 antagonist 4, we have designed a new series of 4H-chromen-2-one derivatives that exhibited a substantial increase in FPR1 antagonist potency. Docking studies identified the key interactions for antagonist activity. The most potent compounds in this series (24a and 25b) were selected to study the effects of the pharmacological blockade of FPR1 in NCl-N87 and AGS gastric cancer cells. Both compounds potently inhibited cell growth through a combined effect on cell proliferation and apoptosis and reduced cell migration, while inducing an increase in angiogenesis, thus suggesting that FPR1 could play a dual role as oncogene and onco-suppressor.


Isoflavones , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Receptors, Formyl Peptide/metabolism , Cell Proliferation
14.
Genome Biol Evol ; 15(10)2023 10 06.
Article En | MEDLINE | ID: mdl-37776517

The detection of invasive pathogens is critical for host immune defense. Cell surface receptors play a key role in the recognition of diverse microbe-associated molecules, triggering leukocyte recruitment, phagocytosis, release of antimicrobial compounds, and cytokine production. The intense evolutionary forces acting on innate immune receptor genes have contributed to their rapid diversification across plants and animals. However, the functional consequences of immune receptor divergence are often unclear. Formyl peptide receptors (FPRs) comprise a family of animal G protein-coupled receptors which are activated in response to a variety of ligands including formylated bacterial peptides, pathogen virulence factors, and host-derived antimicrobial peptides. FPR activation in turn promotes inflammatory signaling and leukocyte migration to sites of infection. Here we investigate patterns of gene loss, diversification, and ligand recognition among FPRs in primates and carnivores. We find that FPR1, which plays a critical role in innate immune defense in humans, has been lost in New World primates. Amino acid variation in FPR1 and FPR2 among primates and carnivores is consistent with a history of repeated positive selection acting on extracellular domains involved in ligand recognition. To assess the consequences of FPR divergence on bacterial ligand interactions, we measured binding between primate FPRs and the FPR agonist Staphylococcus aureus enterotoxin B, as well as S. aureus FLIPr-like, an FPR inhibitor. We found that few rapidly evolving sites in primate FPRs are sufficient to modulate recognition of bacterial proteins, demonstrating how natural selection may serve to tune FPR activation in response to diverse microbial ligands.


Receptors, Formyl Peptide , Staphylococcus aureus , Humans , Animals , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Amino Acid Sequence , Ligands , Staphylococcus aureus/genetics , Bacteria/genetics , Bacteria/metabolism , Receptors, Immunologic , Primates/metabolism
15.
World J Gastroenterol ; 29(24): 3793-3806, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37426322

BACKGROUND: Formyl peptide receptor 2 (Fpr2) is an important receptor in host resistance to bacterial infections. In previous studies, we found that the liver of Fpr2-/- mice is the most severely damaged target organ in bloodstream infections, although the reason for this is unclear. AIM: To investigate the role of Fpr2 in liver homeostasis and host resistance to bacterial infections. METHODS: Transcriptome sequencing was performed on the livers of Fpr2-/- and wild-type (WT) mice. Differentially expressed genes (DEGs) were identified in the Fpr2-/- and WT mice, and the biological functions of DEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) en-richment analysis. Quantitative real time-polymerase chain reaction (qRT-PCR) and western blot (WB) analyses were used to further validate the expression levels of differential genes. Cell counting kit-8 assay was employed to investigate cell survival. The cell cycle detection kit was used to measure the distribution of cell cycles. The Luminex assay was used to analyze cytokine levels in the liver. The serum biochemical indices and the number of neutrophils in the liver were measured, and hepatic histopathological analysis was performed. RESULTS: Compared with the WT group, 445 DEGs, including 325 upregulated genes and 120 downregulated genes, were identified in the liver of Fpr2-/- mice. The enrichment analysis using GO and KEGG showed that these DEGs were mainly related to cell cycle. The qRT-PCR analysis confirmed that several key genes (CycA, CycB1, Cdc20, Cdc25c, and Cdk1) involved in the cell cycle had significant changes. The WB analysis confirmed a decrease in the expression of CDK1 protein. WRW4 (an antagonist of Fpr2) could inhibit the proliferation of HepG2 cells in a concentration dependent manner, with an increase in the number of cells in the G0/G1 phase, and a decrease in the number of cells in the S phase. Serum alanine aminotransferase levels increased in Fpr2-/- mice. The Luminex assay measurements showed that interleukin (IL)-10 and chemokine (C-X-C motif) ligand (CXCL)-1 levels were significantly reduced in the liver of Fpr2-/- mice. There was no difference in the number of neutrophils, serum C-reactive protein levels, and liver pathology between WT and Fpr2-/- mice. CONCLUSION: Fpr2 participates in the regulation of cell cycle and cell proliferation, and affects the expression of IL-10 and CXCL-1, thus playing an important protective role in maintaining liver homeostasis.


Receptors, Formyl Peptide , Transcriptome , Animals , Mice , Cell Cycle , Cell Cycle Proteins/metabolism , Liver/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism
16.
J Phys Chem B ; 127(29): 6479-6486, 2023 07 27.
Article En | MEDLINE | ID: mdl-37428488

Chronic inflammation contributes to several diseases, but its resolution is driven by specialized pro-resolving mediators (SPM) such as resolvin D1 (RvD1) and its epimer aspirin-triggered resolvin D1 (AT-RvD1), both biosynthesized from ω-3 fatty docosahexaenoic acid (DHA). RvD1 and AT-RvD1 have anti-inflammatory and pro-resolution potentials, and their effects could be mediated by formyl peptide receptor type 2 receptor ALX/FPR2, a G-protein-coupled receptor (GPCR). In this work, we performed 44 µs of molecular dynamics simulations with two complexes: FPR2@AT-RvD1 and FPR2@RvD1. Our results show the following: (i) in the AT-RvD1 simulations, the ALX/FPR2 receptor remained in the active state in 62% of the frames, while in the RVD1 simulations, the receptor remained in the active state in 74% of the frames; (ii) two residues, R201 and R205, of ALX/FPR2 appear, establishing interactions with both resolvins in all simulations (22 in total); (iii) RvD1 hydrogen bonds with R201 and R205 presented higher frequency than AT-RvD1; and (iv) residues R201 and R205 are the two receptor hotspots, demonstrated by the binding free calculations. Such results show that the ALX/FPR2 receptor remained in the active state for longer in the FPR2@RvD1 simulations than in the FPR2@AT-RvD1 simulations.


Molecular Dynamics Simulation , Receptors, Formyl Peptide , Humans , Receptors, Formyl Peptide/metabolism , Stereoisomerism , Inflammation/metabolism , Aspirin , Receptors, Lipoxin/physiology
17.
Metabolism ; 146: 155661, 2023 09.
Article En | MEDLINE | ID: mdl-37454871

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide; however, the underlying mechanisms remain poorly understood. FAM3D is a member of the FAM3 family; however, its role in hepatic glycolipid metabolism remains unknown. Serum FAM3D levels are positively correlated with fasting blood glucose levels in patients with diabetes. Hepatocytes express and secrete FAM3D, and its expression is increased in steatotic human and mouse livers. Hepatic FAM3D overexpression ameliorated hyperglycemia and steatosis in obese mice, whereas FAM3D-deficient mice exhibited exaggerated hyperglycemia and steatosis after high-fat diet (HFD)-feeding. In cultured hepatocytes, FAM3D overexpression or recombinant FAM3D protein (rFAM3D) treatment reduced gluconeogenesis and lipid deposition, which were blocked by anti-FAM3D antibodies or inhibition of its receptor, formyl peptide receptor 1 (FPR1). FPR1 overexpression suppressed gluconeogenesis and reduced lipid deposition in wild hepatocytes but not in FAM3D-deficient hepatocytes. The addition of rFAM3D restored FPR1's inhibitory effects on gluconeogenesis and lipid deposition in FAM3D-deficient hepatocytes. Hepatic FPR1 overexpression ameliorated hyperglycemia and steatosis in obese mice. RNA sequencing and DNA pull-down revealed that the FAM3D-FPR1 axis upregulated the expression of heterogeneous nuclear ribonucleoprotein U (hnRNP U), which recruits the glucocorticoid receptor (GR) to the promoter region of the short-chain acyl-CoA dehydrogenase (SCAD) gene, promoting its transcription to enhance lipid oxidation. Moreover, FAM3D-FPR1 axis also activates calmodulin-Akt pathway to suppress gluconeogenesis in hepatocytes. In conclusion, hepatocyte-secreted FAM3D activated the FPR1-hnRNP U-GR-SCAD pathway to enhance lipid oxidation in hepatocytes. Under obesity conditions, increased hepatic FAM3D expression is a compensatory mechanism against dysregulated glucose and lipid metabolism.


Hyperglycemia , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Butyryl-CoA Dehydrogenase/metabolism , Diet, High-Fat , Hepatocytes/metabolism , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , Hyperglycemia/metabolism , Lipid Metabolism , Lipids , Liver/metabolism , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Glucocorticoid/metabolism
18.
Cytokine ; 169: 156298, 2023 09.
Article En | MEDLINE | ID: mdl-37454543

N-formyl peptide receptors (FPRs) are seven-transmembrane, G protein-coupled receptors with a wide distribution in immune and non-immune cells, recognizing N-formyl peptides from bacterial and mitochondrial origin and several endogenous signals. Three FPRs have been identified in humans: FPR1, FPR2, and FPR3. Most FPR ligands can activate a pro-inflammatory response, while a limited group of FPR agonists can elicit anti-inflammatory and homeostatic responses. Annexin A1 (AnxA1), a glucocorticoid-induced protein, its N-terminal peptide Ac2-26, and lipoxin A4 (LXA4), a lipoxygenase-derived eicosanoid mediator, exert significant immunomodulatory effects by interacting with FPR2 and/or FPR1. The ability of FPRs to recognize both ligands with pro-inflammatory or inflammation-resolving properties places them in a crucial position in the balance between activation against harmful events and maintaince of tissue integrity. A new field of investigation focused on the role of FPRs in the setting of heart injury. FPRs are expressed on cardiac macrophages, which are the predominant immune cells in the myocardium and play a key role in heart diseases. Several endogenous (AnxA1, LXA4) and synthetic compounds (compound 43, BMS-986235) reduced infarct size and promoted the resolution of inflammation via the activation of FPR2 on cardiac macrophages. Further studies should evaluate FPR2 role in other cardiovascular disorders.


Cardiovascular Diseases , Humans , Cardiovascular Diseases/drug therapy , Receptors, Formyl Peptide/agonists , Receptors, Formyl Peptide/metabolism , Ligands , Peptides/chemistry , Inflammation/metabolism
19.
Am J Pathol ; 193(11): 1817-1832, 2023 11.
Article En | MEDLINE | ID: mdl-37423551

Annexin A1 (AnxA1) is the primary mediator of the anti-inflammatory actions of glucocorticoids. AnxA1 functions as a pro-resolving mediator in cultured rat conjunctival goblet cells to ensure tissue homeostasis through stimulation of intracellular [Ca2+] ([Ca2+]i) and mucin secretion. AnxA1 has several N-terminal peptides with anti-inflammatory properties of their own, including Ac2-26, Ac2-12, and Ac9-25. The increase in [Ca2+]i caused by AnxA1 and its N-terminal peptides in goblet cells was measured to determine the formyl peptide receptors used by the compounds and the action of the peptides on histamine stimulation. Changes in [Ca2+]i were determined by using a fluorescent Ca2+ indicator. AnxA1 and its peptides each activated formyl peptide receptors in goblet cells. AnxA1 and Ac2-26 at 10-12 mol/L and Ac2-12 at 10-9 mol/L inhibited the histamine-stimulated increase in [Ca2+]i, as did resolvin D1 and lipoxin A4 at 10-12 mol/L, whereas Ac9-25 did not. AnxA1 and Ac2-26 counter-regulated the H1 receptor through the p42/p44 mitogen-activated protein kinase/extracellular regulated kinase 1/2, ß-adrenergic receptor kinase, and protein kinase C pathways, whereas Ac2-12 counter-regulated only through ß-adrenergic receptor kinase. In conclusion, current data show that the N-terminal peptides Ac2-26 and Ac2-12, but not Ac9-25, share multiple functions with the full-length AnxA1 in goblet cells, including inhibition of histamine-stimulated increase in [Ca2+]i and counter-regulation of the H1 receptor. These actions suggest a potential pharmaceutical application of the AnxA1 N-terminal peptides Ac2-26 and Ac2-12 in homeostasis and ocular inflammatory diseases.


Annexin A1 , Rats , Animals , Annexin A1/pharmacology , Annexin A1/chemistry , Annexin A1/metabolism , Goblet Cells/metabolism , Receptors, Formyl Peptide/metabolism , Histamine/pharmacology , Peptides/pharmacology , Anti-Inflammatory Agents/pharmacology , beta-Adrenergic Receptor Kinases/metabolism
20.
Int Immunopharmacol ; 118: 110052, 2023 May.
Article En | MEDLINE | ID: mdl-37003185

Formyl peptide receptor 2 (FPR2) and its mouse counterpart Fpr2 are the members of the G protein-coupled receptor (GPCR) family. FPR2 is the only member of the FPRs that interacts with ligands from different sources. FPR2 is expressed in myeloid cells as well as epithelial cells, endothelial cells, neurons, and hepatocytes. During the past years, some unusual properties of FPR2 have attracted intense attention because FPR2 appears to possess dual functions by activating or inhibiting intracellular signal pathways based on the nature, concentration of the ligands, and the temporal and spatial settings of the microenvironment in vivo, the cell types it interacts with. Therefore, FPR2 controls an abundant array of developmental and homeostatic signaling cascades, in addition to its "classical" capacity to mediate the migration of hematopoietic and non-hematopoietic cells including malignant cells. In this review, we summarize recent development in FPR2 research, particularly in its role in diseases, therefore helping to establish FPR2 as a potential target for therapeutic intervention.


Endothelial Cells , Receptors, Formyl Peptide , Mice , Animals , Receptors, Formyl Peptide/metabolism , Endothelial Cells/metabolism , Signal Transduction , Receptors, Lipoxin/metabolism
...