Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.676
Filter
1.
Front Immunol ; 15: 1387591, 2024.
Article in English | MEDLINE | ID: mdl-38953026

ABSTRACT

Background and objectives: Antiglycine receptor (anti-GlyR) antibody mediates multiple immune-related diseases. This study aimed to summarize the clinical features to enhance our understanding of anti-GlyR antibody-related disease. Methods: By collecting clinical information from admitted patients positive for glycine receptor (GlyR) antibody, the clinical characteristics of a new patient positive for GlyR antibody were reported in this study. To obtain additional information regarding anti-GlyR antibody-linked illness, clinical data and findings on both newly reported instances in this study and previously published cases were merged and analyzed. Results: A new case of anti-GlyR antibody-related progressive encephalomyelitis with rigidity and myoclonus (PERM) was identified in this study. A 20-year-old man with only positive cerebrospinal fluid anti-GlyR antibody had a good prognosis with first-line immunotherapy. The literature review indicated that the common clinical manifestations of anti-GlyR antibody-related disease included PERM or stiff-person syndrome (SPS) (n = 179, 50.1%), epileptic seizure (n = 94, 26.3%), and other neurological disorders (n = 84, 24.5%). Other neurological issues included demyelination, inflammation, cerebellar ataxia and movement disorders, encephalitis, acute psychosis, cognitive impairment or dementia, celiac disease, Parkinson's disease, neuropathic pain and allodynia, steroid-responsive deafness, hemiballism/tics, laryngeal dystonia, and generalized weakness included respiratory muscles. The group of PERM/SPS exhibited a better response to immunotherapy than others. Conclusions: The findings suggest the presence of multiple clinical phenotypes in anti-GlyR antibody-related disease. Common clinical phenotypes include PERM, SPS, epileptic seizure, and paraneoplastic disease. Patients with RERM/SPS respond well to immunotherapy.


Subject(s)
Autoantibodies , Encephalomyelitis , Muscle Rigidity , Receptors, Glycine , Humans , Male , Receptors, Glycine/immunology , Autoantibodies/immunology , Autoantibodies/blood , Young Adult , Encephalomyelitis/immunology , Encephalomyelitis/diagnosis , Muscle Rigidity/immunology , Muscle Rigidity/etiology , Muscle Rigidity/diagnosis , Myoclonus/immunology , Myoclonus/diagnosis , Stiff-Person Syndrome/immunology , Stiff-Person Syndrome/diagnosis , Stiff-Person Syndrome/therapy , Adult
2.
Cell Mol Life Sci ; 81(1): 268, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884814

ABSTRACT

It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.


Subject(s)
Action Potentials , Glycine , Neurons , Nucleus Accumbens , Receptors, G-Protein-Coupled , Animals , Glycine/pharmacology , Glycine/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/cytology , Neurons/metabolism , Neurons/drug effects , Receptors, G-Protein-Coupled/metabolism , Male , Action Potentials/drug effects , Mice , Mice, Inbred C57BL , Receptors, Glycine/metabolism , Patch-Clamp Techniques , Phosphorylation/drug effects , Medium Spiny Neurons
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 720-724, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818557

ABSTRACT

OBJECTIVE: To explore the clinical and genetic characteristics of three children with Hyperekplexia. METHODS: Three children who were diagnosed with Hyperekplexia at the Third Affiliated Hospital of Zhengzhou University between June 2018 and March 2020 were selected as the study subjects. Clinical data of the three children were collected. All children were subjected to whole exome sequencing. Pathogenicity of candidate variants were verified by Sanger sequencing and bioinformatic analysis. RESULTS: The three children were all males, and had presented exaggerated startle reflexes and generalized stiffness in response to unexpected auditory or tactile stimulation, or had frequent traumatic falls following exaggerated startle. All children had shown positive nose-tapping reflex, though EEG and cranial MRI exams were all negative. Whole exome sequencing revealed that two children had harbored homozygous variants of the GLRB gene, of which the c.1017_c.1018insAG (p.G340Rfs*14) was unreported previously. The third child had harbored compound heterozygous variants of the GLRA1 gene, among which the c.1262T>A (p.IIe421Asn) variant showed an unreported autosomal recessive inheritance. All children had responded well to clonazepam treatment. CONCLUSION: Patients with Hyperekplexia have typical clinical manifestations. Early clinical identification and genetic analysis can facilitate their diagnosis.


Subject(s)
Exome Sequencing , Hyperekplexia , Receptors, Glycine , Humans , Male , Receptors, Glycine/genetics , Child , Hyperekplexia/genetics , Hyperekplexia/physiopathology , Mutation , Child, Preschool , Receptors, GABA-A/genetics , Genetic Testing , Homozygote
4.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723884

ABSTRACT

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Ethanol , Mice, Transgenic , Nucleus Accumbens , Receptors, Glycine , Reward , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alzheimer Disease/metabolism , Receptors, Glycine/metabolism , Ethanol/administration & dosage , Ethanol/pharmacology , Mice , Male , Neurons/metabolism , Mice, Inbred C57BL , Alcohol Drinking/metabolism
5.
J Phys Chem B ; 128(20): 4996-5007, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38747451

ABSTRACT

Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.


Subject(s)
Cholesterol , Molecular Dynamics Simulation , Receptors, Glycine , Receptors, Glycine/chemistry , Receptors, Glycine/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Animals , Allosteric Site , Zebrafish
6.
JAMA Neurol ; 81(7): 771-772, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38557729

ABSTRACT

This case report describes a 54-year-old woman with naming deficits, comprehension impairment, and memory loss. Initial physical and neurological examination results were unremarkable.


Subject(s)
Aphasia, Primary Progressive , Autoantibodies , Receptors, Glycine , Humans , Autoantibodies/immunology , Aphasia, Primary Progressive/immunology , Receptors, Glycine/immunology , Male , Female , Middle Aged , Aged
7.
Life Sci ; 348: 122673, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38679193

ABSTRACT

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Subject(s)
Ethanol , Gene Knock-In Techniques , Receptors, Glycine , Animals , Ethanol/pharmacology , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Mice , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Mice, Transgenic , Receptors, GABA-A
8.
Sci Adv ; 10(15): eadl5952, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38598639

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.


Subject(s)
Receptors, Glycine , Receptors, N-Methyl-D-Aspartate , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione , Cryoelectron Microscopy , Glycine/metabolism , Neurotransmitter Agents , Mammals/metabolism
9.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38553047

ABSTRACT

Glycinergic neurons regulate nociceptive and pruriceptive signaling in the spinal cord, but the identity and role of the glycine-regulated neurons are not fully known. Herein, we have characterized spinal glycine receptor alpha 3 (Glra3) subunit-expressing neurons in Glra3-Cre female and male mice. Glra3-Cre(+) neurons express Glra3, are located mainly in laminae III-VI, and respond to glycine. Chemogenetic activation of spinal Glra3-Cre(+) neurons induced biting/licking, stomping, and guarding behaviors, indicative of both a nociceptive and pruriceptive role for this population. Chemogenetic inhibition did not affect mechanical or thermal responses but reduced behaviors evoked by compound 48/80 and chloroquine, revealing a pruriceptive role for these neurons. Spinal cells activated by compound 48/80 or chloroquine express Glra3, further supporting the phenotype. Retrograde tracing revealed that spinal Glra3-Cre(+) neurons receive input from afferents associated with pain and itch, and dorsal root stimulation validated the monosynaptic input. In conclusion, these results show that spinal Glra3(+) neurons contribute to acute communication of compound 48/80- and chloroquine-induced itch in hairy skin.


Subject(s)
Pruritus , Receptors, Glycine , Spinal Cord , Animals , Pruritus/chemically induced , Pruritus/metabolism , Mice , Receptors, Glycine/metabolism , Male , Female , Spinal Cord/metabolism , Spinal Cord/drug effects , Chloroquine/pharmacology , Mice, Transgenic , Skin/innervation , Mice, Inbred C57BL , p-Methoxy-N-methylphenethylamine/pharmacology , Neurons/metabolism , Neurons/drug effects , Neurons/physiology
10.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38431110

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Subject(s)
Lignans , Polycyclic Compounds , Schisandra , Receptors, Glycine , Lignans/pharmacology , Pain , Calcium Channels, N-Type , Analgesics/pharmacology , Analgesics/therapeutic use , Sodium Channels , Cyclooctanes
11.
Sci Adv ; 10(5): eadj3808, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306424

ABSTRACT

G protein-coupled receptor 39 (GPR39) senses the change of extracellular divalent zinc ion and signals through multiple G proteins to a broad spectrum of downstream effectors. Here, we found that GPR39 was prevalent at inhibitory synapses of spinal cord somatostatin-positive (SOM+) interneurons, a mechanosensitive subpopulation that is critical for the conveyance of mechanical pain. GPR39 complexed specifically with inhibitory glycine receptors (GlyRs) and helped maintain glycinergic transmission in a manner independent of G protein signalings. Targeted knockdown of GPR39 in SOM+ interneurons reduced the glycinergic inhibition and facilitated the excitatory output from SOM+ interneurons to spinoparabrachial neurons that engaged superspinal neural circuits encoding both the sensory discriminative and affective motivational domains of pain experience. Our data showed that pharmacological activation of GPR39 or augmenting GPR39 interaction with GlyRs at the spinal level effectively alleviated the sensory and affective pain induced by complete Freund's adjuvant and implicated GPR39 as a promising therapeutic target for the treatment of inflammatory mechanical pain.


Subject(s)
Pain , Receptors, G-Protein-Coupled , Humans , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Glycine/metabolism , Signal Transduction , Spinal Cord/metabolism
12.
Neurol Neuroimmunol Neuroinflamm ; 11(2): e200197, 2024 03.
Article in English | MEDLINE | ID: mdl-38170953

ABSTRACT

BACKGROUND AND OBJECTIVES: To describe a case of glycine receptor (GlyR) antibody-positive stiff person syndrome (SPS) treated with autologous hematopoietic stem cell transplant (aHSCT). METHODS: This was a multicenter collaboration for the treatment of a single patient who underwent aHSCT as part of a clinical trial (NCT00716066). To objectively assess the response to transplantation, several clinical outcome measures were evaluated pretransplant and up to 18 months post-transplant, including modified Rankin Score (mRS), stiffness index, Hauser Ambulation Score (HAS), hypersensitivity index, timed 25-foot walk, and Montreal Cognitive Assessment. RESULTS: After transplant, the patient achieved sustained clinical improvement evidenced across various clinical scales, including mRS, stiffness index, HAS, and 25-foot walk time. DISCUSSION: aHSCT represents a promising treatment option for SPS, including for GlyR-positive patients. In addition, this case represents the need to validate and standardize best clinical outcome measures for patients with SPS. CLASSIFICATION OF EVIDENCE: Class IV; this is a single observational study without controls.


Subject(s)
Hematopoietic Stem Cell Transplantation , Stiff-Person Syndrome , Humans , Receptors, Glycine , Stiff-Person Syndrome/therapy , Transplantation, Autologous , Multicenter Studies as Topic , Clinical Trials as Topic
13.
Neurol Neuroimmunol Neuroinflamm ; 11(2): e200187, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215349

ABSTRACT

BACKGROUND AND OBJECTIVES: Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit-binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRß subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRß making it not unlikely that GlyRß-specific autoantibody (aAb) exist and contribute to the disease pathology. METHODS: In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRß. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRß binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRß aAb binding were resolved by whole-cell patch-clamp recordings. RESULTS: Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRß aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRß colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRß aAb from both patients to its target impair glycine efficacy. DISCUSSION: Our study establishes GlyRß as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRß impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRß aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization.


Subject(s)
Autoimmune Diseases , Receptors, Glycine , Stiff-Person Syndrome , Humans , Autoantibodies , Glycine , Receptors, Glycine/immunology , Receptors, Glycine/metabolism , Stiff-Person Syndrome/immunology
14.
Sci Rep ; 14(1): 1886, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253691

ABSTRACT

Chemogenetic tools are designed to control neuronal signaling. These tools have the potential to contribute to the understanding of neuropsychiatric disorders and to the development of new treatments. One such chemogenetic technology comprises modified Pharmacologically Selective Actuator Modules (PSAMs) paired with Pharmacologically Selective Effector Molecules (PSEMs). PSAMs are receptors with ligand-binding domains that have been modified to interact only with a specific small-molecule agonist, designated a PSEM. PSAM4 is a triple mutant PSAM derived from the α7 nicotinic receptor (α7L131G,Q139L,Y217F). Although having no constitutive activity as a ligand-gated ion channel, PSAM4 has been coupled to the serotonin 5-HT3 receptor (5-HT3R) and to the glycine receptor (GlyR). Treatment with the partner PSEM to activate PSAM4-5-HT3 or PSAM4-GlyR, causes neuronal activation or silencing, respectively. A suitably designed radioligand may enable selective visualization of the expression and location of PSAMs with positron emission tomography (PET). Here, we evaluated uPSEM792, an ultrapotent PSEM for PSAM4-GlyR, as a possible lead for PET radioligand development. We labeled uPSEM792 with the positron-emitter, carbon-11 (t1/2 = 20.4 min), in high radiochemical yield by treating a protected precursor with [11C]iodomethane followed by base deprotection. PET experiments with [11C]uPSEM792 in rodents and in a monkey transduced with PSAM4-GlyR showed low peak radioactivity uptake in brain. This low uptake was probably due to high polarity of the radioligand, as evidenced by physicochemical measurements, and to the vulnerability of the radioligand to efflux transport at the blood-brain barrier. These findings can inform the design of a more effective PSAM4 based PET radioligand, based on the uPSEM792 chemotype.


Subject(s)
Receptors, Glycine , Serotonin , Receptors, Glycine/genetics , Tomography, X-Ray Computed , Biological Transport , Signal Transduction
15.
J Neurosci ; 44(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37963764

ABSTRACT

Startle disease is due to the disruption of recurrent inhibition in the spinal cord. Most common causes are genetic variants in genes (GLRA1, GLRB) encoding inhibitory glycine receptor (GlyR) subunits. The adult GlyR is a heteropentameric complex composed of α1 and ß subunits that localizes at postsynaptic sites and replaces embryonically expressed GlyRα2 homomers. The human GlyR variants of GLRA1 and GLRB, dominant and recessive, have been intensively studied in vitro. However, the role of unaffected GlyRß, essential for synaptic GlyR localization, in the presence of mutated GlyRα1 in vivo is not fully understood. Here, we used knock-in mice expressing endogenous mEos4b-tagged GlyRß that were crossed with mouse Glra1 startle disease mutants. We explored the role of GlyRß under disease conditions in mice carrying a missense mutation (shaky) or resulting from the loss of GlyRα1 (oscillator). Interestingly, synaptic targeting of GlyRß was largely unaffected in both mouse mutants. While synaptic morphology appears unaltered in shaky animals, synapses were notably smaller in homozygous oscillator animals. Hence, GlyRß enables transport of functionally impaired GlyRα1 missense variants to synaptic sites in shaky animals, which has an impact on the efficacy of possible compensatory mechanisms. The observed enhanced GlyRα2 expression in oscillator animals points to a compensation by other GlyRα subunits. However, trafficking of GlyRα2ß complexes to synaptic sites remains functionally insufficient, and homozygous oscillator mice still die at 3 weeks after birth. Thus, both functional and structural deficits can affect glycinergic neurotransmission in severe startle disease, eliciting different compensatory mechanisms in vivo.


Subject(s)
Receptors, Glycine , Spinal Cord , Humans , Adult , Mice , Animals , Receptors, Glycine/metabolism , Virulence , Spinal Cord/metabolism , Glycine/metabolism , Synaptic Transmission/genetics
16.
Acta Pharmacol Sin ; 45(3): 465-479, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38017298

ABSTRACT

Epilepsy is a prevalent and severe neurological disorder and approximately 30% of patients are resistant to existing medications. It is of utmost importance to develop alternative therapies to treat epilepsy. Schisandrin B (SchB) is a major bioactive constituent of Schisandra chinensis (Turcz.) Baill and has multiple neuroprotective effects, sedative and hypnotic activities. In this study, we investigated the antiseizure effect of SchB in various mouse models of seizure and explored the underlying mechanisms. Pentylenetetrazole (PTZ), strychnine (STR), and pilocarpine-induced mouse seizure models were established. We showed that injection of SchB (10, 30, 60 mg/kg, i.p.) dose-dependently delayed the onset of generalized tonic-clonic seizures (GTCS), reduced the incidence of GTCS and mortality in PTZ and STR models. Meanwhile, injection of SchB (30 mg/kg, i.p.) exhibited therapeutic potential in pilocarpine-induced status epilepticus model, which was considered as a drug-resistant model. In whole-cell recording from CHO/HEK-239 cells stably expressing recombinant human GABAA receptors (GABAARs) and glycine receptors (GlyRs) and cultured hippocampal neurons, co-application of SchB dose-dependently enhanced GABA or glycine-induced current with EC50 values at around 5 µM, and application of SchB (10 µM) alone did not activate the channels in the absence of GABA or glycine. Furthermore, SchB (10 µM) eliminated both PTZ-induced inhibition on GABA-induced current (IGABA) and strychnine (STR)-induced inhibition on glycine-induced current (Iglycine). Moreover, SchB (10 µM) efficiently rescued the impaired GABAARs associated with genetic epilepsies. In addition, the homologous mutants in both GlyRs-α1(S267Q) and GABAARs-α1(S297Q)ß2(N289S)γ2L receptors by site-directed mutagenesis tests abolished SchB-induced potentiation of IGABA and Iglycine. In conclusion, we have identified SchB as a natural positive allosteric modulator of GABAARs and GlyRs, supporting its potential as alternative therapies for epilepsy.


Subject(s)
Epilepsy , Lignans , Polycyclic Compounds , Receptors, Glycine , Mice , Animals , Humans , Pilocarpine/adverse effects , Strychnine/pharmacology , Strychnine/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , Receptors, GABA-A , Glycine/pharmacology , Hypnotics and Sedatives , gamma-Aminobutyric Acid , Cyclooctanes
17.
Neurochem Res ; 49(3): 684-691, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38017313

ABSTRACT

In the spinal cord, attenuation of the inhibitory action of glycine is related to an increase in both inflammatory and diabetic neuropathic pain; however, the glycine receptor involvement in diabetic neuropathy has not been reported. We determined the expression of the glycine receptor subunits (α1-α3 and ß) in streptozotocin-induced diabetic Long-Evans rats by qPCR and Western blot. The total mRNA and protein expression (whole spinal cord homogenate) of the α1, α3, and ß subunits did not change during diabetes; however, the α2 subunit mRNA, but not the protein, was overexpressed 45 days after diabetes induction. By contrast, the synaptic expression of the α1 and α2 subunits decreased in all the studied stages of diabetes, but that of the α3 subunit increased on day 45 after diabetes induction. Intradermal capsaicin produced higher paw-licking behavior in the streptozotocin-induced diabetic rats than in the control animals. In addition, the nocifensive response was higher at 45 days than at 20 days. During diabetes, the expression of the glycine receptor was altered in the spinal cord, which strongly suggests its involvement in diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Rats , Animals , Glycine/metabolism , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Streptozocin/toxicity , Diabetic Neuropathies/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Rats, Long-Evans , Spinal Cord/metabolism , RNA, Messenger/metabolism
18.
J Neural Transm (Vienna) ; 131(1): 95-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773223

ABSTRACT

Alcohol Use Disorder (AUD) is a relapsing brain disorder that involves perturbations of brain dopamine (DA) systems, and combined treatment with varenicline + bupropion produces additive effects on accumbal DA output and abolishes the alcohol deprivation effect (ADE) in rats. Also, direct and indirect glycine receptor (GlyR) agonists raise basal DA, attenuate alcohol-induced DA release in the nucleus Accumbens (nAc) and reduce alcohol consumption in rats. This study in rats examines whether the GlyT1-inhibitor Org 24598, an indirect GlyR agonist, enhances the ADE-reducing and DA elevating action of the combined administration of varenicline + bupropion in lower doses than previously applied. Effects on voluntary alcohol consumption, the ADE and extracellular levels of glycine and DA in nAc were examined following treatment with Org 24598 6 and 9 mg/kg i.p., bupropion 3.75 mg/kg i.p. and varenicline 1.5 mg/kg s.c., in monotherapy or combined, using a two-bottle, free-choice alcohol consumption paradigm with an ADE paradigm, and in vivo microdialysis in male Wistar rats. Notably, all treatment regimens appeared to abolish the ADE but only the effect produced by the triple combination (Org24598 + varenicline + bupropion) was significant compared to vehicle. Hence, addition of Org 24598 may enhance the ADE-reducing action of varenicline + bupropion and appears to allow for a dose reduction of bupropion. Treatment with Org 24598 raised accumbal glycine levels but did not significantly alter DA output in monotherapy. Varenicline + bupropion produced a substantial elevation in accumbal DA output that was slightly enhanced following addition of Org 24598. Conceivably, the blockade of the ADE is achieved by the triple combination enhancing accumbal DA transmission in complementary ways, thereby alleviating a hypothesized hypodopaminergia and negative reinforcement to drink. Ultimately, combining an indirect or direct GlyR agonist with varenicline + bupropion may constitute a new pharmacological treatment principle for AUD, although further refinement in dosing and evaluation of other glycinergic compounds are warranted.


Subject(s)
Alcoholism , Dopamine , Rats , Male , Animals , Rats, Wistar , Varenicline/pharmacology , Bupropion/pharmacology , Glycine/pharmacology , Ethanol , Receptors, Glycine
19.
Environ Sci Pollut Res Int ; 31(5): 6694-6722, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38157172

ABSTRACT

Guilin is a typical representative of karst landform in South China. Because of its unique geographical landform and hydrological environment, Lijiang River Basin has received a certain degree of attention in field of ecology and sustainable development. Explore and visualize the hotspots and frontiers of Guilin Lijiang River Basin Ecology and Sustainable Development (GLRBESD) by using bibliometrics, CiteSpace, and VOSviewer. Results showed that number of published papers was in a fluctuating upward trend from 1992 to 2022 and from 2011 to 2022, respectively. Work of scholars in this field has been continuously strengthened and deepened, and overall scientific research results show an increasing trend. Research objects and topics are mainly aimed at the water resources, climate, and environment of GLRB Landscape ecology and SDG index construction. Research of GLRBESD-published documents has the characteristics of multi-disciplinary and interdisciplinary integration. High-frequency keywords in research field focus on ecotourism, ecological restoration, and sustainable development, mainly based on the research of ecotourism development. Impact of environmental factor changes and human activities on land use change in different periods is an important research topic. Core research field of GLRBESD on macro-scale can be divided into ESV and function, ecological compensation and ecotourism, ecological environment and ecological restoration, ecological network and ecological risk assessment, and sustainable development. This research provides systematic scientific research basis for enhancing sustainable development ability and ecosystem functions and services of World Natural Heritage Site.


Subject(s)
Ecology , Ecosystem , Humans , Sustainable Development , Conservation of Natural Resources , Rivers , China , Bibliometrics , Receptors, Glycine
20.
Brain Nerve ; 75(12): 1285-1288, 2023 Dec.
Article in Japanese | MEDLINE | ID: mdl-38097213

ABSTRACT

Strychnine is a poison that often appears in classical mysteries and has been used for medicine and various purposes. Clearly, its point of action is glycine receptors, and it inhibits glycinergic synaptic transmission. Because of its powerful stimulant effect on the nervous system, if taken orally, characteristic symptoms that are intense and agonizing, such as tonic convulsions, opisthotonus or posterior arch tension, and convulsive laughter, appear. These symptoms are linked to the pathological basis of tetanus, and the drug is an important topic ranging from neuroscience to medical care.


Subject(s)
Glycine Agents , Strychnine , Humans , Strychnine/pharmacology , Glycine Agents/pharmacology , Glycine/pharmacology , Glycine/physiology , Synaptic Transmission/physiology , Receptors, Glycine
SELECTION OF CITATIONS
SEARCH DETAIL
...