ABSTRACT
Intestinal barrier is essential for dietary products and microbiota compartmentalization and therefore gut homeostasis. When this barrier is broken, cecal content overflows into the peritoneal cavity, leading to local and systemic robust inflammatory response, characterizing peritonitis and sepsis. It has been shown that IL-1ß contributes with inflammatory storm during peritonitis and sepsis and its inhibition has beneficial effects to the host. Therefore, we investigated the mechanisms underlying IL-1ß secretion using a widely adopted murine model of experimental peritonitis. The combined injection of sterile cecal content (SCC) and the gut commensal bacteria Bacteroides fragilis leads to IL-1ß-dependent peritonitis, which was mitigated in mice deficient in NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome components. Typically acting as a damage signal, SCC, but not B. fragilis, activates canonical pathway of NLRP3 promoting IL-1ß secretion in vitro and in vivo. Strikingly, absence of fiber in the SCC drastically reduces IL-1ß production, whereas high-fiber SCC conversely increases this response in an NLRP3-dependent manner. In addition, NLRP3 was also required for IL-1ß production induced by purified dietary fiber in primed macrophages. Extending to the in vivo context, IL-1ß-dependent peritonitis was worsened in mice injected with B. fragilis and high-fiber SCC, whereas zero-fiber SCC ameliorates the pathology. Corroborating with the proinflammatory role of dietary fiber, IL-1R-deficient mice were protected from peritonitis induced by B. fragilis and particulate bran. Overall, our study highlights a function, previously unknown, for dietary fibers in fueling peritonitis through NLRP3 activation and IL-1ß secretion outside the gut.
Subject(s)
Bacteroides Infections/immunology , Bacteroides fragilis/immunology , Dietary Fiber/adverse effects , Inflammasomes/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Peritonitis/immunology , Animals , Bacteroides Infections/microbiology , Diet , Dietary Fiber/administration & dosage , Disease Models, Animal , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Peritonitis/microbiology , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/genetics , Signal Transduction/drug effects , Signal Transduction/immunologyABSTRACT
Schistosomiasis is a debilitating parasitic disease that affects more than 200 million people worldwide and causes approximately 280,000 deaths per year. Inside the definitive host, eggs released by Schistosoma mansoni lodge in the intestine and especially in the liver where they induce a granulomatous inflammatory process, which can lead to fibrosis. The molecular mechanisms initiating or promoting hepatic granuloma formation remain poorly understood. Inflammasome activation has been described as an important pathway to induce pathology mediated by NLRP3 receptor. Recently, other components of the inflammasome pathway, such as NLRP6, have been related to liver diseases and fibrotic processes. Nevertheless, the contribution of these components in schistosomiasis-associated pathology is still unknown. In the present study, using dendritic cells, we demonstrated that NLRP6 sensor is important for IL-1ß production and caspase-1 activation in response to soluble egg antigens (SEA). Furthermore, the lack of NLRP6 has been shown to significantly reduce periovular inflammation, collagen deposition in hepatic granulomas and mRNA levels of α-SMA and IL-13. Livers of Nlrp6-/- mice showed reduced levels of CXCL1/KC, CCL2, CCL3, IL-5, and IL-10 as well as Myeloperoxidase (MPO) and Eosinophilic Peroxidase (EPO) enzymatic activity. Consistently, the frequency of macrophage and neutrophil populations were lower in the liver of NLRP6 knockout mice, after 6 weeks of infection. Finally, it was further demonstrated that the onset of hepatic granuloma and collagen deposition were also compromised in Caspase-1-/- , IL-1R-/- and Gsdmd-/- mice. Our findings suggest that the NLRP6 inflammasome is an important component for schistosomiasis-associated pathology.
Subject(s)
Liver/immunology , Liver/pathology , Receptors, Cell Surface/metabolism , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Animals , Antigens, Helminth/metabolism , Antigens, Helminth/pharmacology , Caspase 1/genetics , Caspase 1/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Fibrosis , Gene Knockout Techniques , Granuloma/immunology , Granuloma/metabolism , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Liver Diseases/immunology , Liver Diseases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Schistosomiasis mansoni/parasitologyABSTRACT
Tityus serrulatus causes numerous scorpion envenomation accidents and deaths worldwide. The symptoms vary from local to systemic manifestations, culminating in pulmonary edema and cardiogenic shock. Among these events, transitory hyperglycemia is a severe manifestation that influences pulmonary edema, hemodynamic alterations, and cardiac disturbances. However, the molecular mechanism that leads to increased glucose levels after T. serrulatus envenomation remains unknown. This study aimed to investigate our hypothesis that hyperglycemia due to scorpion envenomation involves inflammatory signaling in the pancreas. The present study showed that T. serrulatus venom induces the production of IL-1α and IL-1ß in the pancreas, which signal via IL-1R and provoke nitric oxide (NO) production as well as edema in ß-cells in islets. Il1r1-/- mice were protected from transitory hyperglycemia and did not present disturbances in insulin levels in the serum. These results suggest that the pathway driven by IL-1α/IL-1ß-IL-1R-NO inhibits insulin release by ß-cells, which increases systemic glucose concentration during severe scorpion envenomation. A supportive therapy that inhibits NO production, combined with antiserum, may help to prevent fatal outcomes of scorpion envenomation. Our findings provide novel insights into the design of supportive therapy with NO inhibitors combined with antiscorpion venom serum to overcome fatal outcomes of scorpion envenomation.
Subject(s)
Hyperglycemia/metabolism , Nitric Oxide/metabolism , Pancreas/drug effects , Receptors, Interleukin-1/metabolism , Scorpion Venoms/toxicity , Animals , Insulin/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Mice, Knockout , Pancreas/metabolism , Pancreas/pathology , Receptors, Interleukin-1/genetics , Scorpion Stings/metabolismABSTRACT
Placental malaria (PM) is associated with severe inflammation leading to abortion, preterm delivery, and intrauterine growth restriction. Innate immunity responses play critical roles, but the mechanisms underlying placental immunopathology are still unclear. Here, we investigated the role of inflammasome activation in PM by scrutinizing human placenta samples from an endemic area and ablating inflammasome components in a PM mouse model. The reduction in birth weight in babies from infected mothers is paralleled by increased placental expression of AIM2 and NLRP3 inflammasomes. Using genetic dissection, we reveal that inflammasome activation pathways are involved in the production and detrimental action of interleukin-1ß (IL-1ß) in the infected placenta. The IL-1R pharmacological antagonist Anakinra improved pregnancy outcomes by restoring fetal growth and reducing resorption in an experimental model. These findings unveil that IL-1ß-mediated signaling is a determinant of PM pathogenesis, suggesting that IL-1R antagonists can improve clinical outcomes of malaria infection in pregnancy.
Subject(s)
Inflammasomes/drug effects , Interleukin-1beta/immunology , Malaria, Falciparum/immunology , Malaria/immunology , Plasmodium falciparum/pathogenicity , Pregnancy Complications, Parasitic/immunology , Signal Transduction/drug effects , Animals , Caspase 1/genetics , Caspase 1/immunology , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Female , Gene Expression Regulation , Humans , Immunity, Innate , Immunologic Factors/pharmacology , Inflammasomes/genetics , Inflammasomes/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/genetics , Malaria/drug therapy , Malaria/genetics , Malaria/parasitology , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Plasmodium berghei/immunology , Plasmodium berghei/pathogenicity , Plasmodium falciparum/immunology , Pregnancy , Pregnancy Complications, Parasitic/genetics , Pregnancy Complications, Parasitic/parasitology , Pregnancy Complications, Parasitic/prevention & control , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology , Signal Transduction/immunology , THP-1 Cells , Trophoblasts/drug effects , Trophoblasts/immunology , Trophoblasts/parasitology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunologyABSTRACT
BACKGROUND: Plasmodium vivax malaria (Pv-malaria) is still considered a neglected disease despite an alarming number of individuals being infected annually. Malaria pathogenesis occurs with the onset of the vector-parasite-host interaction through the binding of pathogen-associated molecular patterns (PAMPs) and receptors of innate immunity, such as toll-like receptors (TLRs). The triggering of the signaling cascade produces an elevated inflammatory response. Genetic polymorphisms in TLRs are involved in susceptibility or resistance to infection, and the identification of genes involved with Pv-malaria response is important to elucidate the pathogenesis of the disease and may contribute to the formulation of control and elimination tools. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective case-control study was conducted in an intense transmission area of Pv-malaria in the state of Amazonas, Brazil. Genetic polymorphisms (SNPs) in different TLRs, TIRAP, and CD14 were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis in 325 patients infected with P. vivax and 274 healthy individuals without malaria history in the prior 12 months from the same endemic area. Parasite load was determined by qPCR. Simple and multiple logistic/linear regressions were performed to investigate association between the polymorphisms and the occurrence of Pv-malaria and parasitemia. The C/T (TLR5 R392StopCodon) and T/T (TLR9 -1486C/T) genotypes appear to be risk factors for infection by P. vivax (TLR5: C/C vs. C/T [OR: 2.116, 95% CI: 1.054-4.452, p = 0.031]; TLR9: C/C vs. T/T [OR: 1.919, 95% CI: 1.159-3.177, p = 0.010]; respectively). Fever (COEF = 7599.46, 95% CI = 3063.80-12135.12, p = 0.001) and the C/C genotype of TLR9 -1237C/T (COEF = 17006.63, 95% CI = 3472.83-30540.44, p = 0.014) were independently associated with increased parasitemia in patients with Pv-malaria. CONCLUSIONS: Variants of TLRs may predispose individuals to infection by P. vivax. The TLR5 R392StopCodon and TLR9 -1486C/T variants are associated with susceptibility to Pv-malaria. Furthermore, the TLR9 variant -1237C/C correlates with high parasitemia.
Subject(s)
Genetic Predisposition to Disease , Malaria, Vivax/genetics , Parasitemia/genetics , Polymorphism, Single Nucleotide , Adult , Alleles , Brazil , Case-Control Studies , Female , Genetic Association Studies , Genotype , Humans , Lipopolysaccharide Receptors/genetics , Male , Membrane Glycoproteins/genetics , Middle Aged , Plasmodium vivax , Receptors, Interleukin-1/genetics , Retrospective Studies , Toll-Like Receptor 5/genetics , Toll-Like Receptor 9/genetics , Young AdultABSTRACT
Abstract Introduction: The present study was designed to investigate the association between rs8177374 polymorphism and malaria symptoms due to exposure of Plasmodium vivax and Plasmodium falciparum. Materials and methods: A total of 454 samples were included in the study (228 malaria patients and 226 healthy individuals). Malaria patients, divided into P. vivax and P. falciparum groups on the basis of the causative species of Plasmodium, were categorized into mild and severe on the basis of clinical outcomes according to WHO criteria. Healthy individuals were used as controls. Allele specific PCR based strategy was used for the identification of rs8177374 SNP. Results: MyD88-adaptor-like gene polymorphism was associated with susceptibility to malaria (p < 0.001). C allele frequency (0.74) was higher in the population compared to T allele frequency (0.26). CT genotype increased the susceptibility of malaria (OR: 2.661; 95% CI: 1.722-4.113) and was positively associated with mild malaria (OR: 5.609; 95% CI: 3.479-9.044, p = 0.00). On the other hand, CC genotype was associated with severe malaria (OR: 3.116; 95% CI: 1.560-6.224, p = 0.00). P. vivax infection rate was higher in CT genotype carriers compared to other genotypes (OR: 3.616; 95% CI: 2.219-5.894, p < 0.001). Conclusion: MyD88-adaptor-like/TIR domain containing adaptor protein polymorphism for single nucleotide polymorphism rs8177374 is related with the susceptibility of malaria.
Subject(s)
Humans , Male , Female , Adult , Membrane Glycoproteins/physiology , Malaria, Vivax/genetics , Malaria, Falciparum/genetics , Receptors, Interleukin-1/physiology , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Pakistan , Severity of Illness Index , Membrane Glycoproteins/genetics , Case-Control Studies , Polymerase Chain Reaction , Receptors, Interleukin-1/genetics , Gene Frequency , GenotypeABSTRACT
Tumors develop numerous strategies to fine-tune inflammation and avoid detection and eradication by the immune system. The identification of mechanisms leading to local immune dysregulation is critical to improve cancer therapy. We here demonstrate that Interleukin-1 receptor 8 (IL-1R8 - previously known as SIGIRR/TIR8), a negative regulator of Toll-Like and Interleukin-1 Receptor family signaling, is up-regulated during breast epithelial cell transformation and in primary breast tumors. IL-1R8 expression in transformed breast epithelial cells reduced IL-1-dependent NF-κB activation and production of pro-inflammatory cytokines, inhibited NK cell activation and favored M2-like macrophage polarization. In a murine breast cancer model (MMTV-neu), IL-1R8-deficiency reduced tumor growth and metastasis and was associated with increased mobilization and activation of immune cells, such as NK cells and CD8+ T cells. Finally, immune-gene signature analysis in clinical specimens revealed that high IL-1R8 expression is associated with impaired innate immune sensing and T-cell exclusion from the tumor microenvironment. Our results indicate that high IL-1R8 expression acts as a novel immunomodulatory mechanism leading to dysregulated immunity with important implications for breast cancer immunotherapy.
Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Immunity/genetics , Receptors, Interleukin-1/genetics , Animals , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Immunity, Innate/genetics , Immunomodulation , Inflammation Mediators/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Knockout , NF-kappa B/metabolism , Tumor Escape/geneticsABSTRACT
INTRODUCTION: The present study was designed to investigate the association between rs8177374 polymorphism and malaria symptoms due to exposure of Plasmodium vivax and Plasmodium falciparum. MATERIALS AND METHODS: A total of 454 samples were included in the study (228 malaria patients and 226 healthy individuals). Malaria patients, divided into P. vivax and P. falciparum groups on the basis of the causative species of Plasmodium, were categorized into mild and severe on the basis of clinical outcomes according to WHO criteria. Healthy individuals were used as controls. Allele specific PCR based strategy was used for the identification of rs8177374 SNP. RESULTS: MyD88-adaptor-like gene polymorphism was associated with susceptibility to malaria (p<0.001). C allele frequency (0.74) was higher in the population compared to T allele frequency (0.26). CT genotype increased the susceptibility of malaria (OR: 2.661; 95% CI: 1.722-4.113) and was positively associated with mild malaria (OR: 5.609; 95% CI: 3.479-9.044, p=0.00). On the other hand, CC genotype was associated with severe malaria (OR: 3.116; 95% CI: 1.560-6.224, p=0.00). P. vivax infection rate was higher in CT genotype carriers compared to other genotypes (OR: 3.616; 95% CI: 2.219-5.894, p<0.001). CONCLUSION: MyD88-adaptor-like/TIR domain containing adaptor protein polymorphism for single nucleotide polymorphism rs8177374 is related with the susceptibility of malaria.
Subject(s)
Genetic Predisposition to Disease/genetics , Malaria, Falciparum/genetics , Malaria, Vivax/genetics , Membrane Glycoproteins/physiology , Polymorphism, Single Nucleotide , Receptors, Interleukin-1/physiology , Severity of Illness Index , Adult , Case-Control Studies , Female , Gene Frequency , Genotype , Humans , Male , Membrane Glycoproteins/genetics , Pakistan , Polymerase Chain Reaction , Receptors, Interleukin-1/geneticsABSTRACT
Diabetes mellitus (DM) encompasses a multitude of secondary disorders, including heart disease. One of the most frequent and potentially life threatening disorders of DM-induced heart disease is ventricular tachycardia (VT). Here we show that toll-like receptor 2 (TLR2) and NLRP3 inflammasome activation in cardiac macrophages mediate the production of IL-1ß in DM mice. IL-1ß causes prolongation of the action potential duration, induces a decrease in potassium current and an increase in calcium sparks in cardiomyocytes, which are changes that underlie arrhythmia propensity. IL-1ß-induced spontaneous contractile events are associated with CaMKII oxidation and phosphorylation. We further show that DM-induced arrhythmias can be successfully treated by inhibiting the IL-1ß axis with either IL-1 receptor antagonist or by inhibiting the NLRP3 inflammasome. Our results establish IL-1ß as an inflammatory connection between metabolic dysfunction and arrhythmias in DM.
Subject(s)
Diabetes Mellitus, Experimental/immunology , Interleukin-1beta/immunology , Macrophages/immunology , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Tachycardia, Ventricular/immunology , Toll-Like Receptor 2/immunology , Action Potentials , Animals , Antirheumatic Agents/pharmacology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Caspase 1/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Inflammasomes/antagonists & inhibitors , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice , Mice, Transgenic , Myocardial Contraction , Myocytes, Cardiac/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Potassium/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/metabolism , Toll-Like Receptor 2/geneticsABSTRACT
The contribution of Interleukin-1ß (IL-1ß) to neuronal injury induced by status epilepticus (SE) in the immature brain remains unclear. The goal of this study was to determine the hippocampal expression of IL-1ß and its type 1 receptor (IL-1RI) following SE induced by the lithium-pilocarpine model in fourteen-days-old rat pups; control animals were given an equal volume of saline instead of the convulsant. IL-1ß and IL-1RI mRNA hippocampal levels were assessed by qRT-PCR 6 and 24 h after SE or control conditions. IL-1ß and IL-1RI expression was detected in the dorsal hippocampus by immunohistochemical procedures; Fluoro-Jade B staining was carried out in parallel sections in order to detect neuronal cell death. IL-1ß mRNA expression was increased 6 h following SE, but not at 24 h; however IL-1RI mRNA expression was unaffected when comparing with the control group. IL-1ß and IL-1RI immunoreactivity was not detected in control animals. IL-1ß and IL-1RI were expressed in the CA1 pyramidal layer, the dentate gyrus granular layer and the hilus 6 h after SE, whereas injured cells were detected 24 h following seizures. Early expression of IL-1ß and IL-1RI in the hippocampus could be associated with SE-induced neuronal cell death mechanisms in the developing rat.
Subject(s)
Hippocampus/metabolism , Interleukin-1beta/metabolism , Receptors, Interleukin-1/metabolism , Status Epilepticus/metabolism , Animals , Convulsants , Disease Models, Animal , Interleukin-1beta/genetics , Lithium , Pilocarpine , RNA, Messenger/metabolism , Rats , Receptors, Interleukin-1/genetics , Status Epilepticus/chemically inducedABSTRACT
This study evaluated the role of macrophage migration inhibitory factor in inflammation caused by monosodium urate crystals. The concentration of macrophage migration inhibitory factor was increased in synovial fluid of patients with acute gout, and there was a positive correlation between intra-articular macrophage migration inhibitory factor and IL-1ß concentrations. In mice, the injection of monosodium urate crystals into the knee joint increased the levels of macrophage migration inhibitory factor in macrophages and in inflamed tissue. The injection of recombinant macrophage migration inhibitory factor into the joint of mice reproduced the inflammatory response observed in acute gout, including histologic changes, the recruitment of neutrophils, and increased levels of IL-1ß and CXCL1. Importantly, the accumulation of neutrophils and the amount IL-1ß in the joints were reduced in macrophage migration inhibitory factor-deficient mice when injected with monosodium urate crystals. We observed a similar effect when we blocked macrophage migration inhibitory factor with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid or anti-macrophage migration inhibitory factor. In addition, the blockade of IL-1R and CXCR2 reduced recombinant macrophage migration inhibitory factor-induced neutrophil recruitment. Mechanistically, recombinant macrophage migration inhibitory factor is important for the synthesis of il1ß mRNA in vivo and in isolated macrophages. Altogether, macrophage migration inhibitory factor promotes neutrophil accumulation and is important for IL-1ß production, which are 2 crucial events contributing to the pathogenesis of acute gout.
Subject(s)
Gout/metabolism , Gout/pathology , Interleukin-1beta/biosynthesis , Macrophage Migration-Inhibitory Factors/metabolism , Neutrophils/metabolism , Acute Disease , Animals , Disease Models, Animal , Female , Humans , Inflammation/pathology , Injections , Joints/drug effects , Joints/pathology , Macrophage Migration-Inhibitory Factors/deficiency , Male , Mice, Inbred C57BL , Middle Aged , Neutrophils/drug effects , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/metabolism , Recombinant Proteins/pharmacology , Synovial Fluid/drug effects , Synovial Fluid/metabolism , Uric Acid/administration & dosageABSTRACT
ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-ß mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.
Subject(s)
Artocarpus/chemistry , CD3 Complex/immunology , Interleukin-17/immunology , Interleukin-1/immunology , Interleukin-23/immunology , Mannose-Binding Lectin , Plant Lectins , Th17 Cells/immunology , Animals , CD3 Complex/genetics , Candida albicans/immunology , Candidiasis/drug therapy , Candidiasis/genetics , Candidiasis/immunology , Interleukin-1/genetics , Interleukin-17/genetics , Interleukin-23/genetics , Mannose-Binding Lectin/chemistry , Mannose-Binding Lectin/pharmacology , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Plant Lectins/chemistry , Plant Lectins/pharmacology , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology , Th1 Cells/immunologyABSTRACT
Dermatophytosis are one of the most common fungal infections in the world. They compromise keratinized tissues and the main etiological agent is Trichophyton rubrum. Macrophages are key cells in innate immunity and prominent sources of IL-1ß, a potent inflammatory cytokine whose main production pathway is by the activation of inflammasomes and caspase-1. However, the role of inflammasomes and IL-1 signaling against T.rubrum has not been reported. In this work, we observed that bone marrow-derived macrophages produce IL-1ß in response to T.rubrum conidia in a NLRP3-, ASC- and caspase-1-dependent fashion. Curiously, lack of IL-1 signaling promoted hyphae development, uncovering a protective role for IL-1ß in macrophages. In addition, mice lacking IL-1R showed reduced IL-17 production, a key cytokine in the antifungal defense, in response to T.rubrum. Our findings point to a prominent role of IL-1 signaling in the immune response to T.rubrum, opening the venue for the study of this pathway in other fungal infections.
Subject(s)
Interleukin-17/immunology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Signal Transduction , Trichophyton/immunology , Trichophyton/physiology , Animals , Female , Hyphae/growth & development , Hyphae/metabolism , Inflammasomes/immunology , Interleukin-17/metabolism , Interleukin-1beta/chemistry , Interleukin-1beta/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Macrophages/ultrastructure , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Spores, Fungal/growth & development , Tinea/immunology , Tinea/prevention & controlABSTRACT
The ligation of interleukin-1 receptor (IL-1R) or tumor necrosis factor receptor 1 (TNFR1) induces the recruitment of adaptor proteins and their concomitant ubiquitination to the proximal receptor signaling complex, respectively. Such are upstream signaling events of IKK that play essential roles in NF-κB activation. Thus, the discovery of a substance that would modulate the recruitment of key proximal signaling elements at the upstream level of IKK has been impending in this field of study. Here, we propose that brazilin, an active compound of Caesalpinia sappan L. (Leguminosae), is a potent NF-κB inhibitor that selectively disrupts the formation of the upstream IL-1R signaling complex. Analysis of upstream signaling events revealed that brazilin markedly abolished the IL-1ß-induced polyubiquitination of IRAK1 and its interaction with IKK-γ counterpart. Notably, pretreatment of brazilin drastically interfered the recruitment of the receptor-proximal signaling components including IRAK1/4 and TRAF6 onto MyD88 in IL-1R-triggerd NF-κB activation. Interestingly, brazilin did not affect the TNF-induced RIP1 ubiquitination and the recruitment of RIP1 and TRAF2 to TNFR1, suggesting that brazilin is effective in selectively suppressing the proximal signaling complex formation of IL-1R, but not that of TNFR1. Moreover, our findings suggest that such a disruption of IL-1R-proximal complex formation by brazilin is not mediated by affecting the heterodimerization of IL-1R and IL-1RAcP. Taken together, the results suggest that the anti-IKK activity of brazilin is induced by targeting IKK upstream signaling components and subsequently disrupting proximal IL-1 receptor signaling complex formation.
Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzopyrans/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Caesalpinia/chemistry , Ethnopharmacology , Genes, Reporter/drug effects , HEK293 Cells , HeLa Cells , Humans , I-kappa B Kinase/metabolism , I-kappa B Proteins/antagonists & inhibitors , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Molecular Structure , NF-kappa B/agonists , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, Interleukin-1/agonists , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Republic of Korea , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Ubiquitination/drug effects , Wood/chemistryABSTRACT
BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. METHODS: Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. RESULTS: The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. CONCLUSIONS: Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets.
Subject(s)
Chagas Cardiomyopathy/genetics , Chemokine CCL2/genetics , Genetic Predisposition to Disease , Immunity, Innate , Membrane Glycoproteins/genetics , Receptors, CCR5/genetics , Receptors, Interleukin-1/genetics , Trypanosoma cruzi/physiology , Adult , Aged , Brazil , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/prevention & control , Chemokine CCL2/immunology , Female , Genotype , Humans , Male , Membrane Glycoproteins/immunology , Middle Aged , Polymorphism, Single Nucleotide , Receptors, CCR5/immunology , Receptors, Interleukin-1/immunologyABSTRACT
Currently, several assays can confirm acute dengue infection at the point-of-care. However, none of these assays can predict the severity of the disease symptoms. A prognosis test that predicts the likelihood of a dengue patient to develop a severe form of the disease could permit more efficient patient triage and treatment. We hypothesise that mRNA expression of apoptosis and innate immune response-related genes will be differentially regulated during the early stages of dengue and might predict the clinical outcome. Aiming to identify biomarkers for dengue prognosis, we extracted mRNA from the peripheral blood mononuclear cells of mild and severe dengue patients during the febrile stage of the disease to measure the expression levels of selected genes by quantitative polymerase chain reaction. The selected candidate biomarkers were previously identified by our group as differentially expressed in microarray studies. We verified that the mRNA coding for CFD, MAGED1, PSMB9, PRDX4 and FCGR3B were differentially expressed between patients who developed clinical symptoms associated with the mild type of dengue and patients who showed clinical symptoms associated with severe dengue. We suggest that this gene expression panel could putatively serve as biomarkers for the clinical prognosis of dengue haemorrhagic fever.
Subject(s)
Antigens, Neoplasm/genetics , Cysteine Endopeptidases/genetics , Membrane Glycoproteins/genetics , Neoplasm Proteins/genetics , Peroxiredoxins/genetics , Receptors, IgG/genetics , Receptors, Interleukin-1/genetics , Severe Dengue/diagnosis , Severity of Illness Index , Apoptosis Regulatory Proteins/genetics , Biomarkers , GPI-Linked Proteins/genetics , Gene Expression , Humans , Immunity, Innate/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/pathology , Microarray Analysis , Prognosis , RNA, Messenger/isolation & purification , Real-Time Polymerase Chain Reaction , SerotypingABSTRACT
Currently, several assays can confirm acute dengue infection at the point-of-care. However, none of these assays can predict the severity of the disease symptoms. A prognosis test that predicts the likelihood of a dengue patient to develop a severe form of the disease could permit more efficient patient triage and treatment. We hypothesise that mRNA expression of apoptosis and innate immune response-related genes will be differentially regulated during the early stages of dengue and might predict the clinical outcome. Aiming to identify biomarkers for dengue prognosis, we extracted mRNA from the peripheral blood mononuclear cells of mild and severe dengue patients during the febrile stage of the disease to measure the expression levels of selected genes by quantitative polymerase chain reaction. The selected candidate biomarkers were previously identified by our group as differentially expressed in microarray studies. We verified that the mRNA coding for CFD, MAGED1, PSMB9, PRDX4 and FCGR3B were differentially expressed between patients who developed clinical symptoms associated with the mild type of dengue and patients who showed clinical symptoms associated with severe dengue. We suggest that this gene expression panel could putatively serve as biomarkers for the clinical prognosis of dengue haemorrhagic fever.
Subject(s)
Humans , Antigens, Neoplasm/genetics , Cysteine Endopeptidases/genetics , Membrane Glycoproteins/genetics , Neoplasm Proteins/genetics , Peroxiredoxins/genetics , Receptors, IgG/genetics , Receptors, Interleukin-1/genetics , Severity of Illness Index , Severe Dengue/diagnosis , Apoptosis Regulatory Proteins/genetics , Biomarkers , Gene Expression , GPI-Linked Proteins/genetics , Immunity, Innate/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/pathology , Microarray Analysis , Prognosis , Real-Time Polymerase Chain Reaction , RNA, Messenger/isolation & purification , SerotypingABSTRACT
Interleukin-1ß (IL-1ß) is considered to be one of the most important mediators in the pathogenesis of inflammatory diseases, particularly in neurodegenerative diseases such as multiple sclerosis (MS). MS is a chronic inflammatory disease characterized by demyelination and remyelination events, with unpredictable relapsing and remitting episodes that seldom worsen MS lesions. We proposed to study the effect of a unique component of the inflammatory process, IL-1ß, and evaluate its effect in repeated episodes, similar to the relapsing-remitting MS pathology. Using adenoviral vectors, we developed a model of focal demyelination/remyelination triggered by the chronic expression of IL-1ß. The long-term expression of IL-1ß in the striatum produced blood-brain barrier (BBB) breakdown, demyelination, microglial/macrophage activation, and neutrophil infiltration but no overt neuronal degeneration. This demyelinating process was followed by complete remyelination of the area. This simple model allows us to study demyelination and remyelination independently of the autoimmune and adaptive immune components. Re-exposure to this cytokine when the first inflammatory response was still unresolved generated a lesion with decreased neuroinflammation, demyelination, axonal injury and glial response. However, a second long-term expression of IL-1ß when the first lesion was resolved could not be differentiated from the first event. In this study, we demonstrated that the response to a second inflammatory stimulus varies depending on whether the initial lesion is still active or has been resolved. Considering that anti-inflammatory treatments have shown little improvement in MS patients, studies about the behavior of specific components of the inflammatory process should be taken into account to develop new therapeutic tools.
Subject(s)
Central Nervous System/physiology , Demyelinating Diseases/physiopathology , Inflammation/physiopathology , Animals , Axons/pathology , Dependovirus/genetics , Genetic Vectors , Immunohistochemistry , Interleukin-1beta/genetics , Interleukin-1beta/physiology , Male , Neostriatum/physiology , Neuroglia/pathology , Neutrophils/physiology , RNA/biosynthesis , RNA/isolation & purification , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/physiology , Recurrence , Stereotaxic TechniquesABSTRACT
Genetic polymorphisms in genes that codify inflammatory cytokines have been associated with gastric carcinogenesis. This study evaluated polymorphisms IL-1RN VNTR and TNFB+252A/G in a population from Southeast Brazil with regard to the risk of chronic gastritis and gastric cancer and the presence of an association of gastric lesions with risk factors such as gender, age, smoking, drinking and Helicobacter pylori infection. In this case-control study, polymorphism at IL-1RN VNTR was investigated using the allele-specific polymerase chain reaction method, while the polymerase chain reaction-restriction fragment length polymorphism technique was used to identify the TNFB+252A/G genotype in 675 Brazilian individuals [229 with chronic gastritis (CG), 200 with gastric cancer (GC) and 246 healthy individuals as controls (C)]. Multiple logistic regression analysis (log-additive, dominant, and recessive models) have not showed association of the genotype frequencies for the SNP TNFB + 252A/G with risk of CG or GC. However, as for IL-1RN VNTR it was observed significant differences in all three analysis models, with higher values of OR in recessive model, both in the GC group (OR = 3.04, 95% CI = 1.41-6.56, p < 0.01) and CG (OR = 2.32, 95% CI = 1.10-4.90, p = 0.02) compared to the C group. In addition, the multiple logistic regression showed also an association with risk factors such as male gender, older age and alcohol intake regarded GC group. So, our results indicated that the IL-1RN*2 allele may increase the risk of gastric cancer and precancerous lesions in the Southeast Brazilian population, reinforcing the importance of host genetic factors in the susceptibility to gastric cancer and the participation of cytokines in both the inflammation and the carcinogenic process.
Subject(s)
Gastritis/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Lymphotoxin-alpha/genetics , Stomach Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Alleles , Brazil , Case-Control Studies , Female , Genetic Predisposition to Disease , Genetic Variation , Genotype , Helicobacter Infections/genetics , Helicobacter pylori , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Receptors, Interleukin-1/genetics , Young AdultABSTRACT
Immunological studies have supported the idea that innate immunity is critical for the control of Mycobacterium tuberculosis (Mtb) infection in humans. Despite the overwhelming evidence showing the critical role of Toll-like receptors (TLRs) in the in vitro recognition of Mtb, the in vivo significance of individual TLRs has been more difficult to demonstrate consistently. We were interested in examining the role of genes of TLRs and molecules involved in their signalling cascades, and a case-control study was designed to test the association of polymorphisms of these innate immune genes with pulmonary tuberculosis (TB) in a Colombian population. In this study, we did not find an association with TLR2, TLR4, TLR9, MyD88 or MAL/TIRAP polymorphic variants. These findings suggest that those genes are not involved as risk factors for pulmonary TB in our population.