Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pain ; 158(11): 2155-2168, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28809765

ABSTRACT

The purinergic P2X2 receptor (P2X2R) is an adenosine triphosphate-gated ion channel widely expressed in the nervous system. Here, we identified a putative cyclin-dependent kinase 5 (Cdk5) phosphorylation site in the full-size variant P2X2aR (TPKH), which is absent in the splice variant P2X2bR. We therefore investigated the effects of Cdk5 and its neuronal activator, p35, on P2X2aR function. We found an interaction between P2X2aR and Cdk5/p35 by co-immunofluorescence and co-immunoprecipitation in HEK293 cells. We also found that threonine phosphorylation was significantly increased in HEK293 cells co-expressing P2X2aR and p35 as compared to cells expressing only P2X2aR. Moreover, P2X2aR-derived peptides encompassing the Cdk5 consensus motif were phosphorylated by Cdk5/p35. Whole-cell patch-clamp recordings indicated a delay in development of use-dependent desensitization (UDD) of P2X2aR but not of P2X2bR in HEK293 cells co-expressing P2X2aR and p35. In Xenopus oocytes, P2X2aRs showed a slower UDD than in HEK293 cells and Cdk5 activation prevented this effect. A similar effect was found in P2X2a/3R heteromeric currents in HEK293 cells. The P2X2aR-T372A mutant was resistant to UDD. In endogenous cells, we observed similar distribution between P2X2R and Cdk5/p35 by co-localization using immunofluorescence in primary culture of nociceptive neurons. Moreover, co-immunoprecipitation experiments showed an interaction between Cdk5 and P2X2R in mouse trigeminal ganglia. Finally, endogenous P2X2aR-mediated currents in PC12 cells and P2X2/3R mediated increases of intracellular Ca in trigeminal neurons were Cdk5 dependent, since inhibition with roscovitine accelerated the desensitization kinetics of these responses. These results indicate that the P2X2aR is a novel target for Cdk5-mediated phosphorylation, which might play important physiological roles including pain signaling.


Subject(s)
Ion Channel Gating/physiology , Receptors, Purinergic P2X2/metabolism , Sensory Receptor Cells/physiology , Threonine/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Calcium/metabolism , Cells, Cultured , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Ganglia, Spinal/cytology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Mice , Mutation/genetics , Oocytes , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Rats , Receptors, Purinergic P2X2/genetics , Receptors, Purinergic P2X3/genetics , Receptors, Purinergic P2X3/metabolism , Roscovitine , Sensory Receptor Cells/drug effects , Threonine/genetics , Xenopus
2.
J Cell Physiol ; 227(4): 1645-52, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21678417

ABSTRACT

Recent evidence indicates that transcription factor Runx1 modulates the expression of several phenotypic markers in dorsal root ganglia (DRGs) neurons, including the pain-related P2X3 receptor. In several cell lineages C/EBP transcription factors interact with the Runx factor family members to jointly bind and activate transcription of target genes. Here, we examine whether these two transcription factors directly regulate P2X3 gene expression. Through in silico analyses of the first 2 kb of the P2X3 gene promoter we identified putative consensus-binding sites for both Runx1 and C/EBPß transcription factors. Transient over-expression in PC12 cells of either Runx1 or C/EBPß increases P2X3 gene promoter activity and co-expression of both factors results in an additive stimulatory effect on the promoter function. Accordingly, chromatin immunoprecipitation assays demonstrate that both Runx1 and C/EBPß bind to the P2X3 promoter in PC12 cells expressing this gene. Site-directed mutagenesis of the proximal Runx1 and C/EBPß consensus elements in the P2X3 promoter decrease Runx1- and C/EBPß-mediated transcriptional activity. Moreover, C/EBPß-mediated enhancement of the P2X3 promoter requires a functional Runx1 binding site. Altogether our results support a functional and coordinated role for Runx1 and C/EBPß transcription factors during activation of P2X3 gene transcription.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Receptors, Purinergic P2X3/genetics , Animals , Binding Sites/genetics , Mutagenesis, Site-Directed , PC12 Cells , Promoter Regions, Genetic , Rats , Recombinant Proteins/genetics , Transcription, Genetic , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL