Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.848
1.
CNS Neurosci Ther ; 30(5): e14719, 2024 May.
Article En | MEDLINE | ID: mdl-38783536

BACKGROUND: Methamphetamine (METH) is a psychostimulant substance with highly addictive and neurotoxic effects, but no ideal treatment option exists to improve METH-induced neurocognitive deficits. Recently, mesenchymal stem cells (MSCs)-derived exosomes have raised many hopes for treating neurodegenerative sequela of brain disorders. This study aimed to determine the therapeutic potential of MSCs-derived exosomes on cognitive function and neurogenesis of METH-addicted rodents. METHODS: Male BALB/c mice were subjected to chronic METH addiction, followed by intravenous administration of bone marrow MSCs-derived exosomes. Then, the spatial memory and recognition memory of animals were assessed by the Barnes maze and the novel object recognition test (NORT). The neurogenesis-related factors, including NeuN and DCX, and the expression of Iba-1, a microglial activation marker, were assessed in the hippocampus by immunofluorescence staining. Also, the expression of inflammatory cytokines, including TNF-α and NF-κB, were evaluated by western blotting. RESULTS: The results showed that BMSCs-exosomes improved the time spent in the target quadrant and correct-to-wrong relative time in the Barnes maze. Also, NORT's discrimination index (DI) and recognition index (RI) were improved following exosome therapy. Additionally, exosome therapy significantly increased the expression of NeuN and DCX in the hippocampus while decreasing the expression of inflammatory cytokines, including TNF-α and NF-κB. Besides, BMSC-exosomes down-regulated the expression of Iba-1. CONCLUSION: Our findings indicate that BMSC-exosomes mitigated METH-caused cognitive dysfunction by improving neurogenesis and inhibiting neuroinflammation in the hippocampus.


Amphetamine-Related Disorders , Doublecortin Protein , Exosomes , Hippocampus , Mesenchymal Stem Cells , Methamphetamine , Mice, Inbred BALB C , Neurogenesis , Animals , Exosomes/metabolism , Male , Neurogenesis/drug effects , Neurogenesis/physiology , Mice , Methamphetamine/toxicity , Amphetamine-Related Disorders/therapy , Amphetamine-Related Disorders/psychology , Amphetamine-Related Disorders/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Cognition/drug effects , Cognition/physiology , Maze Learning/drug effects , Maze Learning/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Nerve Tissue Proteins/metabolism , Central Nervous System Stimulants/toxicity , Spatial Memory/drug effects , Spatial Memory/physiology , Microfilament Proteins/metabolism , Mesenchymal Stem Cell Transplantation/methods , Calcium-Binding Proteins , DNA-Binding Proteins
2.
PLoS One ; 19(5): e0303824, 2024.
Article En | MEDLINE | ID: mdl-38820421

OBJECTIVES: The current study aimed to investigate the impact of oxytocin on emotion recognition, trust, body image, affect, and anxiety and whether eating disorder (ED) symptoms moderated any of these relationships. METHOD: Participants (n = 149) were female university students, who were randomly allocated to receive in a double-blind nature, a single dose of oxytocin intranasal spray (n = 76) or a placebo (saline) intranasal spray (n = 73). Participants were asked to complete an experimental measure of emotion recognition and an investor task aimed to assess trust. RESULTS: The oxytocin group exhibited better overall performance on the emotion recognition task (especially with recognising positive emotions), and a decline in state positive affect than the control group at post-intervention. However, these effects were not moderated by ED symptom severity, nor were effects found for state anxiety, negative affect, body image and recognising negative emotions in the emotion recognition task. CONCLUSION: The current findings contribute to the growing literature on oxytocin, emotion recognition and positive affect and suggest that ED pathology does not moderate these relationships. Future research would benefit from examining the efficacy of an oxytocin intervention using a within-subjects, cross-over design, in those with sub-clinical and clinical EDs, as well as healthy controls.


Administration, Intranasal , Emotions , Feeding and Eating Disorders , Oxytocin , Trust , Humans , Oxytocin/administration & dosage , Oxytocin/pharmacology , Oxytocin/therapeutic use , Female , Emotions/drug effects , Young Adult , Trust/psychology , Adult , Double-Blind Method , Feeding and Eating Disorders/psychology , Feeding and Eating Disorders/drug therapy , Adolescent , Anxiety/drug therapy , Anxiety/psychology , Body Image/psychology , Recognition, Psychology/drug effects
3.
Neurobiol Learn Mem ; 212: 107939, 2024 Jul.
Article En | MEDLINE | ID: mdl-38762038

Recognizing and remembering another individual in a social context could be beneficial for individual fitness. Especially in agonistic encounters, remembering an opponent and the previous fight could allow for avoiding new conflicts. Considering this, we hypothesized that this type of social interaction forms a long-term recognition memory lasting several days. It has been shown that a second encounter 24 h later between the same pair of zebrafish males is resolved with lower levels of aggression. Here, we evaluated if this behavioral change could last for longer intervals and a putative mechanism associated with memory storage: the recruitment of NMDA receptors. We found that if a pair of zebrafish males fight and fight again 48 or 72 h later, they resolve the second encounter with lower levels of aggression. However, if opponents were exposed to MK-801 (NMDA receptor antagonist) immediately after the first encounter, they solved the second one with the same levels of aggression: that is, no reduction in aggressive behaviors was observed. These amnesic effect suggest the formation of a long-term social memory related to recognizing a particular opponent and/or the outcome and features of a previous fight.


Aggression , Dizocilpine Maleate , Memory Consolidation , Memory, Long-Term , Zebrafish , Animals , Zebrafish/physiology , Male , Aggression/physiology , Aggression/drug effects , Memory Consolidation/physiology , Memory Consolidation/drug effects , Dizocilpine Maleate/pharmacology , Memory, Long-Term/physiology , Memory, Long-Term/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Recognition, Psychology/physiology , Recognition, Psychology/drug effects , Social Behavior , Excitatory Amino Acid Antagonists/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology
4.
Behav Brain Res ; 469: 115051, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38777263

Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.


Dopamine Plasma Membrane Transport Proteins , Exploratory Behavior , Recognition, Psychology , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Motor Activity/drug effects , Motor Activity/physiology , Brain/metabolism , Brain/drug effects , Emotions/drug effects , Emotions/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Rats, Wistar
5.
Behav Brain Res ; 469: 115027, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38697302

Tamsulosin is an α1-adrenoceptor antagonist used to treat benign prostatic hyperplasia. This drug exhibits high affinity for α1A- and α1D-adrenoceptor subtypes, which are also expressed in the brain. While dementia symptoms have been reported after administration of tamsulosin in humans, studies on its effects on the rodent brain are still rare. The present study investigated the effects of tamsulosin (and biperiden, an amnesic drug) on cognitive performance in the object recognition task (ORT). Tamsulosin (0.001-0.01 mg/kg) was orally administrated in mice at three distinct time points: pre-training, post-training and pre-test session. Tamsulosin 0.01 mg/kg impaired object recognition regardless of when it was injected, whereas at lower doses did not affect mouse performance in the ORT. Biperiden also impaired acquisition and consolidation of object recognition in mice. Furthermore, the effects of tamsulosin on locomotion, motivation and anxiety were excluded as potential confounding factors. At all doses tested, tamsulosin did not alter distance moved, time spent exploring objects in the ORT, and anxiety-related behaviors in the elevated plus-maze test. By contrast, diazepam evoked a significant reduction of anxiety-like behaviours. In conclusion, tamsulosin impaired memory acquisition, consolidation and retrieval in an object recognition task in mice, thus affecting memory performance in a non-specific phase manner. These findings contribute to our understanding of the potential adverse effects of tamsulosin, and shed light on the role played by α1-adrenoceptors, particularly α1A- subtype, in cognitive processes.


Adrenergic alpha-1 Receptor Antagonists , Recognition, Psychology , Tamsulosin , Animals , Tamsulosin/pharmacology , Recognition, Psychology/drug effects , Male , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic alpha-1 Receptor Antagonists/administration & dosage , Mice , Memory Consolidation/drug effects , Mental Recall/drug effects , Sulfonamides/pharmacology , Sulfonamides/administration & dosage , Anxiety/chemically induced , Anxiety/drug therapy
6.
Pharmacol Res ; 203: 107176, 2024 May.
Article En | MEDLINE | ID: mdl-38583687

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Cannabidiol , Disease Models, Animal , Fragile X Syndrome , Hippocampus , Receptors, Cannabinoid , Recognition, Psychology , Animals , Fragile X Syndrome/drug therapy , Fragile X Syndrome/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Receptors, Cannabinoid/metabolism , Male , Recognition, Psychology/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Memory/drug effects , Receptors, G-Protein-Coupled/metabolism , Molecular Docking Simulation
7.
Neurochem Int ; 176: 105740, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636905

The benefits of physical exercise (PE) on memory consolidation have been well-documented in both healthy and memory-impaired animals. However, the underlying mechanisms through which PE exerts these effects are still unclear. In this study, we aimed to investigate the role of hippocampal protein synthesis in memory modulation by acute PE in rats. After novel object recognition (NOR) training, rats were subjected to a 30-min moderate-intensity acute PE on the treadmill, while control animals did not undergo any procedures. Using anisomycin (ANI) and rapamycin (RAPA), compounds that inhibit protein synthesis through different mechanisms, we manipulated protein synthesis in the CA1 region of the hippocampus to examine its contribution to memory consolidation. Memory was assessed on days 1, 7, and 14 post-training. Our results showed that inhibiting protein synthesis by ANI or RAPA impaired NOR memory consolidation in control animals. However, acute PE prevented this impairment without affecting memory persistence. We also evaluated brain-derived neurotrophic factor (BDNF) levels after acute PE at 0.5h, 2h, and 12h afterward and found no differences in levels compared to animals that did not engage in acute PE or were only habituated to the treadmill. Therefore, our findings suggest that acute PE could serve as a non-pharmacological intervention to enhance memory consolidation and prevent memory loss in conditions associated with hippocampal protein synthesis inhibition. This mechanism appears not to depend on BDNF synthesis in the early hours after exercise.


Amnesia , Anisomycin , Brain-Derived Neurotrophic Factor , Hippocampus , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Physical Conditioning, Animal/physiology , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Anisomycin/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/biosynthesis , Amnesia/metabolism , Amnesia/prevention & control , Protein Synthesis Inhibitors/pharmacology , Sirolimus/pharmacology , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Memory Consolidation/drug effects , Memory Consolidation/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
8.
J Psychiatr Res ; 174: 304-318, 2024 Jun.
Article En | MEDLINE | ID: mdl-38685188

Finasteride, a 5α-Reductase inhibitor, is used to treat male pattern baldness and benign prostatic hyperplasia. Several clinical studies show that chronic finasteride treatment induces persistent depression, suicidal thoughts and cognitive impairment and these symptoms are persistent even after its withdrawal. Previous results from our lab showed that repeated administration of finasteride for six days induces depression-like behavior. However, whether short-term finasteride administration induces anxiety-like behavior and memory impairment and alters synaptic plasticity are not known, which formed the basis of this study. Finasteride was administered to 2-2.5 months old male Wistar rats for six days and subjected to behavioral evaluation, biochemical estimation and synaptic plasticity assessment. Anxiety-like behavior was evaluated in the elevated plus maze (EPM), open field test (OFT), light/dark test (LDT), and novelty suppressed feeding test (NSFT), and learning and memory using novel object recognition test (NORT) and novel object location test (NOLT) and depression-like behavior in the sucrose preference test (SPT). Synaptic plasticity in the hippocampal Schaffer collateral-CA1 was evaluated using slice field potential recordings. Plasma corticosterone levels were estimated using ELISA. Finasteride administration induced anxiety-like behavior in the EPM, OFT, LDT and NSFT, and depression-like behavior in the SPT. Further, finasteride induced hippocampal dependent spatial learning and memory impairment in the NOLT. In addition, finasteride decreased basal synaptic plasticity and long-term potentiation (LTP) in the hippocampus. A trend of increased plasma corticosterone levels was observed following repeated finasteride administration. These results indicate the potential role of corticosterone and synaptic plasticity in finasteride-induced effects and further studies will pave way for the development of novel neurosteroid-based therapeutics in neuropsychiatric diseases.


5-alpha Reductase Inhibitors , Anxiety , Corticosterone , Depression , Finasteride , Neuronal Plasticity , Rats, Wistar , Animals , Male , Finasteride/pharmacology , Finasteride/administration & dosage , Finasteride/adverse effects , 5-alpha Reductase Inhibitors/pharmacology , 5-alpha Reductase Inhibitors/administration & dosage , 5-alpha Reductase Inhibitors/adverse effects , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Anxiety/chemically induced , Anxiety/physiopathology , Corticosterone/blood , Rats , Depression/chemically induced , Depression/drug therapy , Depression/physiopathology , Disease Models, Animal , Hippocampus/drug effects , Recognition, Psychology/drug effects
9.
Physiol Behav ; 281: 114549, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38604593

Maternal exposure to elevated levels of steroid hormones during pregnancy is associated with the development of chronic conditions in offspring that manifest in adulthood. However, the effects of progesterone (P4) administration during early pregnancy on fetal development and subsequent offspring behavior remain poorly understood. In this study, we aimed to investigate the effects of P4 treatment during early pregnancy on the transcript abundance in the fetal brain and assess the behavioral consequences in the offspring during adolescence and adulthood. Using RNA-seq analysis, we examined the impact of P4 treatment on the fetal brain transcriptome in a dosage-dependent manner. Our results revealed differential regulation of genes involved in neurotransmitter transport, synaptic transmission, and transcriptional regulation. Specifically, we observed bidirectional regulation of transcription factors (TFs) by P4 at different doses, highlighting the critical role of these TFs in neurodevelopment. To assess behavioral outcomes, we conducted open field and elevated plus maze tests. Offspring treated with low-dose P4 (LP4) displayed increased exploratory behavior during both adolescence and adulthood. In contrast, the high-dose P4 (HP4) group exhibited impaired exploration and heightened anxiety-like behaviors compared to the control mice. Moreover, in a novel object recognition test, HP4-treated offspring demonstrated impaired object recognition memory during both developmental stages. Additionally, both LP4 and HP4 groups showed reduced social interaction in the three-chamber test. These results suggest that prenatal exposure to P4 exerts a notable influence on the expression of genes associated with neurodevelopment and may induce alterations in behavioral characteristics in progeny, highlighting the need to monitor progesterone levels during pregnancy for long-term impacts on fetal brain development and behavior.


Behavior, Animal , Brain , Exploratory Behavior , Prenatal Exposure Delayed Effects , Progesterone , Transcriptome , Animals , Pregnancy , Progesterone/pharmacology , Female , Prenatal Exposure Delayed Effects/metabolism , Brain/drug effects , Brain/metabolism , Brain/growth & development , Mice , Transcriptome/drug effects , Male , Behavior, Animal/drug effects , Exploratory Behavior/drug effects , Anxiety , Mice, Inbred C57BL , Recognition, Psychology/drug effects , Progestins/pharmacology
10.
Brain Res ; 1835: 148929, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38599510

Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4ßδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4ßδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4ßδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density âˆ¼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4ßδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.


Dendritic Spines , Prefrontal Cortex , Receptors, GABA-A , Schizophrenia , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Animals , Receptors, GABA-A/metabolism , Male , Schizophrenia/metabolism , Mice , Dendritic Spines/metabolism , Dendritic Spines/drug effects , Mice, Knockout , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Mice, Inbred C57BL , Isoxazoles/pharmacology , Autistic Disorder/metabolism , Autistic Disorder/pathology , GABA-A Receptor Agonists/pharmacology , Autism Spectrum Disorder/metabolism , Recognition, Psychology/physiology , Recognition, Psychology/drug effects
11.
Exp Brain Res ; 242(5): 1175-1190, 2024 May.
Article En | MEDLINE | ID: mdl-38499659

Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.


Disease Models, Animal , Parkinsonian Disorders , Reserpine , Sleep Deprivation , Animals , Male , Reserpine/pharmacology , Sleep Deprivation/complications , Mice , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Catalepsy/chemically induced , Oxidative Stress/physiology , Oxidative Stress/drug effects , Tyrosine 3-Monooxygenase/metabolism , Motor Activity/physiology , Motor Activity/drug effects , Recognition, Psychology/physiology , Recognition, Psychology/drug effects , Anhedonia/physiology , Anhedonia/drug effects
12.
Horm Behav ; 161: 105501, 2024 May.
Article En | MEDLINE | ID: mdl-38368844

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.


Anabolic Agents , Memory Disorders , Nandrolone , Rats, Wistar , Testosterone , Animals , Male , Testosterone/blood , Testosterone/analogs & derivatives , Rats , Nandrolone/analogs & derivatives , Nandrolone/pharmacology , Anabolic Agents/adverse effects , Anabolic Agents/pharmacology , Memory Disorders/chemically induced , Organ Size/drug effects , Trenbolone Acetate/pharmacology , Nandrolone Decanoate/pharmacology , Body Weight/drug effects , Corticosterone/blood , Recognition, Psychology/drug effects
13.
Eur J Neurosci ; 59(9): 2260-2275, 2024 May.
Article En | MEDLINE | ID: mdl-38411499

The anterior retrosplenial cortex (aRSC) integrates multimodal sensory information into cohesive associative recognition memories. Little is known about how information is integrated during different learning phases (i.e., encoding and retrieval). Additionally, sex differences are observed in performance of some visuospatial memory tasks; however, inconsistent findings warrant more research. We conducted three experiments using the 1-h delay object-in-place (1-h OiP) test to assess recognition memory retrieval in male and female Long-Evans rats. (i) We found both sexes performed equally in three repeated 1-h OiP test sessions. (ii) We showed infusions of a mixture of muscimol/baclofen (GABAA/B receptor agonists) into the aRSC ~15-min prior to the test phase disrupted 1-h OiP in both sexes. (iii) We assessed the role of aRSC ionotropic glutamate receptors in 1-h OiP retrieval using another squad of cannulated rats and confirmed that infusions of either the competitive AMPA/Kainate receptor antagonist CNQX (3 mM) or competitive NMDA receptor antagonist AP-5 (30 mM) (volumes = 0.50 uL/side) significantly impaired 1-h OiP retrieval in both sexes compared to controls. Taken together, findings challenge reported sex differences and clearly establish a role for aRSC ionotropic glutamate receptors in short-term visuospatial recognition memory retrieval. Thus, modulating neural activity in the aRSC may alleviate some memory processing impairments in related disorders.


Muscimol , Rats, Long-Evans , Recognition, Psychology , Animals , Male , Female , Rats , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Muscimol/pharmacology , GABA-A Receptor Agonists/pharmacology , Baclofen/pharmacology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Receptors, Ionotropic Glutamate/metabolism , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Mental Recall/drug effects , Mental Recall/physiology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Sex Characteristics , GABA-B Receptor Agonists/pharmacology
14.
Cereb Cortex ; 33(8): 4806-4814, 2023 04 04.
Article En | MEDLINE | ID: mdl-36156637

The medial prefrontal cortex (mPFC) has been implicated in regulating resistance to the effects of acute uncontrollable stress. We previously showed that mPFC-lesioned animals exhibit impaired object recognition memory after acute exposure to a brief stress that had no effect in normal animals. Here, we used designer receptors exclusively activated by designer drugs to determine how modulating mPFC activity affects recognition-memory performance under stressful conditions. Specifically, animals with chemogenetic excitation or inhibition of the mPFC underwent either a brief ineffective stress (20-min restraint + 20 tail shocks) or a prolonged effective stress (60-min restraint + 60 tail shocks). Subsequent recognition memory tests showed that animals with chemogenetic mPFC inhibition exposed to brief stress showed impairment in an object recognition memory task, whereas those with chemogenetic mPFC excitation exposed to prolonged stress did not. Thus, the present findings the decreased mPFC activity exacerbates acute stress effects on memory function whereas increased mPFC activity counters these stress effects provide evidence that the mPFC bidirectionally modulates stress resistance.


Cognitive Dysfunction , Memory , Prefrontal Cortex , Recognition, Psychology , Stress, Physiological , Stress, Psychological , Animals , Male , Rats , Clozapine/analogs & derivatives , Clozapine/pharmacology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/prevention & control , Electroshock/psychology , Memory/drug effects , Memory/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Restraint, Physical/physiology , Stress, Physiological/physiology , Stress, Psychological/complications , Stress, Psychological/physiopathology , Time Factors
15.
Proc Natl Acad Sci U S A ; 119(22): e2203680119, 2022 05 31.
Article En | MEDLINE | ID: mdl-35622887

Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.


Basolateral Nuclear Complex , Emotions , Insular Cortex , Neural Inhibition , Recognition, Psychology , Visual Perception , Animals , Arousal , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Emotions/drug effects , Emotions/physiology , GABA Agonists/pharmacology , Insular Cortex/drug effects , Insular Cortex/physiology , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Norepinephrine/administration & dosage , Norepinephrine/pharmacology , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Visual Perception/physiology
16.
Mol Cell Neurosci ; 120: 103719, 2022 05.
Article En | MEDLINE | ID: mdl-35283305

Pattern separation is a hippocampal process in which highly similar stimuli are recognized as separate representations, and deficits could lead to memory impairments in neuropsychiatric disorders such as schizophrenia. The 5-HT1A receptor (5-HT1AR) is believed to be involved in these hippocampal pattern separation processes. However, in the dorsal raphe nucleus (DRN), the 5-HT1AR is expressed as a somatodendritic autoreceptor, negatively regulates serotonergic signaling, and could thereby counteract the effects of hippocampal postsynaptic 5-HT1A receptors. Therefore, this study aims to identify how pre- and post-synaptic 5-HT1AR activity affects pattern separation. Object pattern separation (OPS) performance was measured in male Wistar rats after both acute and chronic treatment (i.p.) with 5-HT1AR biased agonists F13714 (0.0025 mg/kg acutely, 0.02 mg/kg/day chronically) or NLX-101 (0.08 mg/kg acutely, 0.32 mg/kg/day chronically), which preferentially activate autoreceptors or postsynaptic receptors respectively, for 14 days. Body temperature - a functional correlate of hypothalamic 5-HT1AR stimulation - was measured daily. Additionally, 5-HT1AR density (DRN) and plasticity markers (hippocampus) were assessed. Acute treatment with F13714 impaired OPS performance, whereas chronic treatment normalized this, and a drop in body temperature was found from day 4 onwards. NLX-101 enhanced OPS performance acutely and chronically, and caused an acute drop in body temperature. Chronic NLX-101 treatment increased doublecortin positive neurons in the dorsal hippocampus, while chronic treatment with F13714 resulted in a downregulation of 5-HT1A autoreceptors, which likely reversed the acute impairment in OPS performance. Chronic treatment with NLX-101 appears to have therapeutic potential to improve brain plasticity and OPS performance.


Aminopyridines , Autoreceptors , Hippocampus , Neuronal Plasticity , Pattern Recognition, Physiological , Piperidines , Pyrimidines , Receptor, Serotonin, 5-HT1A , Recognition, Psychology , Serotonin 5-HT1 Receptor Agonists , Aminopyridines/pharmacology , Animals , Autoreceptors/physiology , Hippocampus/drug effects , Hippocampus/physiology , Male , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Pattern Recognition, Physiological/drug effects , Pattern Recognition, Physiological/physiology , Piperidines/pharmacology , Pyrimidines/pharmacology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Agonists/therapeutic use
17.
Brain Res Bull ; 181: 144-156, 2022 04.
Article En | MEDLINE | ID: mdl-35066096

Hyaluronan (HA) is a core constituent of perineuronal nets (PNNs) that surround subpopulations of neurones. The PNNs control synaptic stabilization in both the developing and adult central nervous system, and disruption of PNNs has shown to reactivate neuroplasticity. We investigated the possibility of memory prolongation by attenuating PNN formation using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. Adult C57BL/6 mice were fed with chow containing 5% (w/w) 4-MU for 6 months, at a dose ~6.7 mg/g/day. The oral administration of 4-MU reduced the glycosaminoglycan level in the brain to 72% and the spinal cord to 50% when compared to the controls. Spontaneous object recognition test (SOR) performed at 2, 3, 6 and 7 months showed a significant increase in SOR score in the 6-months treatment group 24 h after object presentation. The effect however did not persist in the washout group (1-month post treatment). Immunohistochemistry confirmed a reduction of PNNs, with shorter and less arborization of aggrecan staining around dendrites in hippocampus after 6 months of 4-MU treatment. Histopathological examination revealed mild atrophy in articular cartilage but it did not affect the motor performance as demonstrated in rotarod test. In conclusion, systemic oral administration of 4-MU for 6 months reduced PNN formation around neurons and enhanced memory retention in mice. However, the memory enhancement was not sustained despite the reduction of PNNs, possibly due to the lack of memory enhancement training during the washout period. Our results suggest that 4-MU treatment might offer a strategy for PNN modulation in memory enhancement.


Aggrecans/drug effects , Central Nervous System/drug effects , Extracellular Matrix/drug effects , Hyaluronic Acid/metabolism , Hymecromone/pharmacology , Neuronal Plasticity/drug effects , Oligodendroglia/drug effects , Recognition, Psychology/drug effects , Administration, Oral , Animals , Behavior, Animal/drug effects , Female , Hymecromone/administration & dosage , Male , Mice , Mice, Inbred C57BL
18.
Sci Rep ; 12(1): 249, 2022 01 07.
Article En | MEDLINE | ID: mdl-34997032

Older adult patients with sepsis frequently experience cognitive impairment. The roles of brain neutrophil gelatinase-associated lipocalin (NGAL) and iron in older sepsis patients remain unknown. We investigated the effects of lipopolysaccharide-induced sepsis on novel object recognition test, NGAL levels, an inflammatory mediator tumor necrosis factor-α (TNFα) levels, and iron ion levels in the hippocampus and cortex of young and aged rats. The effect of an iron chelator deferoxamine pretreatment on aged sepsis rats was also examined. Young sepsis-survivor rats did not show impaired novel object recognition, TNFα responses, or a Fe2+/Fe3+ imbalance. They showed hippocampal and cortical NGAL level elevations. Aged sepsis-survivor rats displayed a decreased object discrimination index, elevation of NGAL levels and Fe2+/Fe3+ ratio, and no TNFα responses. Pretreatment with deferoxamine prevented the reduction in the object recognition of aged sepsis-survivor rats. The elevation in hippocampal and cortical NGAL levels caused by lipopolysaccharide was not influenced by deferoxamine pretreatment. The lipopolysaccharide-induced Fe2+/Fe3+ ratio elevation was blocked by deferoxamine pretreatment. In conclusion, our findings suggest that iron homeostasis in the cortex and hippocampus contributes to the maintenance of object recognition ability in older sepsis survivors.


Behavior, Animal , Brain/enzymology , Cognitive Dysfunction/enzymology , Iron/metabolism , Lipocalin-2/metabolism , Recognition, Psychology , Sepsis/enzymology , Age Factors , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/psychology , Deferoxamine/pharmacology , Disease Models, Animal , Homeostasis , Male , Open Field Test , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Sepsis/drug therapy , Sepsis/physiopathology , Sepsis/psychology , Siderophores/pharmacology , Tumor Necrosis Factor-alpha/metabolism
19.
Brain Res Bull ; 178: 120-130, 2022 01.
Article En | MEDLINE | ID: mdl-34838642

In addition to motor dysfunction, cognitive impairments have been reported to occur in patients with early-stage Parkinson's disease (PD). In this study, we examined a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This treatment led to the degeneration of nigrostriatal dopaminergic neurons in mice, a phenomenon that is consistent with previous studies. Besides, spatial memory and object recognition of MPTP-treated mice were impaired, as denoted by the Morris water maze (MWM) and novel object recognition (NOR) tests, respectively. Moreover, hippocampal synaptic plasticity (long-term potentiation and depotentiation) and the levels of synaptic proteins in hippocampus were decreased after MPTP treatment. We also found that MPTP resulted in the microglial activation and an inflammatory response in the striatum and hippocampus. Mammalian asparagine endopeptidase (AEP), a cysteine lysosomal protease, is involved in the cleavage and activation of Toll-like receptors (TLRs). The deletion of AEP can inhibit TLR4 in a mouse model of Alzheimer's disease, and TLR4 is upregulated in PD, inducing microglial activation and inflammation. We found that AEP deletion provided greater resistance to the toxic effects of MPTP. AEP knockout ameliorated the cognition and the synaptic plasticity defects in the hippocampus. Furthermore, AEP deletion decreased the expression of TLR4 and reduced microglial activation and the levels of several proinflammatory cytokines. Thus, we suggest that AEP plays a role in the inflammation induced by MPTP, and TLR4 might also involve in this process. AEP deletion could be a possible treatment strategy for the cognitive deficits of PD.


1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Cognitive Dysfunction/chemically induced , Cysteine Endopeptidases/metabolism , Dopamine Agents/pharmacology , Dopaminergic Neurons/drug effects , MPTP Poisoning , Neuroinflammatory Diseases/chemically induced , Neuronal Plasticity/drug effects , Toll-Like Receptor 4/drug effects , Animals , Behavior, Animal/drug effects , Disease Models, Animal , MPTP Poisoning/metabolism , MPTP Poisoning/physiopathology , Mice , Mice, Knockout , Recognition, Psychology/drug effects , Spatial Learning/drug effects , Spatial Memory/drug effects
20.
Behav Brain Res ; 416: 113576, 2022 01 07.
Article En | MEDLINE | ID: mdl-34506840

Patients with chronic pain often complain about memory impairments. Experimental studies have shown neuroprotective effects of Carbamylated erythropoietin (Cepo-Fc) in the treatment of cognitive dysfunctions. However, little is currently known about its precise molecular mechanisms in a model of inflammatory pain. Therefore, this study aimed to investigate neuroprotective effects of Cepo-Fc against cognitive impairment induced by the inflammatory model of Complete Freund's Adjuvant (CFA). Carbamylated erythropoietin was administrated Intraperitoneally (i.p) on the day CFA injection, continued for a 21-days period. After conducting the behavioral tests (thermal hyperalgesia and novel object recognition test), western blot and ELISA were further preformed on days 0, 7, and 21. The results of this study indicate that Cepo-Fc can effectively reverse the CFA induced thermal hyperalgesia and recognition memory impairment. Additionally, Cepo-Fc noticeably decreased the hippocampal microglial expression, production of hippocampal IL-1ß, and hippocampal apoptosis and necroptosis induced by the inflammatory pain. Therefore, our findings suggest that neuroprotective effects of Cepo-Fc in the treatment of pain related recognition memory impairment may be mediated through reducing hippocampal microglial expression as well as IL-1ß production.


Erythropoietin/analogs & derivatives , Freund's Adjuvant/pharmacology , Memory/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Pain/metabolism , Recognition, Psychology/drug effects , Animals , Disease Models, Animal , Erythropoietin/pharmacology , Hippocampus/metabolism , Hyperalgesia/chemically induced , Male , Memory Disorders/prevention & control , Rats
...