Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.286
Filter
1.
Front Immunol ; 15: 1392043, 2024.
Article in English | MEDLINE | ID: mdl-38962015

ABSTRACT

In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Vivax , Mice, Inbred BALB C , Plasmodium vivax , Protozoan Proteins , Animals , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Disease Models, Animal , Adjuvants, Immunologic , Immunogenicity, Vaccine , Antigens, Surface
2.
J Biotechnol ; 391: 57-63, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38851397

ABSTRACT

Antigen-presenting cells (APCs) play an important role in virus infection control by bridging innate and adaptive immune responses. Macrophages and dendritic cells (DCs) possess various surface receptors to recognize/internalize antigens, and antibody binding can enhance pathogen-opsonizing uptake by these APCs via interaction of antibody fragment crystallizable (Fc) domains with Fc receptors, evoking profound pathogen control in certain settings. Here, we examined phagocytosis-enhancing potential of Fc domains directly oriented on a retroviral virion/virus-like particle (VLP) surface. We generated an expression vector coding a murine Fc fragment fused to the transmembrane region (TM) of a retroviral envelope protein, deriving expression of the Fc-TM fusion protein on the transfected cell surface and production of virions incorporating the chimeric Fc upon co-transfection. Incubation of Fc-displaying simian immunodeficiency virus (SIV) with murine J774 macrophages and bone marrow-derived DCs derived Fc receptor-dependent enhanced uptake, being visualized by imaging cytometry. Alternative preparation of a murine leukemia virus (MLV) backbone-based Fc-displaying VLP loading an influenza virus hemagglutinin (HA) antigen resulted in enhanced HA internalization by macrophages, stating antigen compatibility of the design. Results show that the Fc-TM fusion molecule can be displayed on certain viruses/VLPs and may be utilized as a molecular adjuvant to facilitate APC antigen uptake.


Subject(s)
Antigen-Presenting Cells , Dendritic Cells , Immunoglobulin Fc Fragments , Virion , Animals , Mice , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Virion/metabolism , Virion/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Macrophages/metabolism , Macrophages/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/immunology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Cell Line , Leukemia Virus, Murine/genetics , Phagocytosis , Humans
3.
J Microbiol Biotechnol ; 34(6): 1222-1228, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38783697

ABSTRACT

Protein-specific antibodies are essential for various aspects of protein research, including detection, purification, and characterization. When specific antibodies are unavailable, protein tagging is a useful alternative. Small epitope tags, typically less than 10 amino acids, are widely used in protein research due to the simple modification through PCR and reduced impact on the target protein's function compared to larger tags. The 2B8 epitope tag (RDPLPFFPP), reported by us in a previous study, has high specificity and sensitivity to the corresponding antibody. However, when attached to the C-terminus of the target protein in immunoprecipitation experiments, we observed a decrease in detection signal with reduced immunity and low protein recovery. This phenomenon was not unique to 2B8 and was also observed with the commercially available Myc tag. Our study revealed that C-terminal tagging of small epitope tags requires the addition of more than one extra amino acid to enhance (restore) antibody immunities. Moreover, among the amino acids we tested, serine was the best for the 2B8 tag. Our findings demonstrated that the interaction between a small epitope and a corresponding paratope of an antibody requires an extra amino acid at the C-terminus of the epitope. This result is important for researchers planning studies on target proteins using small epitope tags.


Subject(s)
Amino Acids , Epitopes , Epitopes/immunology , Animals , Antibodies/immunology , Antibodies/metabolism , Mice , Immunoprecipitation , Antibody Formation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/chemistry
4.
Vaccine ; 42(18): 3774-3788, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38714443

ABSTRACT

Interleukin-1ß (IL-1ß) contributes to interstitial lung disease (ILD) and pulmonary fibrosis (PF), thus representing a potential therapeutic target for PF. In this study, we first verified the increased expression of IL-1ß in human fibrotic lung specimens and mouse lung tissues after intratracheal (i.t.) instillation of bleomycin (BLM), after which the pro-inflammatory and pro-fibrotic effects of recombinant IL-1ß were tested in mice. The results above suggested that vaccination against IL-1ß could be an effective strategy for managing PF. An anti-IL-1ß vaccine (PfTrx-IL-1ß) was designed by incorporating two IL-1ß-derived polypeptides, which have been verified as the key domains that mediate the binding of IL-1ß to its type I receptor, into Pyrococcus furiosus thioredoxin (PfTrx). The fusion protein PfTrx-IL-1ß was prepared by using E. coli expression system. The vaccine was well tolerated; it induced robust and long-lasting antibody responses in mice and neutralized the biological activity of IL-1ß, as shown in cellular assays. Pre-immunization with PfTrx-IL-1ß effectively protected mice from BLM-induced lung injury, inflammation, and fibrosis. In vitro experiments further showed that anti-PfTrx-IL-1ß antibodies counteracted the effects of IL-1ß concerning pro-inflammatory and pro-fibrotic cytokine production by primary mouse lung fibroblast, macrophages (RAW264.7), and type II alveolar epithelial cell (A549), primary mouse lung fibroblast activation and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells. In addition, the vaccination did not compromise the anti-infection immunity in mice, as validated by a sepsis model. Our preliminary study suggests that the anti-IL-1ß vaccine we prepared has the potential to be developed as a therapeutic measure for PF. Further experiments are warranted to evaluate whether IL-1ß vaccination has the capacity of inhibiting chronic progressive PF and reversing established PF.


Subject(s)
Bleomycin , Interleukin-1beta , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/chemically induced , Interleukin-1beta/immunology , Mice , Humans , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Lung/pathology , Lung/immunology , Disease Models, Animal , Female , Mice, Inbred C57BL , Recombinant Fusion Proteins/immunology , Thioredoxins/immunology
5.
Int J Biol Macromol ; 270(Pt 2): 132236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768924

ABSTRACT

Antigen presenting cells (APCs)-derived exosomes are nano-vesicles that can induce antigen-specific T cell responses, and possess therapeutic effects in clinical settings. Moreover, dendritic cells (DCs)-based vaccines have been developed to combat human immunodeficiency virus-1 (HIV-1) infection in preclinical and clinical trials. We investigated the immunostimulatory effects (B- and T-cells activities) of DCs- and exosomes-based vaccine constructs harboring HIV-1 Nefmut-Tat fusion protein as an antigen candidate and heat shock protein 70 (Hsp70) as an adjuvant in mice. The modified DCs and engineered exosomes harboring Nefmut-Tat protein or Hsp70 were prepared using lentiviral vectors compared to electroporation, characterized and evaluated by in vitro and in vivo immunological tests. Our data indicated that the engineered exosomes induced high levels of total IgG, IgG2a, IFN-γ, TNF-α and Granzyme B. Moreover, co-injection of exosomes harboring Hsp70 could significantly increase the secretion of antibodies, cytokines and Granzyme B. The highest levels of IFN-γ and TNF-α were observed in exosomes harboring Nefmut-Tat combined with exosomes harboring Hsp70 (Exo-Nefmut-Tat + Exo-Hsp70) regimen after single-cycle replicable (SCR) HIV-1 exposure. Generally, Exo-Nefmut-Tat + Exo-Hsp70 regimen can be considered as a promising safe vaccine candidate due to high T-cells (Th1 and CTL) activity and its maintenance against SCR HIV-1 exposure.


Subject(s)
AIDS Vaccines , Dendritic Cells , Exosomes , HIV-1 , HSP70 Heat-Shock Proteins , nef Gene Products, Human Immunodeficiency Virus , tat Gene Products, Human Immunodeficiency Virus , Exosomes/immunology , Exosomes/metabolism , Dendritic Cells/immunology , Animals , HIV-1/immunology , HIV-1/genetics , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/genetics , AIDS Vaccines/immunology , nef Gene Products, Human Immunodeficiency Virus/immunology , nef Gene Products, Human Immunodeficiency Virus/genetics , Mice , tat Gene Products, Human Immunodeficiency Virus/immunology , tat Gene Products, Human Immunodeficiency Virus/genetics , Humans , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Female , HIV Infections/immunology , HIV Infections/prevention & control , Cytokines/metabolism
6.
Diagn Microbiol Infect Dis ; 109(3): 116338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718661

ABSTRACT

The diagnosis if leprosy is difficult, as it requires clinical expertise and sensitive laboratory tests. In this study, we develop a serological test for leprosy by using bioinformatics tools to identify specific B-cell epitopes from Mycobacterium leprae hypothetical proteins, which were used to construct a recombinant chimeric protein, M1. The synthetic peptides were obtained and showed good reactivity to detect leprosy patients, although the M1 chimera have showed sensitivity (Se) and specificity (Sp) values higher than 90.0% to diagnose both paucibacillary (PB) and multibacillary (MB) leprosy patients, but not those developing tegumentary or visceral leishmaniasis, tuberculosis, Chagas disease, malaria, histoplasmosis and aspergillosis, in ELISA experiments. Using sera from household contacts, values for Se and Sp were 100% and 65.3%, respectively. In conclusion, our proof-of-concept study has generated data that suggest that a new recombinant protein could be developed into a diagnostic antigen for leprosy.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Epitopes, B-Lymphocyte , Leprosy , Mycobacterium leprae , Sensitivity and Specificity , Humans , Mycobacterium leprae/immunology , Mycobacterium leprae/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Leprosy/diagnosis , Leprosy/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Enzyme-Linked Immunosorbent Assay/methods , Adult , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Male , Female , Serologic Tests/methods , Computational Biology/methods , Middle Aged , Young Adult , Adolescent
7.
Dokl Biochem Biophys ; 516(1): 53-57, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700816

ABSTRACT

Study of CD4+ T cell response and T cell receptor (TCR) specificity is crucial for understanding etiology of immune-mediated diseases and developing targeted therapies. However, solubility, accessibility, and stability of synthetic antigenic peptides used in T cell assays may be a critical point in such studies. Here we present a T cell activation reporter system using recombinant proteins containing antigenic epitopes fused with bacterial thioredoxin (trx-peptides) and obtained by bacterial expression. We report that co-incubation of CD4+ HA1.7 TCR+ reporter Jurkat 76 TRP cells with CD80+ HLA-DRB1*01:01+ HeLa cells or CD4+ Ob.1A12 TCR+ Jurkat 76 TRP with CD80+ HLA-DRB1*15:01+ HeLa cells resulted in activation of reporter Jurkat 76 TPR after addition of recombinant trx-peptide fusion proteins, containing TCR-specific epitopes. Trx-peptides were comparable with corresponding synthetic peptides in their capacity to activate Jurkat 76 TPR. These data demonstrate that thioredoxin as a carrier protein (trx) for antigenic peptides exhibits minimal interference with recognition of MHC-specific peptides by TCRs and consequent T cell activation. Our findings highlight potential feasibility of trx-peptides as a reagent for assessing the immunogenicity of antigenic fragments.


Subject(s)
CD4-Positive T-Lymphocytes , Peptides , Receptors, Antigen, T-Cell , Recombinant Fusion Proteins , Thioredoxins , Humans , Thioredoxins/immunology , Thioredoxins/genetics , Jurkat Cells , CD4-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Peptides/pharmacology , Peptides/immunology , Peptides/chemistry , Lymphocyte Activation/drug effects , HeLa Cells
8.
Antiviral Res ; 227: 105917, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782067

ABSTRACT

The Fc-fused receptor binding domain (RBD-Fc) vaccine for SARS-CoV-2 has garnered significant attention for its capacity to provide effective and specific immune protection. However, its immunogenicity is limited, highlighting the need for improvement in clinical application. Nanoparticle delivery has been shown to be an effective method for enhancing antigen immunogenicity. In this study, we developed bivalent nanoparticle recombinant protein vaccines by assembling the RBD-Fc of SARS-CoV-2 and Fc-binding homo-oligomers o42.1 and i52.3 into octahedral and icosahedral nanoparticles. The formation of RBD-Fc nanoparticles was confirmed through structural characterization and cell binding experiments. Compared to RBD-Fc dimers, the nanoparticle vaccines induced more potent neutralizing antibodies (nAb) and stronger cellular immune responses. Therefore, using bivalent nanoparticle vaccines based on RBD-Fc presents a promising vaccination strategy against SARS-CoV-2 and offers a universal approach for enhancing the immunogenicity of Fc fusion protein vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin Fc Fragments , Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Nanoparticles/chemistry , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/chemistry , COVID-19/prevention & control , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Animals , Mice , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/chemistry , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Female , Protein Multimerization , Mice, Inbred BALB C , Vaccine Development , Protein Binding , Immunogenicity, Vaccine , Immunity, Cellular , Nanovaccines
9.
Tuberculosis (Edinb) ; 147: 102505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583359

ABSTRACT

Leprosy diagnosis is difficult due to the clinical similarity with other infectious diseases, and laboratory tests presents problems related to sensitivity and/or specificity. In this study, we used bioinformatics to assess Mycobacterium leprae proteins and formulated a chimeric protein that was tested as a diagnostic marker for the disease. The amino acid sequences from ML0008, ML0126, ML0308, ML1057, ML2028, ML2038, ML2498 proteins were evaluated, and the B-cell epitopes QASVAYPATSYADFRAHNHWWNGP, SLQRSISPNSYNTARVDP and QLLGQTADVAGAAKSGPVQPMGDRGSVSPVGQ were considered M. leprae-specific and used to construct the gene encoding the recombinant antigen. The gene was constructed, the recombinant protein was expressed, purified and tested in ELISA using 252 sera, which contained samples from multibacillary (MB) or paucibacillary (PB) leprosy patients, from their household contacts and healthy individuals, as well as from patients with Chagas disease, visceral and tegumentary leishmaniases (VL/TL), malaria, tuberculosis, and HIV. Sensitivity (Se) and specificity (Sp) for MB and PB samples compared to sera from both healthy subjects and individuals with cross-reactive diseases were 100%. The Se value for MB and PB samples compared to sera from household contacts was 100%, but Sp was 64%. In conclusion, data suggest that this protein could be considered in future studies for leprosy diagnosis.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte , Leprosy, Multibacillary , Leprosy, Paucibacillary , Mycobacterium leprae , Serologic Tests , Mycobacterium leprae/immunology , Mycobacterium leprae/genetics , Humans , Epitopes, B-Lymphocyte/immunology , Serologic Tests/methods , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Leprosy, Paucibacillary/diagnosis , Leprosy, Paucibacillary/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Leprosy, Multibacillary/diagnosis , Leprosy, Multibacillary/immunology , Antibodies, Bacterial/blood , Recombinant Fusion Proteins/immunology , Predictive Value of Tests , Female , Male , Sensitivity and Specificity , Recombinant Proteins/immunology , Recombinant Proteins/genetics
10.
Immunol Cell Biol ; 102(5): 365-380, 2024.
Article in English | MEDLINE | ID: mdl-38572664

ABSTRACT

Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.


Subject(s)
Bacterial Proteins , Staphylococcal Infections , Staphylococcal Vaccines , Staphylococcus aureus , Superantigens , Animals , Staphylococcus aureus/immunology , Staphylococcal Vaccines/immunology , Superantigens/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/prevention & control , Mice , Bacterial Proteins/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Female , Recombinant Fusion Proteins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Feasibility Studies , Vaccination , Antigens, Bacterial/immunology , Mice, Inbred BALB C , Adjuvants, Immunologic
11.
Vaccine ; 42(15): 3474-3485, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38641492

ABSTRACT

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) vaccines have been long overdue. Structure-based vaccine design created a new momentum in the last decade, and the first RSV vaccines have finally been approved in older adults and pregnant individuals. These vaccines are based on recombinant stabilized pre-fusion F glycoproteins administered as soluble proteins. Multimeric antigenic display could markedly improve immunogenicity and should be evaluated in the next generations of vaccines. Here we tested a new virus like particles-based vaccine platform which utilizes the direct fusion of an immunogen of interest to the structural human immunodeficient virus (HIV) protein Gag to increase its surface density and immunogenicity. We compared, in mice, the immunogenicity of RSV-F or hMPV-F based immunogens delivered either as soluble proteins or displayed on the surface of our VLPs. VLP associated F-proteins showed better immunogenicity and induced superior neutralizing responses. Moreover, when combining both VLP associated and soluble immunogens in a heterologous regimen, VLP-associated immunogens provided added benefits when administered as the prime immunization.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Metapneumovirus , Mice, Inbred BALB C , Vaccines, Virus-Like Particle , Viral Fusion Proteins , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Metapneumovirus/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Female , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , Respiratory Syncytial Virus, Human/immunology , Immunogenicity, Vaccine , Humans , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage
12.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673969

ABSTRACT

This study presents an evaluation of seventeen newly produced recombinant trivalent chimeric proteins (containing the same immunodominant fragment of SAG1 and SAG2 of Toxoplasma gondii antigens, and an additional immunodominant fragment of one of the parasite antigens, such as AMA1, GRA1, GRA2, GRA5, GRA6, GRA7, GRA9, LDH2, MAG1, MIC1, MIC3, P35, and ROP1) as a potential alternative to the whole-cell tachyzoite lysate (TLA) used in the detection of infection in small ruminants. These recombinant proteins, obtained by genetic engineering and molecular biology methods, were tested for their reactivity with specific anti-Toxoplasma IgG antibodies contained in serum samples of small ruminants (192 samples of sheep serum and 95 samples of goat serum) using an enzyme-linked immunosorbent assay (ELISA). The reactivity of six recombinant trivalent chimeric proteins (SAG1-SAG2-GRA5, SAG1-SAG2-GRA9, SAG1-SAG2-MIC1, SAG1-SAG2-MIC3, SAG1-SAG2-P35, and SAG1-SAG2-ROP1) with IgG antibodies generated during T. gondii invasion was comparable to the sensitivity of TLA-based IgG ELISA (100%). The obtained results show a strong correlation with the results obtained for TLA. This suggests that these protein preparations may be a potential alternative to TLA used in commercial tests and could be used to develop a cheaper test for the detection of parasite infection in small ruminants.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Goats , Immunoglobulin G , Toxoplasma , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Immunoglobulin G/immunology , Immunoglobulin G/blood , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Sheep , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/parasitology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Sheep Diseases/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Goat Diseases/parasitology , Goat Diseases/diagnosis , Goat Diseases/immunology
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583815

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy is regarded as a potent immunotherapy and has made significant success in hematologic malignancies by eliciting antigen-specific immune responses. However, response rates of CAR-T cell therapy against solid tumors with immunosuppressive microenvironments remain limited. Co-engineering strategies are advancing methods to overcome immunosuppressive barriers and enhance antitumor responses. Here, we engineered an IL-2 mutein co-engineered CAR-T for the improvement of CAR-T cells against solid tumors and the efficient inhibition of solid tumors. We equipped the CAR-T cells with co-expressing both tumor antigen-targeted CAR and a mutated human interleukin-2 (IL-2m), conferring enhanced CAR-T cells fitness in vitro, reshaped immune-excluded TME, enhanced CAR-T infiltration in solid tumors, and improved tumor control without significant systemic toxicity. Overall, this subject demonstrates the universal CAR-T cells armed strategy for the development and optimization of CAR-T cells against solid tumors.


Subject(s)
Immunotherapy, Adoptive , Interleukin-2 , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Interleukin-2/genetics , Interleukin-2/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Animals , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays
14.
Cancer Res ; 84(10): 1550-1559, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38381555

ABSTRACT

Lipid nanoparticle (LNP)-encapsulated mRNA has been used for in vivo production of several secreted protein classes, such as IgG, and has enabled the development of personalized vaccines in oncology. Establishing the feasibility of delivering complex multispecific modalities that require higher-order structures important for their function could help expand the use of mRNA/LNP biologic formulations. Here, we evaluated whether in vivo administration of mRNA/LNP formulations of SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT could achieve oligomerization and extend exposure, on-target activity, and antitumor responses comparable with that of the corresponding recombinant fusion proteins. Intravenous infusion of the formulated LNP-encapsulated mRNAs led to rapid and sustained production of functional hexameric proteins in vivo, which increased the overall exposure relative to the recombinant protein controls by ∼28 to 140 fold over 96 hours. High concentrations of the mRNA-encoded proteins were also observed in secondary lymphoid organs and within implanted tumors, with protein concentrations in tumors up to 134-fold greater than with the recombinant protein controls 24 hours after treatment. In addition, SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT mRNAs induced a greater increase in antigen-specific CD8+ T cells in the tumors. These mRNA/LNP formulations were well tolerated and led to a rapid increase in serum and intratumoral IL2, delayed tumor growth, extended survival, and outperformed the activities of benchmark mAb controls. Furthermore, the mRNA/LNPs demonstrated improved efficacy in combination with anti-PD-L1 relative to the recombinant fusion proteins. These data support the delivery of complex oligomeric biologics as mRNA/LNP formulations, where high therapeutic expression and exposure could translate into improved patient outcomes. SIGNIFICANCE: Lipid nanoparticle-encapsulated mRNA can efficiently encode complex fusion proteins encompassing immune checkpoint blockers and costimulators that functionally oligomerize in vivo with extended pharmacokinetics and durable exposure to induce potent antitumor immunity.


Subject(s)
Nanoparticles , RNA, Messenger , Recombinant Fusion Proteins , Animals , Mice , RNA, Messenger/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , Nanoparticles/chemistry , Humans , Female , Mice, Inbred C57BL , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Lipids/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Cell Line, Tumor
15.
J Virol ; 98(2): e0154623, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38299865

ABSTRACT

Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.


Subject(s)
Bacterial Proteins , COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Lipids , Recombinant Fusion Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Cricetinae , Mice , Adjuvants, Immunologic , Antibodies, Viral/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Dendritic Cells/immunology , Disease Models, Animal , Receptors, IgG/classification , Receptors, IgG/immunology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/classification , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Staphylococcus aureus , Vaccine Development , Viral Load
16.
Clin Cancer Res ; 30(10): 2025-2038, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38190116

ABSTRACT

Cytokines are key mediators of immune responses that can modulate the antitumor activity of immune cells. Cytokines have been explored as a promising cancer immunotherapy. However, there are several challenges to cytokine therapy, especially a lack of tumor targeting, resulting in high toxicity and limited efficacy. To overcome these limitations, novel approaches have been developed to engineer cytokines with improved properties, such as chimeric cytokines. Chimeric cytokines are fusion proteins that combine different cytokine domains or link cytokines to antibodies (immunocytokines) or other molecules that can target specific receptors or cells. Chimeric cytokines can enhance the selectivity and stability of cytokines, leading to reduced toxicity and improved efficacy. In this review, we focus on two promising cytokines, IL2 and IL15, and summarize the current advances and challenges of chimeric cytokine design and application for cancer immunotherapy. Most of the current approaches focus on increasing the potency of cytokines, but another important goal is to reduce toxicity. Cytokine engineering is promising for cancer immunotherapy as it can enhance tumor targeting while minimizing adverse effects.


Subject(s)
Cytokines , Immunotherapy , Neoplasms , Recombinant Fusion Proteins , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Immunotherapy/methods , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , Cytokines/metabolism , Animals , Interleukin-2/therapeutic use , Interleukin-2/immunology , Interleukin-2/adverse effects
17.
Braz J Med Biol Res ; 56: e12938, 2023.
Article in English | MEDLINE | ID: mdl-37493775

ABSTRACT

Brucellosis has become a global zoonotic disease, seriously endangering the health of people all over the world. Vaccination is an effective strategy for protection against Brucella infection in livestock in developed countries. However, current vaccines are pathogenic to humans and pregnant animals, which limits their use. Therefore, it is very important to improve the safety and immune protection of Brucella vaccine. In this study, different bioinformatics approaches were carried out to predict the physicochemical properties, T/B epitope, and tertiary structure of Omp2b and Omp31. Then, these two proteins were sequentially linked, and the Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) variable region was fused to the N-terminal of the epitope sequence. In addition, molecular docking was performed to show that the structure of the fusion protein vaccine had strong affinity with B7 (B7-1, B7-2). This study showed that the designed vaccine containing CTLA-4 had high potency against Brucella, which could provide a reference for the future development of efficient brucellosis vaccines.


Subject(s)
Bacterial Vaccines , Brucellosis , CTLA-4 Antigen , Brucellosis/prevention & control , Brucella , Bacterial Vaccines/immunology , CTLA-4 Antigen/immunology , Humans , Animals , Epitopes/immunology , Molecular Docking Simulation , Computational Biology , Bacterial Proteins/immunology , Amino Acid Sequence , Protein Structure, Tertiary , Recombinant Fusion Proteins/immunology
18.
J Biol Chem ; 299(7): 104910, 2023 07.
Article in English | MEDLINE | ID: mdl-37315789

ABSTRACT

Protein A affinity chromatography is widely used for the large-scale purification of antibodies because of its high yield, selectivity, and compatibility with NaOH sanitation. A general platform to produce robust affinity capture ligands for proteins beyond antibodies would improve bioprocessing efficiency. We previously developed nanoCLAMPs (nano Clostridial Antibody Mimetic Proteins), a class of antibody mimetic proteins useful as lab-scale affinity capture reagents. This work describes a protein engineering campaign to develop a more robust nanoCLAMP scaffold compatible with harsh bioprocessing conditions. The campaign generated an improved scaffold with dramatically improved resistance to heat, proteases, and NaOH. To isolate additional nanoCLAMPs based on this scaffold, we constructed a randomized library of 1 × 1010 clones and isolated binders to several targets. We then performed an in-depth characterization of nanoCLAMPs recognizing yeast SUMO, a fusion partner used for the purification of recombinant proteins. These second-generation nanoCLAMPs typically had a Kd of <80 nM, a Tm of >70 °C, and a t1/2 in 0.1 mg/ml trypsin of >20 h. Affinity chromatography resins bearing these next-generation nanoCLAMPs enabled single-step purifications of SUMO fusions. Bound target proteins could be eluted at neutral or acidic pH. These affinity resins maintained binding capacity and selectivity over 20 purification cycles, each including 10 min of cleaning-in-place with 0.1 M NaOH, and remained functional after exposure to 100% DMF and autoclaving. The improved nanoCLAMP scaffold will enable the development of robust, high-performance affinity chromatography resins against a wide range of protein targets.


Subject(s)
Antibodies , Antibody Affinity , Chromatography, Affinity , Ligands , Molecular Mimicry , Protein Engineering , Recombinant Proteins , Antibodies/chemistry , Antibodies/immunology , Antibodies/metabolism , Chromatography, Affinity/methods , Protein Engineering/methods , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sodium Hydroxide/pharmacology , Protein Stability/drug effects , Hot Temperature , Trypsin/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Protein Binding
19.
J Interferon Cytokine Res ; 42(7): 316-328, 2022 07.
Article in English | MEDLINE | ID: mdl-35834651

ABSTRACT

Cytokines are powerful mediators of immune responses and some, such as interleukin-2 (IL-2), have achieved dramatic responses as cancer immunotherapies. Unfortunately, systemic administration often results in deleterious side effects, prompting exploration of strategies to localize cytokine activity to the tumor microenvironment (TME). To this end, we constructed an IL-2/IL2Ra fusion protein (IL-2FP) with an MMP2/9-specific cleavage site, designed to exploit the dysregulated protease activity in the TME to selectively activate IL-2 in the tumor. To determine if TME protease activity is sufficient to cleave the FP and if FP activity is due to specific cleavage, we created Colon 38 tumor cell lines expressing similar levels of IL-2FPs with either a functional cleavage site [H11(cs-1FP)] or a scrambled, noncleavable sequence [H2(scramFP)]. H11(cs-1FP) tumors demonstrated reduced tumor growth, characterized by regressions not observed in H2(scramFP) tumors. Analysis through qRT-PCR, flow cytometry, and immunohistochemistry indicate robust CD8 responses in the H11(cs-1FP) tumors. Interferon gamma (IFNg) knockout mice revealed that the immune effects of the cleavable FP are mediated through both IFNg-dependent and IFNg-independent mechanisms. Collectively, these data suggest that matrix metalloproteinases (MMPs) in the TME can cleave the IL-2FP specifically, thus enhancing an antitumor response, and provide a rationale for further developing this approach.


Subject(s)
Cell Line, Tumor , Immunity , Interferon-gamma , Interleukin-2 , Recombinant Fusion Proteins , Tumor Microenvironment , Animals , Cell Line, Tumor/immunology , Immunity/immunology , Interferon-gamma/immunology , Interleukin-2/immunology , Interleukin-2/pharmacology , Mice , Peptide Hydrolases/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology , Tumor Microenvironment/immunology
20.
Nature ; 607(7918): 360-365, 2022 07.
Article in English | MEDLINE | ID: mdl-35676488

ABSTRACT

Synthetic receptor signalling has the potential to endow adoptively transferred T cells with new functions that overcome major barriers in the treatment of solid tumours, including the need for conditioning chemotherapy1,2. Here we designed chimeric receptors that have an orthogonal IL-2 receptor extracellular domain (ECD) fused with the intracellular domain (ICD) of receptors for common γ-chain (γc) cytokines IL-4, IL-7, IL-9 and IL-21 such that the orthogonal IL-2 cytokine elicits the corresponding γc cytokine signal. Of these, T cells that signal through the chimeric orthogonal IL-2Rß-ECD-IL-9R-ICD (o9R) are distinguished by the concomitant activation of STAT1, STAT3 and STAT5 and assume characteristics of stem cell memory and effector T cells. Compared to o2R T cells, o9R T cells have superior anti-tumour efficacy in two recalcitrant syngeneic mouse solid tumour models of melanoma and pancreatic cancer and are effective even in the absence of conditioning lymphodepletion. Therefore, by repurposing IL-9R signalling using a chimeric orthogonal cytokine receptor, T cells gain new functions, and this results in improved anti-tumour activity for hard-to-treat solid tumours.


Subject(s)
Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit , Neoplasms , Receptors, Interleukin-9 , Recombinant Fusion Proteins , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Interleukins/genetics , Interleukins/immunology , Melanoma/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Pancreatic Neoplasms/immunology , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , STAT Transcription Factors/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...