Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.275
Filter
1.
Front Immunol ; 15: 1441908, 2024.
Article in English | MEDLINE | ID: mdl-39224597

ABSTRACT

Introduction: The antiviral activity of recombinant bovine interferon lambda 3 (bovIFN-λ3) against bovine viral diarrhea virus (BVDV) has been demonstrated in vitro in Madin-Darby bovine kidney cells (MDBK) and in vivo in cattle. However, anti-BVDV activity of bovIFN-λ3 has not been studied in bovine respiratory tract epithelial cells, supposedly a primary target of BVDV infection when entering the host by the oronasal route. Methods: Here we investigated the anti-BVDV activity of bovIFN-λ3 in bovine turbinate-derived primary epithelial cells (BTu) using BVDV infection and immunoperoxidase staining, TCID50, RT-qPCR, DNA and transcriptome sequencing, and transfection with plasmids containing the two subunits, IL-28Rα and IL-10Rß that constitute the bovIFN-λ3 receptor. Results: Our immunoperoxidase staining, RT-qPCR, and TCID50 results show that while BVDV was successfully cleared in MDBK cells treated with bovIFN-λ3 and bovIFN-α, only the latter, bovIFN-α, cleared BVDV in BTu cells. Preincubation of MDBK cells with bovIFN-λ3 before BVDV infection was needed to induce optimal antiviral state. Both cell types displayed intact type I and III IFN signaling pathways and expressed similar levels of IL-10Rß subunit of the type III IFN receptor. Sequencing of PCR amplicon of the IL-28Rα subunit revealed intact transmembrane domain and lack of single nucleotide polymorphisms (SNPs) in BTu cells. However, RT-qPCR and transcriptomic analyses showed a lower expression of IL-28Rα transcripts in BTu cells as compared to MDBK cells. Interestingly, transfection of BTu cells with a plasmid encoding IL-28Rα subunit, but not IL-10Rß subunit, established the bovIFN-λ3 sensitivity showing similar anti-BVDV activity to the response in MDBK cells. Conclusion: Our results demonstrate that the sensitivity of cells to bovIFN-λ3 depends not only on the quality but also of the quantity of the IL-28Rα subunit of the heterodimeric receptor. A reduction in IL-28Rα transcript expression was detected in BTu as compared to MDBK cells, despite the absence of spliced variants or SNPs. The establishment of bovIFN-λ3 induced anti-BVDV activity in BTu cells transfected with an IL-28Rα plasmid suggests that the level of expression of this receptor subunit is crucial for the specific antiviral activity of type III IFN in these cells.


Subject(s)
Interferon Lambda , Interferons , Turbinates , Animals , Cattle , Interferons/metabolism , Interferons/immunology , Turbinates/virology , Turbinates/immunology , Turbinates/metabolism , Antiviral Agents/pharmacology , Diarrhea Viruses, Bovine Viral/immunology , Diarrhea Viruses, Bovine Viral/physiology , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Epithelial Cells/virology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Interleukins/genetics , Interleukins/pharmacology , Interleukins/immunology , Interleukins/metabolism , Cell Line , Bovine Virus Diarrhea-Mucosal Disease/immunology , Bovine Virus Diarrhea-Mucosal Disease/virology , Recombinant Proteins/pharmacology , Interleukin-10 Receptor beta Subunit/genetics , Interleukin-10 Receptor beta Subunit/metabolism , Receptors, Cytokine
2.
Respir Res ; 25(1): 330, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227918

ABSTRACT

BACKGROUND: Vascular endothelial damage is involved in the development and exacerbation of ventilator-induced lung injury (VILI). Pulmonary endothelial glycocalyx and neutrophil extracellular traps (NETs) are endothelial protective and damaging factors, respectively; however, their dynamics in VILI and the effects of recombinant thrombomodulin and antithrombin on these dynamics remain unclear. We hypothesized that glycocalyx degradation and NETs are induced by VILI and suppressed by recombinant thrombomodulin, recombinant antithrombin, or their combination. METHODS: VILI was induced in male C57BL/6J mice by intraperitoneal lipopolysaccharide injection (20 mg/kg) and high tidal volume ventilation (20 mL/kg). In the intervention groups, recombinant thrombomodulin, recombinant antithrombin, or their combination was administered at the start of mechanical ventilation. Glycocalyx degradation was quantified by measuring serum syndecan-1, fluorescence-labeled lectin intensity, and glycocalyx-occupied area in the pulmonary vascular lumen. Double-stranded DNA in the bronchoalveolar fluid and fluorescent areas of citrullinated histone H3 and myeloperoxidase were quantified as NET formation. RESULTS: Serum syndecan-1 increased, and lectin fluorescence intensity decreased in VILI. Electron microscopy revealed decreases in glycocalyx-occupied areas within pulmonary microvessels in VILI. Double-stranded DNA levels in the bronchoalveolar lavage fluid and the fluorescent area of citrullinated histone H3 and myeloperoxidase in lung tissues increased in VILI. Recombinant thrombomodulin, recombinant antithrombin, and their combination reduced glycocalyx injury and NET marker levels. There was little difference in glycocalyx injury and NET makers between the intervention groups. CONCLUSION: VILI induced glycocalyx degradation and NET formation. Recombinant thrombomodulin and recombinant antithrombin attenuated glycocalyx degradation and NETs in our VILI model. The effect of their combination did not differ from that of either drug alone. Recombinant thrombomodulin and antithrombin have the potential to be therapeutic agents for biotrauma in VILI.


Subject(s)
Antithrombins , Endotoxemia , Extracellular Traps , Glycocalyx , Mice, Inbred C57BL , Recombinant Proteins , Thrombomodulin , Ventilator-Induced Lung Injury , Animals , Glycocalyx/metabolism , Glycocalyx/drug effects , Glycocalyx/pathology , Thrombomodulin/metabolism , Thrombomodulin/administration & dosage , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Male , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Mice , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/prevention & control , Endotoxemia/metabolism , Endotoxemia/pathology , Endotoxemia/drug therapy , Endotoxemia/chemically induced , Antithrombins/pharmacology , Lung/metabolism , Lung/drug effects , Lung/pathology , Disease Models, Animal , Syndecan-1/metabolism
3.
Protein Expr Purif ; 223: 106562, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39094814

ABSTRACT

Previous studies have demonstrated the presence of chitinase in Bacillus velezensis through extensive genomic sequencing and experimental analyses. However, the detailed structure, functional roles, and antifungal activity of these chitinases remain poorly characterized. In this study, genomic screening identified three genes-chiA, chiB, and lpmo10-associated with chitinase degradation in B. velezensis S161. These genes encode chitinases ChiA and ChiB, and lytic polysaccharide monooxygenase LPMO10. Both ChiA and ChiB contain two CBM50 binding domains and one catalytic domain, whereas LPMO10 includes a signal peptide and a single catalytic domain. The chitinases ChiA, its truncated variant ChiA2, and ChiB were heterologously expressed in Escherichia coli. The purified enzymes efficiently degraded colloidal chitin and inhibited the spore germination of Penicillium digitatum. Notably, even after losing one CBM50 domain, the resultant enzyme, consisting of the remaining CBM50 domain and the catalytic domain, maintained its colloidal chitin hydrolysis and antifungal activity, indicating commendable stability. These results underscore the role of B. velezensis chitinases in suppressing plant pathogenic fungi and provide a solid foundation for developing and applying chitinase-based biocontrol strategies.


Subject(s)
Antifungal Agents , Bacillus , Chitinases , Penicillium , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Chitin/chemistry , Chitinases/chemistry , Chitinases/pharmacology , Escherichia coli , Penicillium/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology
4.
BMC Pharmacol Toxicol ; 25(1): 52, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160640

ABSTRACT

BACKGROUND: An increasing body of research implicates inflammatory processes, including alterations in the neutrophil-lymphocyte ratio (NLR), in the pathophysiology of psychiatric illness. The deer mouse (Peromyscus maniculatus bairdii) is commonly studied for its naturalistic expression of compulsive-like behaviour. Towards future efforts to gain an understanding of how innate and adaptive immune processes might be involved in this model, we aimed to study the effects of pegfilgrastim, a pegylated recombinant human granulocyte colony-stimulating factor (g-CSF) analogue, on the NLR of both male and female deer mice. METHODS: Briefly, 54 deer mice (equally distributed between sexes) were exposed to a single injection with either control or pegfilgrastim (0.1 or 1 mg/kg) (n = 18 per group). Six mice of each group (three per sex) were euthanized on days two, four and seven post-administration, their blood collected and the NLR calculated. Data were analysed by means of ordinary three-way ANOVA, followed by Bonferroni post-hoc testing. RESULTS: Irrespective of dose, pegfilgrastim resulted in higher NLR values in mice of both sexes at days four and seven of testing. However, female mice exposed to the higher dose, presented with significantly higher NLR values irrespective of time, compared to male mice exposed to the same. CONCLUSION: The data generated from this work highlight important dose- and sex-specific aspects of pegfilgrastim with female mice showing heighted elevation of the NLR in response to high-dose pegfilgrastim administration only. Since the innate immune components of male and female deer mice is differentially sensitive to g-CSF stimulation, our results provide a useful basis for further study of sex-specific immunological processes in deer mice.


Subject(s)
Filgrastim , Granulocyte Colony-Stimulating Factor , Neutrophils , Peromyscus , Polyethylene Glycols , Recombinant Proteins , Animals , Female , Male , Polyethylene Glycols/pharmacology , Neutrophils/drug effects , Neutrophils/immunology , Peromyscus/immunology , Filgrastim/pharmacology , Leukocyte Count , Recombinant Proteins/pharmacology
5.
Res Vet Sci ; 177: 105368, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098094

ABSTRACT

To boost the immune function around parturition, recombinant bovine granulocyte colony-stimulating factor (rbG-CSF) has been used to increase the number of neutrophils. Therefore, the aim of this study was to quantify the effect of rbG-CSF administration on the incidence of postpartum pathologies, reproductive performance, and milk production during the first three months of lactation. A total of 199 Holstein cows from one herd were included and were randomly allocated into two groups: Control (n = 103) and rbG-CSF (n = 96). Cows in the rbG-CSF group received 2 doses of a rbG-CSF injectable formulation, one 7 days before the expected date of calving and the other within 24 h after calving. For 6 weeks following calving, animals were examined weekly to assess the presence of postpartum pathologies. Milk production, protein and fat content, and somatic cell count were determined monthly by the regional dairy herd improvement association. Data about the reproductive performance were collected from on-farm software. To analyse the effect of treatment on the incidence of postpartum pathologies, Pearson's χ2 test and multivariable logistic regressions were performed. The effect on reproductive performance was analysed using Cox proportional hazard regression analysis for days open, binary logistic regression for first service conception rate and Oneway ANOVA test for the number of artificial inseminations. The effects of treatment on milk yield and milk composition were checked using GLM repeated measures analysis. No statistically significant differences were observed between treatment groups for any of the parameters evaluated. Only parity had a significant effect on days open and milk production (p < 0.05). In conclusion, in the present study no evidence was found that rbG-CSF could have an effect on the reproductive and productive parameters evaluated.


Subject(s)
Granulocyte Colony-Stimulating Factor , Lactation , Milk , Peripartum Period , Recombinant Proteins , Animals , Cattle , Female , Lactation/drug effects , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/pharmacology , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use , Milk/chemistry , Reproduction/drug effects , Cattle Diseases/drug therapy , Pregnancy , Postpartum Period , Random Allocation
6.
Mar Drugs ; 22(8)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39195461

ABSTRACT

Pinctada fucata meat is the main by-product of the pearl harvesting industry. It is rich in nutrition, containing a lot of protein and peptides, and holds significant value for both medicine and food. In this study, a new active protein was discovered and expressed heterogeneously through bioinformatics analysis. It was then identified using Western blot, molecular weight, and mass spectrometry. The antibacterial activity, hemolysis activity, antioxidant activity, and Angiotensin-Converting Enzyme II (ACE2) inhibitory activity were investigated. An unknown functional protein was screened through the Uniprot protein database, and its primary structure did not resemble existing proteins. It was an α-helical cationic polypeptide we named PFAP-1. The codon-optimized full-length PFAP-1 gene was synthesized and inserted into the prokaryotic expression vector pET-30a. The induced expression conditions were determined with a final isopropyl-ß-d-thiogalactoside (IPTG) concentration of 0.2 mM, an induction temperature of 15 °C, and an induction time of 16 h. The recombinant PFAP-1 protein, with low endotoxin and sterility, was successfully prepared. The recombinant PFAP-1 protein exhibited strong antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in vitro, and the diameter of the inhibition zone was 15.99 ± 0.02 mm. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 37.5 µg/mL and 150 µg/mL, respectively, and its hemolytic activity was low (11.21%) at the bactericidal concentration. The recombinant PFAP-1 protein significantly inhibited the formation of MRSA biofilm and eradicated MRSA biofilm. It also demonstrated potent 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging activity with a half-maximal inhibitory concentration (IC50) of 40.83 µg/mL. The IC50 of ACE2 inhibition was 5.66 µg/mL. Molecular docking results revealed that the optimal docking fraction of PFAP-1 protein and ACE2 protein was -267.78 kcal/mol, with a confidence level of 0.913. The stable binding complex was primarily formed through nine groups of hydrogen bonds, three groups of salt bridges, and numerous hydrophobic interactions. In conclusion, recombinant PFAP-1 can serve as a promising active protein in food, cosmetics, or medicine.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Pinctada , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pinctada/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Hemolysis/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Recombinant Proteins/pharmacology , Recombinant Proteins/isolation & purification , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Humans
7.
Domest Anim Endocrinol ; 89: 106880, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39163657

ABSTRACT

Porcine adrenocorticotrophic hormone (ACTH) has been considered valid for the ACTH stimulation test (ACTHST) in humans and dogs; however, its safety and efficacy for use in cats are unknown. Also, the equivalence between 5 µg/kg and 125 µg/cat dose of synthetic corticotropin (1-24 ACTH - cosyntropin/tetracosactide) is assumed for ACTHST in cats. This study evaluated the safety and effectiveness of different porcine recombinant ACTH doses for the ACTHST in healthy cats and its equivalence with tetracosactide. The study was divided into two arms. The first evaluated safety and equivalence of intravenous 1 µg/kg, 5 µg/kg, or 125 µg/cat porcine ACTH in seven healthy cats for the ACTHST evaluating basal and post-ACTH androstenedione, aldosterone, cortisol, and progesterone concentrations. In the second arm, the equivalence of the 125 µg/cat porcine ACTH dose was evaluated compared to results obtained using 125 µg/cat of tetracosactide in ten healthy cats regarding cortisol responses. In all tests, several cat-friendly strategies were adopted, and the ACTHST protocol involved basal and 60-minute post-ACTH blood sampling and intravenous ACTH injection. No adverse reactions were documented, and no tested cat showed any complications during the study. No porcine ACTH tested dose significantly increased androstenedione secretion. In contrast, all tested doses were able to increase progesterone concentration significantly (P < 0.05), and Δ-progesterone in response to 5 µg/kg or 125 µg/cat was considered equivalent (P > 0.99). The 125 µg/cat dose promoted greater responses for both cortisol and aldosterone, characterized by Δ-cortisol (P = 0.009) and Δ-aldosterone (P = 0.004). Despite equivalent Δ-cortisol results in response to 5 µg/kg or 125 µg/cat (P = 0.18); post-ACTH results of cortisol in response to 5 µg/kg only approximate statistical significance when compared with basal (P = 0.07). Porcine ACTH and tetracosactide significantly increased post-ACTH cortisol concentration (P < 0.0001) while the Δ-cortisol was slightly greater in response to the porcine ACTH (P = 0.006). These results suggest porcine ACTH could be an alternative source of corticotropin for the ACTHST in cats; however, maximum corticoadrenal stimulation seemed more reliable in response to a 125 µg/cat regarding cortisol and aldosterone.


Subject(s)
Adrenocorticotropic Hormone , Cosyntropin , Hydrocortisone , Animals , Cats/physiology , Adrenocorticotropic Hormone/pharmacology , Adrenocorticotropic Hormone/administration & dosage , Female , Male , Hydrocortisone/blood , Cosyntropin/pharmacology , Cosyntropin/administration & dosage , Swine , Recombinant Proteins/pharmacology , Aldosterone/blood , Progesterone/blood , Progesterone/pharmacology , Progesterone/administration & dosage , Androstenedione/blood , Androstenedione/pharmacology , Dose-Response Relationship, Drug
8.
Anticancer Res ; 44(9): 3785-3791, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39197928

ABSTRACT

BACKGROUND/AIM: Drug resistance has been a recalcitrant problem for sarcoma patients for many decades. Trabectedin is a second-line chemotherapy for soft-tissue sarcoma that often leads to resistance and death of the patients. The objective of the present study was to address the issue of trabectedin-chemoresistance in HT1080 fibrosarcoma cells by combining recombinant methioninase (rMETase) with trabectedin and examining their efficacy on trabectedin-resistant fibrosarcoma cells in vitro. MATERIALS AND METHODS: Trabectedin-resistant HT1080 (TR-HT1080) cells were generated by subjecting HT1080 human fibrosarcoma cells to increasing trabectedin concentrations (3.3-8 nM). IC50 values for trabectedin and rMETase were compared for HT1080 and TR-HT1080 cells. TR-HT 1080 cells were placed into four groups to determine synergy of rMETase and trabectedin on TR-HT1080 cells: a control group with no treatment; a group treated with trabectedin (3.3 nM); a group treated with rMETase (0.75 U/ml); and a group treated with both trabectedin (3.3 nM) and rMETase (0.75 U/ml). RESULTS: The IC50 value of trabectedin- on TR-HT1080 cells was 42.9 nM, whereas the IC50 value of trabectedin on the parental HT1080 cells was 3.3 nM, indicating a 13-fold increase. The combination of rMETase (0.75 U/ml) and trabectedin (3.3 nM) was synergistic on TR-HT1080 cells resulting in an inhibition of 64.2% compared to trabectedin alone (5.7%) or rMETase alone (50.5%) (p<0.05). rMETase increased the efficacy of trabectedin 11-fold on trabectedin-resistant fibrosarcoma cells. CONCLUSION: The combined administration of trabectedin and rMETase was synergistic on the viability of TR-HT1080 cells in vitro. The combination of rMETase and trabectedin has promising clinical potential for overcoming chemo-resistance of soft-tissue sarcoma.


Subject(s)
Antineoplastic Agents, Alkylating , Carbon-Sulfur Lyases , Dioxoles , Drug Resistance, Neoplasm , Recombinant Proteins , Tetrahydroisoquinolines , Trabectedin , Humans , Trabectedin/pharmacology , Carbon-Sulfur Lyases/administration & dosage , Carbon-Sulfur Lyases/pharmacology , Drug Resistance, Neoplasm/drug effects , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/administration & dosage , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Dioxoles/pharmacology , Dioxoles/therapeutic use , Dioxoles/administration & dosage , Recombinant Proteins/pharmacology , Cell Line, Tumor , Sarcoma/drug therapy , Sarcoma/pathology , Fibrosarcoma/drug therapy , Fibrosarcoma/pathology , Drug Synergism
9.
Anticancer Res ; 44(9): 3777-3783, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39197933

ABSTRACT

BACKGROUND/AIM: A major challenge in treating soft-tissue sarcoma is the development of drug resistance. Eribulin, an anti-tubulin agent, is used as a second-line chemotherapy for patients with unresectable or metastatic soft-tissue sarcoma. However, most patients with advanced soft-tissue sarcoma are resistant to eribulin and do not survive. Recombinant methioninase (rMETase) targets the fundamental and general hallmark of cancer, methionine addiction, termed the Hoffman Effect. The present study aimed to show how much rMETase could increase the efficacy of eribulin on eribulin-resistant fibrosarcoma cells in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells were exposed to step-wise increasing concentrations of eribulin from 0.15-0.4 nM to establish eribulin-resistant HT1080 (ER-HT1080). ER-HT1080 cells were cultured in vitro and divided into four groups: untreated control; eribulin treated (0.15 nM); rMETase treated (0.75 U/ml); and eribulin (0.15 nM) plus rMETase (0.75 U/ml) treated. RESULTS: The IC50 of eribulin on ER-HT1080 cells was 0.95 nM compared to the IC50 of 0.15 nM on HT1080 cells, a 6-fold increase. The IC50 of rMETase on ER-HT1080 and HT1080 was 0.87 U/ml and 0.75 U/ml, respectively. The combination of rMETase (0.75 U/ml) and eribulin (0.15 nM) was synergistic on ER-HT1080 cells resulting in an inhibition of 80.1% compared to eribulin alone (5.0%) or rMETase alone (47.1%) (p<0.05). rMETase thus increased the efficacy of eribulin 16-fold on eribulin-resistant fibrosarcoma cells. CONCLUSION: The present study showed that the combination of eribulin and rMETase can overcome high eribulin resistance of fibrosarcoma. The present results demonstrate that combining rMETase with first- or second-line therapy for soft-tissue sarcoma has the potential to overcome the intractable clinical problem of drug-resistant soft-tissue sarcoma.


Subject(s)
Carbon-Sulfur Lyases , Drug Resistance, Neoplasm , Fibrosarcoma , Furans , Ketones , Humans , Ketones/pharmacology , Furans/pharmacology , Carbon-Sulfur Lyases/pharmacology , Drug Resistance, Neoplasm/drug effects , Fibrosarcoma/drug therapy , Fibrosarcoma/pathology , Cell Line, Tumor , Recombinant Proteins/pharmacology , Antineoplastic Agents/pharmacology , Drug Synergism , Sarcoma/drug therapy , Sarcoma/pathology , Polyether Polyketides
10.
Protein Expr Purif ; 224: 106563, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39122061

ABSTRACT

ß-1,3-glucanases can degrade ß-1,3-glucoside bonds in ß-glucan which is the main cell-wall component of most of fungi, and have the crucial application potential in plant protection and food processing. Herein, a ß-1,3-glucanase FlGluA from Flavobacterium sp. NAU1659 composed of 333 amino acids with a predicted molecular mass of 36.6 kDa was expressed in Escherichia coli BL21, purified and characterized. The deduced amino acid sequence of FlGluA showed the high identity with the ß-1,3-glucanase belonging to glycoside hydrolase (GH) family 16. Enzymological characterization indicated FlGluA had the highest activity on zymosan A, with a specific activity of 3.87 U/mg, followed by curdlan (1.16 U/mg) and pachymaran (0.88 U/mg). It exhibited optimal catalytic activity at the pH 5.0 and 40 °C, and was stable when placed at 4 °C for 12 h in the range of pH 3.0-8.0 or at a temperature below 50 °C for 3 h. Its catalytic activity was enhanced by approximately 36 % in the presence of 1 mM Cr3+. The detection of thin-layer chromatography and mass spectrometry showed FlGluA hydrolyzed zymosan A mainly to glucose and disaccharide, and trace amounts of tetrasaccharide and pentasaccharide, however, it had no action on laminaribiose, indicating its endo-ß-1,3-glucanase activity. The mycelium growth of F. oxysporum treated by FlGluA was inhibited, with approximately 37 % of inhibition rate, revealing the potential antifungal activity of the enzyme. These results revealed the hydrolytic properties and biocontrol activity of FlGluA, laying a crucial foundation for its potential application in agriculture and industry.


Subject(s)
Antifungal Agents , Flavobacterium , Glucan 1,3-beta-Glucosidase , Recombinant Proteins , Flavobacterium/genetics , Flavobacterium/enzymology , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Recombinant Proteins/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/chemistry , Glucan 1,3-beta-Glucosidase/metabolism , Fusarium/drug effects , Fusarium/enzymology , Fusarium/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/isolation & purification , Escherichia coli/genetics , Substrate Specificity , Cloning, Molecular
11.
Protein Expr Purif ; 224: 106579, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39151766

ABSTRACT

V. parahaemolyticus is a Gram-negative bacterium that causes gastroenteritis. Within the realm of bacterial interactions with the gut, the outer membrane protein MAM7 plays a key role. However, the precise function of MAM7 in intestinal inflammation, particularly its interactions with macrophages, remains unclear. In this study, we successfully expressed and purified recombinant MAM7. After optimization of the MAM7 expression condition, it was found that the optimal concentration and temperature were 0.75 mM and 15 °C, respectively, resulting in a 27-fold increase in its yield. Furthermore, RAW264.7 cytotoxicity assay was conducted. The CCK-8 results revealed that MAM7 substantially stimulated the proliferation of RAW264.7 cells, with its optimal concentration determined to be 7.5 µg/mL. Following this, the NO concentration of MAM7 was tested, revealing a significant increase (p < 0.05) in NO levels. Additionally, the relative mRNA levels of IL-1ß, IL-6, and TNF-α in RAW264.7 cells were measured by qRT-PCR, showing a remarkable elevation (p < 0.05). Moreover, ELISA results demonstrated that MAM7 effectively stimulated the secretion of IL-6 and TNF-α by RAW264.7 cells. In summary, these findings strongly suggest that MAM7 serves as a proinflammatory adhesion factor with the capacity to modulate immune responses.


Subject(s)
Macrophages , Recombinant Proteins , Vibrio parahaemolyticus , Animals , RAW 264.7 Cells , Mice , Vibrio parahaemolyticus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Macrophages/metabolism , Macrophages/drug effects , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Gene Expression
12.
BMC Biotechnol ; 24(1): 55, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135175

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a malignant tumour. Although some standard therapies have been established to improve the cure rate, they remain ineffective for specific individuals. Therefore, it is meaningful to find more novel therapeutic approaches. Macrophage polarisation is extensively involved in the process of tumour development. Recombinant hirudin (rH) affects macrophages and has been researched frequently in clinical trials lately. Our article validated the regulatory role of rH in macrophage polarisation and the mechanism of PAR-1 by collecting clinical samples and subsequently establishing a cellular model to provide a scientifically supported perspective for discovering new therapeutic approaches. METHOD: We assessed the expression of macrophage polarisation markers, cytokines and PAR-1 in clinical samples. We established a cell model by co-culture with THP-1 and OCI-Ly10 cell. We determined the degree of cell polarisation and expression of validation cytokines by flow cytometry, ELISA, and RT-qPCR to confirm the success of the cell model. Subsequently, different doses of rH were added to discover the function of rH on cell polarisation. We confirmed the mechanism of PAR-1 in macrophage polarisation by transfecting si-PAR-1 and pcDNA3.1-PAR-1. RESULTS: We found higher expression of M2 macrophage markers (CD163 + CMAF+) and PAR-1 in 32 DLBCL samples. After inducing monocyte differentiation into M0 macrophages and co-culturing with OCI-Ly10 lymphoma cells, we found a trend of these expressions in the cell model consistent with the clinical samples. Subsequently, we discovered that rH promotes the polarisation of M1 macrophages but inhibits the polarisation of M2 macrophages. We also found that PAR-1 regulates macrophage polarisation, inhibiting cell proliferation, migration, invasion and angiogenic capacity. CONCLUSION: rH inhibits macrophage polarisation towards the M2 type and PAR-1 regulates polarisation, proliferation, migration, invasion, and angiogenesis of DLBCL-associated macrophages.


Subject(s)
Hirudins , Lymphoma, Large B-Cell, Diffuse , Macrophages , Receptor, PAR-1 , Recombinant Proteins , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Humans , Macrophages/metabolism , Macrophages/drug effects , Receptor, PAR-1/metabolism , Receptor, PAR-1/genetics , Hirudins/pharmacology , Recombinant Proteins/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cell Line, Tumor , Coculture Techniques , Cell Polarity/drug effects , Female , Male , Cytokines/metabolism , Middle Aged , THP-1 Cells , Aged
13.
J Vet Intern Med ; 38(4): 2273-2281, 2024.
Article in English | MEDLINE | ID: mdl-39023205

ABSTRACT

BACKGROUND: The high doses of radioiodine-131 (131I) and, subsequently, the high radioactive burden for dog and environment warrants optimization of 131I therapy in dogs with thyroid carcinoma (TC). HYPOTHESIS/OBJECTIVES: To evaluate the effect of a revised protocol with recombinant human thyroid stimulating hormone (rhTSH) on tumor radioactive iodine uptake (RAIU) in dogs with TC. ANIMALS: Nine client-owned dogs diagnosed with TC. METHODS: A prospective cross-over study in which tumor RAIU was calculated and compared at 8 hours (8h-RAIU) and 24 hours (24h-RAIU) after injection of radioactive iodine-123 (123I), once with and once without rhTSH (ie, 250 µg, IM, 24 and 12 hours before 123I) in each dog. Simultaneously, serum total thyroxine (TT4) and TSH were measured at baseline (T0), and 6 (T6), 12 (T12), 24 (T24), and 48 hours (T48) after the first rhTSH administration. RESULTS: Tumor RAIU was significantly higher at 24 hours with rhTSH compared to no rhTSH (mean difference = 8.85%, 95% CI of [1.56; 16.14]; P = .03), while this was non-significant at 8 hours (mean difference = 4.54%, 95% CI of [0.35; 8.73]; P = .05). A significant change of serum TT4 (median difference T24 - T0 = 35.86 nmol/L, interquartile range [IQR] = 15.74 nmol/L) and TSH (median difference T24 - T0 = 1.20 ng/mL, IQR = 1.55 ng/mL) concentrations occurred after administration of rhTSH (P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE: Recombinant human TSH could optimize 131I treatment in dogs with TC by increasing tumor RAIU and thus 131I treatment efficacy.


Subject(s)
Cross-Over Studies , Dog Diseases , Iodine Radioisotopes , Recombinant Proteins , Thyroid Neoplasms , Thyrotropin , Animals , Dogs , Thyroid Neoplasms/veterinary , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/drug therapy , Iodine Radioisotopes/therapeutic use , Dog Diseases/drug therapy , Dog Diseases/radiotherapy , Thyrotropin/therapeutic use , Thyrotropin/pharmacology , Female , Male , Prospective Studies , Recombinant Proteins/therapeutic use , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Thyroxine/therapeutic use
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1126-1134, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977342

ABSTRACT

OBJECTIVE: To investigate the protective effect of recombinant Schistosoma japonicum cystatin (rSj-Cys) against acute liver injury induced by lipopolysaccharide (LPS) and D-GalN in mice. METHODS: Adult male C57BL/6J mice with or without LPS/D-GaIN-induced acute liver injury were given intraperitoneal injections of rSj-Cys or PBS 30 min after modeling (n=18), and serum and liver tissues samples were collected from 8 mice in each group 6 h after modeling. The survival of the remaining 10 mice in each group within 24 h was observed. Serum levels of ALT, AST, TNF-α and IL-6 of the mice were measured, and liver pathologies was observed with HE staining. The hepatic expressions of macrophage marker CD68, Bax, Bcl-2 and endoplasmic reticulum stress (ERS)-related proteins were detected using immunohistochemistry or immunoblotting, and TUNEL staining was used to detect hepatocyte apoptosis. RESULTS: The survival rates of PBS- and rSj-Cys-treated mouse models of acute liver injury were 30% and 80% at 12 h and were 10% and 60% at 24 h after modeling, respectively; no death occurred in the two control groups within 24 h. The mouse models showed significantly increased serum levels of AST, ALT, IL-6 and TNF-α and serious liver pathologies with increased hepatic expressions of CD68 and Bax, lowered expression of Bcl-2, increased hepatocyte apoptosis, and up-regulated expressions of ERS-related signaling pathway proteins GRP78, CHOP and NF-κB p-p65. Treatment of the mouse models significantly lowered the levels of AST, ALT, IL-6 and TNF-α, alleviated liver pathologies, reduced hepatic expressions of CD68, Bax, GRP78, CHOP and NF-κB p-p65, and enhanced the expression of Bcl-2. In the normal control mice, rSj-Cys injection did not produce any significant changes in these parameters compared with PBS. CONCLUSION: rSj-Cys alleviates LPS/D-GalN-induced acute liver injury in mice by suppressing ERS, attenuating inflammation and inhibiting hepatocyte apoptosis.


Subject(s)
Apoptosis , Cystatins , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Hepatocytes , Inflammation , Mice, Inbred C57BL , Schistosoma japonicum , Animals , Mice , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Male , Hepatocytes/metabolism , Hepatocytes/drug effects , Cystatins/pharmacology , Liver/pathology , Liver/metabolism , Lipopolysaccharides , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Recombinant Proteins/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Galactosamine , Antigens, CD/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , CD68 Molecule
15.
J Neuroimmune Pharmacol ; 19(1): 37, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052165

ABSTRACT

Recombinant interleukin-22 (rIL-22) has been reported as a protective agent in murine models of diseases driven by epithelial injury. Parasites have a circadian rhythm and their sensitivity to a certain drug may vary during the day. Therefore, this work aimed to investigate the effect of rIL-22 administration at different times of the day on the inflammation, oxidative status, and neurotransmitter release in the gut-brain axis of the Schistosoma mansoni-infected mice. Sixty male BALB/c mice aged six weeks weighing 25-30 g were divided into a control group (injected intraperitoneally with PBS), mice infected with 80 ± 10 cercariae of S. mansoni (infected group) then injected intraperitoneally with PBS, and rIL-22 treated groups. rIL-22 was administrated intraperitoneally (400 ng/kg) either at the onset or offset of the light phase for 14 days. IL-22 administration reduced the levels of IL-1ß, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa beta (NF-κß), and enhanced the production of IL-22 and IL-17. The treatment with IL-22 increased glutathione (GSH) and reduced malondialdehyde (MDA) and nitric oxide (NO) levels both in the ileum and brain. The B-cell lymphoma 2 (BCL2) protein level in the ileum was diminished after IL-22 administration. Brain-derived neurotrophic factor (BDNF) and neurotransmitter release (serotonin, 5HT, norepinephrine, NE, dopamine, DA, Glutamate, Glu, and -amino butyric acid, GABA) were improved by rIL-22. In conclusion, rIL-22 showed promising immunotherapy for inflammation, oxidative damage, and neuropathological signs associated with schistosomiasis. The efficacy of IL-22 increased significantly upon its administration at the time of light offset.


Subject(s)
Brain-Gut Axis , Interleukin-22 , Interleukins , Mice, Inbred BALB C , Neurotransmitter Agents , Recombinant Proteins , Schistosomiasis mansoni , Animals , Mice , Male , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology , Interleukins/metabolism , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Immunotherapy/methods , Biogenic Monoamines/metabolism , Inflammation/metabolism , Inflammation/drug therapy
16.
Sci Rep ; 14(1): 15544, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969695

ABSTRACT

Bacterial toxins have received a great deal of attention in the development of cancer treatments. Parasporin-2 (PS2Aa1 or Mpp46Aa1) is a Bacillus thuringiensis parasporal protein that preferentially destroys human cancer cells while not harming normal cells, making it a promising anticancer treatment. With the efficient development and sustainable silver nanoparticles (AgNPs) synthesis technology, the biomedical use of AgNPs has expanded. This study presents the development of a novel nanotoxin composed of biosynthesized silver nanoparticles loaded with the N-terminal truncated PS2Aa1 toxin. MOEAgNPs were synthesized using a biological method, with Moringa oleifera leaf extract and maltose serving as reducing and capping agents. The phytochemicals present in M. oleifera leaf extract were identified by GC-MS analysis. MOEAgNPs were loaded with N-terminal truncated PS2Aa1 fused with maltose-binding protein (MBP-tPS2) to formulate PS2-MOEAgNPs. The PS2-MOEAgNPs were evaluated for size, stability, toxin loading efficacy, and cytotoxicity. PS2-MOEAgNPs demonstrated dose-dependent cytotoxicity against the T-cell leukemia MOLT-4 and Jurkat cell lines but had little effect on the Hs68 fibroblast or normal cell line. Altogether, the current study provides robust evidence that PS2-MOEAgNPs can efficiently inhibit the proliferation of T-cell leukemia cells, thereby suggesting their potential as an alternative to traditional anticancer treatments.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Silver , Humans , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Plant Extracts/chemistry , Plant Extracts/pharmacology , Moringa oleifera/chemistry , Recombinant Proteins/pharmacology , Plant Leaves/chemistry , Cell Survival/drug effects , Endotoxins , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism
17.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000587

ABSTRACT

Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after 177Lu-octreotate and/or A1M administration. Mice were injected with 177Lu-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on 177Lu activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the 177Lu-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to 177Lu-octreotate alone or together with A1M. Combining 177Lu-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied.


Subject(s)
Alpha-Globulins , Octreotide , Proteomics , Animals , Alpha-Globulins/metabolism , Mice , Octreotide/pharmacology , Octreotide/analogs & derivatives , Proteomics/methods , Recombinant Proteins/pharmacology , Kidney/metabolism , Kidney/radiation effects , Kidney/drug effects , Male , Bone Marrow/radiation effects , Bone Marrow/metabolism , Bone Marrow/drug effects , Organs at Risk/radiation effects , Proteome/metabolism , Radiation-Protective Agents/pharmacology
18.
CNS Neurosci Ther ; 30(7): e14825, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954749

ABSTRACT

AIMS: Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS: We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS: rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION: Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.


Subject(s)
Fibrinolytic Agents , Neutrophils , Recombinant Proteins , Tissue Plasminogen Activator , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/therapeutic use , Animals , Humans , Male , Neutrophils/drug effects , Rats , Recombinant Proteins/pharmacology , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Rats, Sprague-Dawley , Aged , Blood-Brain Barrier/drug effects , Cell Movement/drug effects , Female , Neutrophil Infiltration/drug effects , Middle Aged , Brain Ischemia/drug therapy , Brain Ischemia/immunology , Disease Models, Animal
19.
Clin Appl Thromb Hemost ; 30: 10760296241260053, 2024.
Article in English | MEDLINE | ID: mdl-39051565

ABSTRACT

For patients with hemophilia A and high-titer inhibitors treated with bypassing agents there are no reliable methods to assess treatment effect. We investigated the utility of global hemostatic methods in assessing treatment with bypassing agents (rFVIIa or activated prothrombin complex [aPCC]). All patients with hemophilia A and inhibitors followed at the Coagulation Unit or the Pediatric Coagulation Unit at Karolinska University Hospital aged 6 years and above were eligible for this noninterventional study. Baseline plasma samples were spiked with bypassing agents in increasing concentrations (aPCC 50 U/kg, 100 U/kg, 150 U/kg, and rFVIIa 90 µg/kg and 270 µg/kg) in vitro. For patients treated with factor concentrates or bypassing agents follow-up samples were collected (in vivo tests). The samples were analyzed using overall hemostatic potential (OHP), and calibrated automated thrombogram, Calibrated Automated Thrombogram (CAT). Nine patients with hemophilia A with inhibitors were included. Spiking with rFVIIa normalized the coagulation potential in 6/8 samples, in 3 only with high dose. Only one sample did not improve adequately after spiking with aPCC. The improvement in hemostasis was reliably shown by both CAT and OHP. The baseline potential was, however, more often measurable by OHP compared to CAT. Factor concentrate had been administered to 5 patients normalizing the hemostatic potential in vivo in 2 (without spiking). The hemostatic improvement induced by spiking with rFVIIa or aPCC is shown by OHP and CAT, but the results have to be evaluated in larger cohorts.


Subject(s)
Factor VIIa , Hemophilia A , Humans , Hemophilia A/drug therapy , Hemophilia A/blood , Pilot Projects , Child , Male , Factor VIIa/pharmacology , Factor VIIa/therapeutic use , Adolescent , Recombinant Proteins/therapeutic use , Recombinant Proteins/pharmacology , Hemostasis/drug effects , Blood Coagulation Factors/pharmacology , Blood Coagulation Factors/therapeutic use , Hemostatics/therapeutic use , Hemostatics/pharmacology , Adult , Female
20.
Int J Biol Macromol ; 275(Pt 2): 133731, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986978

ABSTRACT

l-asparaginases play a crucial role in the treatment of acute lymphoblastic leukemia (ALL), a type of cancer that mostly affects children and teenagers. However, it is common for these molecules to cause adverse reactions during treatment. These downsides ignite the search for novel asparaginases to mitigate these problems. Thus, this work aimed to produce and characterize a recombinant asparaginase from Phaseolus vulgaris (Asp-P). In this study, Asp-P was expressed in Escherichia coli with high yields and optimum activity at 40 °C, pH 9.0. The enzyme Km and Vmax values were 7.05 mM and 1027 U/mg, respectively. Asp-P is specific for l-asparagine, showing no activity against l-glutamine and other amino acids. The enzyme showed a higher cytotoxic effect against Raji than K562 cell lines, but only at high concentrations. In silico analysis indicated that Asp-P has lower immunogenicity than a commercial enzyme. Asp-P induced biofilm formation by Candida sp. due to sublethal dose, showing an underexplored potential of asparaginases. The absence of glutaminase activity, lower immunogenicity and optimal activity similar to physiological temperature conditions are characteristics that indicate Asp-P as a potential new commercial enzyme in the treatment of ALL and its underexplored application in the treatment of other diseases.


Subject(s)
Asparaginase , Phaseolus , Recombinant Proteins , Asparaginase/chemistry , Asparaginase/pharmacology , Asparaginase/genetics , Asparaginase/immunology , Phaseolus/chemistry , Humans , Kinetics , Recombinant Proteins/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Leukemia/drug therapy , K562 Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Biofilms/drug effects , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL