Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.390
Filter
1.
Sci Total Environ ; 945: 174139, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901577

ABSTRACT

Hyperthermophilic composting (HTC) is a recently developed and highly promising organic fraction of municipal solid waste (OFMSW) treatment technology. Investigation of organic matter (OM) dynamics in compost particle is thus crucial for the understanding of humification of HTC process. Herein, this work aimed to study the chemical and structural changes of OM at the molecular level during HTC of OFMSW using EEM and SR-FTIR analyses. Additionally, two-dimensional correlation spectroscopy (2D-COS) was also utilized to probe and identify the changes in chemical constituents and functional groups of organic compounds on the surface of compost particles during different composting periods. Results show that SR-FTIR can detect fine-scale (~µm) changes in functional groups from the edges to the interior of compost particles during different composting periods by mapping the particles in situ. In the hyperthermophilic stage (day 9), the extracted µ-FTIR spectrum reveals a distinct boundary between anaerobic and aerobic regions within the compost particle, with a thickness of anaerobic zone (1460 cm-1) of approximately 30 µm inside the particle's core. This provides direct evidence of anaerobic trends at compost microscales level within compost particles. 2D-COS analysis indicated that organic functional groups gradually agglomerated in the order of 1330 > 2930 > 3320 > 1600 > 1030 > 895 cm-1 to the core skeleton of cellulose degradation residues, forming compost aggregates with well physicochemical properties. Overall, the first combination of SR-FTIR and EEM provides complementary explanations for the humification mechanism of HTC, potentially introducing a novel methodology for investigating the environmental behaviors and fates of various organic contaminants associated with OM during the in-situ composting biochemical process.


Subject(s)
Composting , Composting/methods , Spectroscopy, Fourier Transform Infrared , Synchrotrons , Refuse Disposal/methods , Solid Waste/analysis , Soil/chemistry , Environmental Monitoring/methods
3.
J Environ Manage ; 363: 121434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861886

ABSTRACT

Despite benefits such as lower water and working volume requirements, thermophilic high solids anaerobic digestion (THSAD) often fails due to the rapid build-up of volatile fatty acids (VFAs) and the associated drop in pH. Use of conductive materials (CM) can promote THSAD through stimulation of direct interspecies electron transfer (DIET), while the need for their constant dosing due to poor separation from effluent impairs economic feasibility. This study used an approach of spatially separating magnetite and granular activated carbon (GAC) from the organic fraction of municipal solid waste (OFMSW) in a single reactor for THSAD. GAC and magnetite addition could both mitigate the severe inhibition of methanogenesis after VFAs build-up to ∼28-30 g/L, while negligible methane production was observed in the control group. The highest methane yield (286 mL CH4/g volatile solids (VS)) was achieved in magnetite-added reactors, while the highest maximum CH4 production rates (26.38 mL CH4/g VS/d) and lowest lag-phase (2.83 days) were obtained in GAC-added reactors. The enrichment of GAC and magnetite biofilms with various syntrophic and potentially electroactive microbial groups (Ruminiclostridium 1, Clostridia MBA03, Defluviitoga, Lentimicrobiaceae) in different relative abundances indicates the existence of specific preferences of these groups for the nature of CM. According to predicted basic metabolic functions, CM can enhance cellular processes and signals, lipid transport and metabolism, and methane metabolism, resulting in improved methane production. Rearrangement of metabolic pathways, formation of pili-like structures, enrichment of biofilms with electroactive groups and a significant improvement in THSAD performance was attributed to the enhancement of the DIET pathway. Promising results obtained in this work due to the spatial separation of the bulk OFMSW and CM can be useful for modeling larger-scale THSAD systems with better recovery of CM and cost-effectiveness.


Subject(s)
Bioreactors , Methane , Solid Waste , Anaerobiosis , Methane/metabolism , Fatty Acids, Volatile/metabolism , Refuse Disposal/methods , Ferrosoferric Oxide/chemistry
4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1331-1336, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886432

ABSTRACT

Understanding the effects of food waste biogas residue composting and chemical amendments on soil aggregates composition of different particle sizes, stability, and organic matter distribution in relocation sites could provide primary data for improving soil quality and land utilization of food waste biogas residue composting. We analyzed the characteristics of soil aggregates distribution, stability of aggregates, and organic matter content in different particle sizes under treatments with different application amounts of food waste biogas residue composting, chemical amendments (ß-cyclodextrin, calcium sulfate and ferric oxide were mixed at a mass ratio of 1:1:1), and control (100% soil). The results showed that 20% (soil: biogas residue composting=8:2) and 30% (soil: biogas residue composting =7:3) biogas residue composting significantly decreased the micro-aggregates content with the particle size of <0.106 mm and increased the large aggregates content with the particle size of 0.5-1.0 mm. All treatments significantly increased large aggregates content with the particle size of ≥2.0 mm, soil aggregate structure content, and mean weight diameter, but reduced the percentage of aggregate destruction. Among all the treatments, the effect of mixes application of 20% biogas residue composting and chemical amendments was the best. Biogas residue composting treatments significantly affected the distribution of organic matter in soil aggregates, with the strongest effect under 30% biogas residue composting treatment. Biogas residue composting treatments significantly increased soil organic matter content in all aggregates, with the maximal increase of organic matter content in soil micro-aggregates with the particle size of 0.106-0.25 mm. In conclusion, biogas residue composting could increase organic matter content of soil aggregates in different particle sizes, promote the formation of large soil aggregates, and improve the stability of aggregation. Specifically, the mixed application of biogas residue composting and chemical amendments performed better on soil improvement in relocation site.


Subject(s)
Biofuels , Composting , Organic Chemicals , Refuse Disposal , Soil , Soil/chemistry , Composting/methods , Biofuels/analysis , Organic Chemicals/analysis , Organic Chemicals/chemistry , Refuse Disposal/methods , Particle Size , Food , Food Loss and Waste
5.
Huan Jing Ke Xue ; 45(6): 3638-3648, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897783

ABSTRACT

To achieve efficient resource utilization of fly ash and multi-source organic waste, a composting experiment was carried out to investigate the effects of fly ash on co-aerobic composting using kitchens, chicken manure, and sawdust (15:5:2). The effects of different application doses (5 % and 10 %, calculated in total wet weight of organic solid waste) of fly ash on physical and chemical properties, nutrient elements, and bacterial community structure during co-composting were evaluated. The results showed that the addition dose of 5 % and 10 % fly ash significantly increased the highest temperature (56.6 ℃ and 56.9 ℃) and extended the thermophilic period to nine days. Compared with that in the control, the total nutrient content of compost products in the treatments of 5 % FA and 10 % FA was increased by 4.09 % and 13.55 %, respectively. The bacterial community structure changed greatly throughout the composting, and the bacterial diversity of all treatments increased obviously. In the initial stage of composting, Proteobacteria was the dominant phylum of bacteria, with a relative abundance ranging from 35.26 % to 39.40 %. In the thermophilic period, Firmicutes dominated; its relative abundance peaked at 52.46 % in the 5 % FA treatment and 67.72 % in the 10 % FA treatment. Bacillus and Thermobifida were the predominant groups in the thermophilic period of composting. The relative abundance of Bacillus and Thermobifida in the 5 % FA and 10 % FA treatments were 33.41 % and 62.89 %(Bacillus) and 33.06 % and 12.23 %(Thermobifida), respectively. The results of the redundancy analysis (RDA) revealed that different physicochemical indicators had varying degrees of influence on bacteria, with organic matter, pH, available phosphorus, and available potassium being the main environmental factors influencing bacterial community structure. In summary, the addition of fly ash promoted the harmlessness and maturation of co- aerobic composting of urban multi-source organic waste, while optimizing microbial community structure and improving the quality and efficiency of composting.


Subject(s)
Bacteria , Cities , Coal Ash , Composting , Organic Chemicals , Refuse Disposal , Solid Waste , Composting/methods , Refuse Disposal/methods , Organic Chemicals/analysis , Solid Waste/analysis , Bacteria/classification , Bacteria/growth & development , Manure , Proteobacteria , Microbiota
6.
Bioresour Technol ; 403: 130906, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806134

ABSTRACT

This study examines the gasification kinetics of Brazilian municipal solid waste (MSW) and its components under air, CO2, and air/CO2 (70/30 vol%) atmospheres. The ignition indices of paper and plastic are 6 and 3 times that of food waste, which are 38.6 × 10-3 %/min3 and 19.6 × 10-3 %/min3, respectively, implying a faster separation of volatile compounds from the paper and plastic. The minimum Eα values of 132 kJ/mol and 140 kJ/mol have been obtained for paper waste under air and air/CO2, respectively. On CO2 condition, MSW has an average Ea value of 96 kJ/mol. Under an air/CO2 atmosphere, a high synergistic ΔW of -4.7 wt% has been identified between individual components. The presence of air and CO2 improves the oxidation and char gasification process, thus resulting in better combustion. Hence, the gasification of MSW under an air/CO2 atmosphere would improve the waste-to-energy plant's performance and minimize the CO2 emission.


Subject(s)
Carbon Dioxide , Solid Waste , Thermogravimetry , Brazil , Kinetics , Carbon Dioxide/analysis , Refuse Disposal/methods , Atmosphere/chemistry , Gases , Cities
7.
Environ Pollut ; 355: 124255, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815894

ABSTRACT

Polylactic Acid (PLA) based compostable bioplastic films degrade under thermophilic composting conditions. The purpose of our study was to understand whether sample pre-treatment along with bioaugmentation of the degradation matrix could reduce the biodegradation time under a simulated composting environment. Sepcifically, we also explored whether the commercial composts could be replaced by landfill-mined soil-like fraction (LMSF) for the said application. The effect of pre-treatment on the material was analysed by tests like tensile strength analysis, hydrophobicity analysis, morphological analysis, thermal degradation profiling, etc. Subsequently, the degradation experiment was performed in a simulated composting environment following the ASTM D5338 standard, along with bioaugmentation in selected experimental setups. When the novel approach of material pre-treatment and bioaugmentation were applied in combination, the time necessary for 90% degradation was reduced by 27% using compost and by 23% using LMSF. Beyond the improvement in degradation rate, the water holding capacity increased significantly for the degradation matrices. With pH, C: N ratio and microbial diversity tested to be favourable through 16s metabarcoding studies, material pre-treatment and bioaugmentation allow LMSF to not only replace commercial compost in polymer degradation but also find immense application in the agricultural sector of drought-affected areas (for better water retention) after it has been used for PLA degradation.


Subject(s)
Agriculture , Biodegradation, Environmental , Composting , Soil , Waste Disposal Facilities , Composting/methods , Soil/chemistry , Biopolymers , Agriculture/methods , Soil Microbiology , Soil Pollutants/metabolism , Soil Pollutants/analysis , Polyesters/chemistry , Polyesters/metabolism , Refuse Disposal/methods
8.
Environ Pollut ; 355: 124261, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815891

ABSTRACT

Municipal solid waste incineration fly ash (IFA) designated as hazardous waste poses risks to environment and human health. This study introduces a novel approach for the stabilization and solidification (S/S) of IFA: a combined approach involving alkali treatment and immobilization in low-carbon supersulfated cement (SSC). The impact of varying temperatures of alkali solution on the chemical and mineralogical compositions, as well as the pozzolanic reactivity of IFA, and the removal efficiency of heavy metals and metallic aluminum (Al) were examined. The physical characteristics, hydration kinetics and effectiveness of SSC in immobilizing IFA were also analyzed. Results showed that alkali treatment at 25 °C effectively eliminated heavy metals like manganese (Mn), barium (Ba), nickel (Ni), and chromium (Cr) to safe levels and totally removed the metallic Al, while enhancing the pozzolanic reactivity of IFA. By incorporating the alkali-treated IFA and filtrate, the density, compressive strength and hydration reaction of SSC were improved, resulting in higher hydration degree, finer pore structure, and denser microstructure compared to untreated IFA. The rich presence of calcium-aluminosilicate-hydrate (C-(A)-S-H) and ettringite (AFt) in SSC facilitated the efficient stabilization and solidification of heavy metals, leading to a significant decrease in their leaching potential. The use of SSC for treating Ca(OH)2- and 25°C-treated IFA could achieve high strength and high-efficient immobilization.


Subject(s)
Alkalies , Coal Ash , Construction Materials , Incineration , Metals, Heavy , Solid Waste , Coal Ash/chemistry , Metals, Heavy/chemistry , Alkalies/chemistry , Refuse Disposal/methods , Aluminum/chemistry
9.
Bioresour Technol ; 403: 130846, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754561

ABSTRACT

This study evaluated the hydrogen production potential through lactate-driven dark fermentation (LD-DF) of organic wastes from solid waste treatment plants, including the organic fraction of municipal solid waste (OFMSW), mixed sewage sludge, and two OFMSW leachates. In initial batch fermentations, only OFMSW supported a significant hydrogen yield (70.1 ± 7.7 NmL-H2/g-VS added) among the tested feedstocks. Lactate acted as an important hydrogen precursor, requiring the presence of carbohydrates for sequential two-step lactate-type fermentation. The impact of operational pH (5.5-6.5) and initial total solids (TS) concentration (5-12.5 % w/w) was also evaluated using OFMSW as substrate, obtaining hydrogen yields ranging from 6.6 to 55.9 NmL-H2/g-VSadded. The highest yield occurred at 6.5 pH and 7.5 % TS. The LD-DF pathway was indicated to be present under diverse pH and TS conditions, supported by employing a specialized microbial consortium capable of performing LD-DF, along with the observed changes in lactate levels during fermentation.


Subject(s)
Fermentation , Hydrogen , Lactic Acid , Solid Waste , Hydrogen/metabolism , Lactic Acid/metabolism , Lactic Acid/biosynthesis , Hydrogen-Ion Concentration , Refuse Disposal/methods , Sewage , Biofuels
10.
J Hazard Mater ; 473: 134554, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38759407

ABSTRACT

The widely existed plastic additives plasticizers in organic wastes possibly pose negative influences on anaerobic digestion (AD) performance, the direct evidence about the effects of plasticizers on AD performance is still lacking. This study evaluated the influencing mechanism of two typical plasticizers bisphenol A (BPA) and dioctyl phthalate on the whole AD process. Results indicated that plasticizers addition inhibited methane production, and the inhibiting effects were reinforced with the increase of concentration. By contrast, 50 mg/L BPA exhibited the strongest inhibition on methane production. Physicochemical analysis showed plasticizers inhibited the metabolism efficiency of soluble polysaccharide and volatile fatty acids. Microbial communities analyses suggested that plasticizers inhibited the direct interspecies electron transfer participators of methanogenic archaea (especially Methanosarcina) and syntrophic bacteria. Furthermore, plasticizers inhibited the methane metabolisms, key coenzymes (CoB, CoM, CoF420 and methanofuran) biosynthesis and the metabolisms of major organic matters. This study shed light on the effects of plasticizers on AD performance and provided new insights for assessing the influences of plasticizers or plastic additives on the disposal of organic wastes.


Subject(s)
Benzhydryl Compounds , Methane , Phenols , Plasticizers , Anaerobiosis , Plasticizers/metabolism , Methane/metabolism , Benzhydryl Compounds/metabolism , Phenols/metabolism , Fatty Acids, Volatile/metabolism , Bacteria/metabolism , Bacteria/drug effects , Bioreactors , Refuse Disposal/methods , Phthalic Acids/metabolism , Food , Food Loss and Waste
11.
Sci Total Environ ; 938: 173353, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795999

ABSTRACT

Inevitably, aerobic biological treatment processes generate emissions of ammonia (NH3) and greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O). The rapid bio-drying process (RBD) for food waste (FW) alleviates issues arising from its substantial growth. However, its emissions of NH3 and N2O remain unknown, and the correlation with nitrogen components in the substrate remains unclear, significantly impeding its widespread adoption. Here, the nitrogen loss and its mechanisms in RBD were investigated, and the results are as follows: The total emission of NH3 and N2O were1.42 and 1.16 mg/kg FW (fresh weight), respectively, achieving a 98 % reduction compared to prior studies. Structural equation modeling demonstrates that acid ammonium nitrogen (AN) decomposition chiefly generates NH3 in compost (p < 0.001). Strong correlation (p < 0.001) exists between amino acid nitrogen (AAN) and AN. In-depth analysis of microbial succession during the process reveals that the enrichment of Brevibacterium, Corynebacterium, Dietzia, Fastidiosipila, Lactobacillus, Mycobacterium, Peptoniphilus, and Truepera, are conducive to reducing the accumulation of AN and AAN in the substrate, minimizing NH3 emissions (p < 0.05). While Pseudomonas, Denitrobacterium, Nitrospira, and Bacillus are identified as key species contributing to N2O emissions during the process. Correlation analysis between physicochemical conditions and microbial succession in the system indicates that the moisture content and NO3- levels during the composting process provide suitable conditions for the growth of bacteria that contribute to NH3 and N2O emissions reduction, these enrichment in RBD process minimizing NH3 and N2O emissions. This study can offer crucial theoretical and data support for the resource utilization process of perishable organic solid waste, mitigating NH3 and GHGs emissions.


Subject(s)
Ammonia , Nitrogen , Nitrous Oxide , Nitrous Oxide/analysis , Ammonia/analysis , Nitrogen/analysis , Refuse Disposal/methods , Air Pollutants/analysis , Garbage , Greenhouse Gases/analysis , Food Loss and Waste
12.
Proc Natl Acad Sci U S A ; 121(23): e2319712121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805276

ABSTRACT

Improving urban air quality is a pressing challenge in the Global South. A key source of air pollution is the informal burning of household waste. Reducing informal burning requires governments to develop formal systems for waste disposal and for residents to adopt new disposal behaviors. Using a randomized experiment, we show that social competitions between pairs of neighborhoods in Nansana municipality, Uganda, galvanized leadership and inspired collective action to reduce informal burning. All 44 neighborhoods in the study received a public health campaign, while 22 treated neighborhoods were paired and competed to reduce waste burning over an 8-mo period. Treated neighborhoods showed a 24 percent reduction (95% CI: 11 to 35 percent) in waste burning relative to control neighborhoods at the end of the competition period. There is no evidence that treated neighborhoods experienced a rebound in waste burning several months after the competitions. Community leaders reported greater effort in coordinating residents and more pride in their neighborhood when assigned to the competition treatment. These results suggest that creating focal points for leadership and collective action can be an effective and low-cost strategy to address policy problems that require broad participation and costly behavior change.


Subject(s)
Air Pollution , Uganda , Humans , Air Pollution/prevention & control , Refuse Disposal/methods , Leadership
13.
Environ Pollut ; 354: 124134, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38734050

ABSTRACT

This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 µg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 µg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.


Subject(s)
Machine Learning , Waste Disposal Facilities , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Refuse Disposal/methods , Biodegradation, Environmental , Solid Waste , Metals, Heavy/analysis , Artificial Intelligence
14.
Environ Monit Assess ; 196(6): 537, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730190

ABSTRACT

Selecting an optimal solid waste disposal site is one of the decisive waste management issues because unsuitable sites cause serious environmental and public health problems. In Kenitra province, northwest Morocco, sustainable disposal sites have become a major challenge due to rapid urbanization and population growth. In addition, the existing disposal sites are traditional and inappropriate. The objective of this study is to suggest potential suitable disposal sites using fuzzy logic and analytical hierarchy process (fuzzy-AHP) method integrated with geographic information system (GIS) techniques. For this purpose, thirteen factors affecting the selection process were involved. The results showed that 5% of the studied area is considered extremely suitable and scattered in the central-eastern parts, while 9% is considered almost unsuitable and distributed in the northern and southern parts. Thereafter, these results were validated using the area under the curve (AUC) of the receiver operating characteristics (ROC). The AUC found was 57.1%, which is a moderate prediction's accuracy because the existing sites used in the validation's process were randomly selected. These results can assist relevant authorities and stakeholders for setting new solid waste disposal sites in Kenitra province.


Subject(s)
Fuzzy Logic , Geographic Information Systems , Refuse Disposal , Morocco , Refuse Disposal/methods , Solid Waste/analysis , Environmental Monitoring/methods , Waste Disposal Facilities , Waste Management/methods
15.
Waste Manag ; 185: 10-24, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38815530

ABSTRACT

The low recycling rate of post-consumer plastic packaging waste (PPW), which is partly due to insufficient separate collection, heterogeneous composition and high levels of contamination, poses a challenge in Austria, where the recycling rate must double in order to meet the target of 55 %. This study analyzes key packaging characteristics of non-beverage plastic bottles influencing recyclability, using Vienna as a case study. Additionally, a net quantity indicator and separate collection rates were calculated. 738 bottles from mixed MSW and 1,159 bottles from separate PPW collection were analyzed. The main polymer's proportion described by the net quantity indicator was higher for bottles from separate collection (69-72 %) than from mixed MSW (58 %), showing that a large share of the foreign materials are residues and dirt, with significantly higher contents in mixed MSW (20 %) than in separate collection (11 %). With a separate collection rate of 19.2 %, the great potential for recycling currently lies in mixed MSW at 4,112 t/yr. Thereof, 46 % is uncolored, 54 % is colored/white and, in terms of material grade, 30 % is food grade. The most common filling volume for PET, PP and HDPE was 0.5 < x ≤ 1.5 L (23-59 %) and the most common decoration technology was label (60-85 %). PET and PP had the highest shares of food-grade bottles (37-46 %), while PP had the highest share of colored bottles (22-31 %). The mechanical recycling potential of bottles depends largely on packaging characteristics, influencing separate collection and also automatic sorting. Harmonized design specifications are therefore crucial for this heterogeneous PPW fraction.


Subject(s)
Plastics , Product Packaging , Recycling , Recycling/methods , Austria , Refuse Disposal/methods , Waste Management/methods , Solid Waste/analysis , Food Packaging
16.
Waste Manag ; 185: 33-42, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38820782

ABSTRACT

Higher heating value (HHV) is one of the most important parameters in determining the quality of the fuels. In this study, comparatively large datasets of ultimate and proximate analysis are constructed to be used in HHV estimation of several classes of fuels, including char & fossil fuels, agricultural wastes, manure (chicken, cow, horse, sheep, llama, and pig), sludge (like paper, paper-mil, sewage, and pulp), micro/macro-algae's, wastes (RDF and MSW), treated woods, untreated woods, and others (non-fossil pyrolysis oils) between the HHV range of 4.22-55.55 MJ/kg. The relationships of carbon, hydrogen, and oxygen atomic ratios for fuel classes are illustrated by using ternary plots, and the effects of elemental composition on HHV was analyzed with the extensive dataset. Then, the ultimate (U) and ultimate & proximate (UP) datasets were utilized separately to estimate the HHV by using artificial neural networks (ANN). Hyperparameter optimization was carried out and the best performing ANNs were determined for each dataset, which yielded R2 values of 0.9719 and 0.9715, respectively. The results indicated that while ANNs trained by both datasets perform remarkably well, utilization of U dataset is sufficient for HHV estimation. Finally, the best performing ANN models for both U and UP datasets are given in a directly utilizable format enabling the accurate estimation of HHV of any fuel for optimization of fuel processing and waste management operations.


Subject(s)
Heating , Neural Networks, Computer , Manure/analysis , Refuse Disposal/methods , Waste Products/analysis , Waste Management/methods , Animals , Wood , Sewage/analysis , Solid Waste/analysis
17.
Waste Manag ; 185: 43-54, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38820783

ABSTRACT

Plastics within municipal solid waste (MSW) are non-degradable. As MSW continues to degrade, the relative content of plastics rises, and particle gradation may also change. Moreover, throughout the landfilling process, MSW is subjected to various stress conditions, potentially influencing its mechanical properties. This study explored the effects of varying plastic contents, different particle gradations, and distinct stress paths on the mechanical properties of MSW, and consolidated drained triaxial tests of 42 groups of reconstituted MSW specimens were conducted. The results showed that there was an optimal plastic content of 6-9 % for MSW, where the shear strength of MSW was higher than that of MSW with other plastic contents. When the stress path changed from TC45 to TC72, the optimal plastic content of MSW changed from 6 % to 9 %. As the plastic content increased, both the cohesion and internal friction angle of the MSW initially increased, then subsequently decreased. The impact of plastic content on cohesion was more pronounced than on the internal friction angle, especially at larger strains. Under various stress paths, MSW with distinct particle size distributions demonstrated diverse stress-strain behaviors. Traditional criteria for evaluating well-graded conditions in soils are not suitable for MSW. The effect of gradation on the cohesion of MSW is essentially due to the predominant role of fiber content; the relationship between gradation and the internal friction angle in MSW is complex and correlates closely with the content of both coarse and fine particles, as well as fibers. This study serves as an essential reference for predicting deformations in landfills and analyzing the stability of landfill slopes.


Subject(s)
Plastics , Refuse Disposal , Solid Waste , Solid Waste/analysis , Refuse Disposal/methods , Stress, Mechanical , Particle Size , Shear Strength , Waste Disposal Facilities
18.
Waste Manag ; 185: 25-32, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38820781

ABSTRACT

Lactic acid (LA) is an important chemical with broad market applications. To optimize LA production, food waste has been explored as feedstock. Due to the wide variety of food waste types, most current research studies have obtained different conclusions. This study focuses on carbohydrate-rich fruit and vegetable waste (FVW) and lipid-rich kitchen waste (KW), and the effect of inoculum, temperature, micro-oxygen, and initial pH were compared. FVW has a greater potential for LA production than KW. As an inoculum, lactic acid bacteria (LAB) significantly increased the maximum LA concentration (27.6 g/L) by 50.8 % compared with anaerobic sludge (AS). FVW exhibited optimal LA production at 37 °C with micro-oxygen. Adjustment of initial pH from 4 to 8 alleviated the inhibitory effect of accumulated LA, resulting in a 46.2 % increase in maximum LA production in FVW. The expression of functional genes associated with metabolism, genetic information processing, and environmental information processing was higher at 37 °C compared to 50 °C.


Subject(s)
Lactic Acid , Temperature , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Oxygen/metabolism , Oxygen/chemistry , Refuse Disposal/methods , Vegetables , Sewage , Fruit/chemistry , Fruit/metabolism , Food Loss and Waste
19.
Sci Total Environ ; 940: 173547, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38802000

ABSTRACT

Globally, safe sanitation has improved significantly in the last two decades, but unsafe child feces disposal remains a growing challenge in many regions, exposing household members and communities to infectious pathogens. The drivers associated with child feces disposal in several contexts including humanitarian settings are not well understood. This study investigated child feces disposal (CFD) practices and associated factors in low- and middle-income countries, including in humanitarian settings. Data from 352,173 women in 34 countries, collected between 2012 and 2021 through Demographic and Health Surveys (DHS), were used. We utilized multivariate logistic regression to assess CFD practices among children under two years old and the factors linked to these practices. We incorporated data from the United Nations High Commissioner for Refugees (UNHCR) regarding refugee camps' locations in the analysis. Time series and local spatial autocorrelation analyses were run to examine changes in safe CFD practices over time and space, respectively. Results showed minimal improvement in safe child feces disposal over the past decade, with 55.6 % of respondents in non-humanitarian settings and 38.1 % in humanitarian settings improperly disposing of feces. Improper CFD significantly correlated with increased odds of diarrhea in non-humanitarian settings (OR 1.09 95 % CI: 1.05-1.13) but not in humanitarian settings (OR 1.14 95 % CI: 0.53-2.49). The most significant factors (p < 0.05) associated with safe CFD included being in the richest wealth quintile (OR 3.27 95 % CI: 3.06-3.49), having basic education (OR 1.28 95 % CI: 1.22-1.33), children eating solid food (OR 1.53 95 % CI: 1.48-1.57), improved sanitation access (OR 1.88 95 % CI: 1.81-1.96), and listening to radio at least weekly (OR 1.40 95 % CI: 135-1.46). Policymakers and development partners must include safe CFD guidelines in national policies and programs, as well as prioritize investments in household-level sanitation and educate caregivers about safe CFD practices.


Subject(s)
Developing Countries , Feces , Sanitation , Humans , Female , Infant , Refuse Disposal/methods , Adult , Child, Preschool , Male
20.
Chemosphere ; 361: 142478, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815817

ABSTRACT

Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration.


Subject(s)
Carbon Dioxide , Carbon Sequestration , Refuse Disposal , Solid Waste , Solid Waste/analysis , Refuse Disposal/methods , Greenhouse Gases/analysis , Waste Management/methods , Charcoal/chemistry , Climate Change , Cities
SELECTION OF CITATIONS
SEARCH DETAIL
...