Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.986
Filter
1.
Cells ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38994973

ABSTRACT

Throughout embryonic development, the shaping of the functional and morphological characteristics of embryos is orchestrated by an intricate interaction between transcription factors and cis-regulatory elements. In this study, we conducted a comprehensive analysis of deuterostome cis-regulatory landscapes during gastrulation, focusing on four paradigmatic species: the echinoderm Strongylocentrotus purpuratus, the cephalochordate Branchiostoma lanceolatum, the urochordate Ciona intestinalis, and the vertebrate Danio rerio. Our approach involved comparative computational analysis of ATAC-seq datasets to explore the genome-wide blueprint of conserved transcription factor binding motifs underlying gastrulation. We identified a core set of conserved DNA binding motifs associated with 62 known transcription factors, indicating the remarkable conservation of the gastrulation regulatory landscape across deuterostomes. Our findings offer valuable insights into the evolutionary molecular dynamics of embryonic development, shedding light on conserved regulatory subprograms and providing a comprehensive perspective on the conservation and divergence of gene regulation underlying the gastrulation process.


Subject(s)
Ciona intestinalis , Gastrulation , Gene Expression Regulation, Developmental , Animals , Gastrulation/genetics , Ciona intestinalis/genetics , Ciona intestinalis/embryology , Zebrafish/genetics , Zebrafish/embryology , Transcription Factors/metabolism , Transcription Factors/genetics , Strongylocentrotus purpuratus/genetics , Strongylocentrotus purpuratus/embryology , Conserved Sequence/genetics , Regulatory Sequences, Nucleic Acid/genetics , Lancelets/genetics , Lancelets/embryology , Evolution, Molecular
2.
Nat Commun ; 15(1): 6027, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39025865

ABSTRACT

Aberrations in the capacity of DNA/chromatin modifiers and transcription factors to bind non-coding regions can lead to changes in gene regulation and impact disease phenotypes. However, identifying distal regulatory elements and connecting them with their target genes remains challenging. Here, we present MethNet, a pipeline that integrates large-scale DNA methylation and gene expression data across multiple cancers, to uncover cis regulatory elements (CREs) in a 1 Mb region around every promoter in the genome. MethNet identifies clusters of highly ranked CREs, referred to as 'hubs', which contribute to the regulation of multiple genes and significantly affect patient survival. Promoter-capture Hi-C confirmed that highly ranked associations involve physical interactions between CREs and their gene targets, and CRISPR interference based single-cell RNA Perturb-seq validated the functional impact of CREs. Thus, MethNet-identified CREs represent a valuable resource for unraveling complex mechanisms underlying gene expression, and for prioritizing the verification of predicted non-coding disease hotspots.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Neoplasms , Promoter Regions, Genetic , Humans , Neoplasms/genetics , DNA Methylation/genetics , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Methods Mol Biol ; 2805: 127-135, 2024.
Article in English | MEDLINE | ID: mdl-39008178

ABSTRACT

The modulation of cis-regulatory elements (e.g., enhancers and promoters) is a major mechanism by which gene expression can be controlled in a temporal and spatially restricted manner. However, methods for both identifying these elements and inferring their activity are limited and often require a substantial investment of time, money, and resources. Here, using mammalian skin as a model, we demonstrate a streamlined protocol by which these hurdles can be overcome using a novel chromatin profiling technique (CUT&RUN) to map histone modifications genome-wide. This protocol can be used to map the location and activity of putative cis-regulatory elements, providing mechanistic insight into how differential gene expression is controlled in mammalian tissues.


Subject(s)
Promoter Regions, Genetic , Skin , Animals , Skin/metabolism , Enhancer Elements, Genetic , Chromatin/genetics , Chromatin/metabolism , Humans , Mammals/genetics , Mice , Gene Expression Regulation , Regulatory Sequences, Nucleic Acid/genetics , Histones/metabolism , Histones/genetics , Genome/genetics , Gene Expression Profiling/methods , Chromatin Immunoprecipitation/methods
4.
Sci Rep ; 14(1): 13453, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862513

ABSTRACT

Individuals with type 1 diabetes (T1D) carry a markedly increased risk of stroke, with distinct clinical and neuroimaging characteristics as compared to those without diabetes. Using whole-exome or whole-genome sequencing of 1,051 individuals with T1D, we aimed to find rare and low-frequency genomic variants associated with stroke in T1D. We analysed the genome comprehensively with single-variant analyses, gene aggregate analyses, and aggregate analyses on genomic windows, enhancers and promoters. In addition, we attempted replication in T1D using a genome-wide association study (N = 3,945) and direct genotyping (N = 3,263), and in the general population from the large-scale population-wide FinnGen project and UK Biobank summary statistics. We identified a rare missense variant on SREBF1 exome-wide significantly associated with stroke (rs114001633, p.Pro227Leu, p-value = 7.30 × 10-8), which replicated for hemorrhagic stroke in T1D. Using gene aggregate analysis, we identified exome-wide significant genes: ANK1 and LRRN1 displayed replication evidence in T1D, and LRRN1, HAS1 and UACA in the general population (UK Biobank). Furthermore, we performed sliding-window analyses and identified 14 genome-wide significant windows for stroke on 4q33-34.1, of which two replicated in T1D, and a suggestive genomic window on LINC01500, which replicated in T1D. Finally, we identified a suggestively stroke-associated TRPM2-AS promoter (p-value = 5.78 × 10-6) with borderline significant replication in T1D, which we validated with an in vitro cell-based assay. Due to the rarity of the identified genetic variants, future replication of the genomic regions represented here is required with sequencing of individuals with T1D. Nevertheless, we here report the first genome-wide analysis on stroke in individuals with diabetes.


Subject(s)
Ankyrins , Diabetes Mellitus, Type 1 , Genetic Predisposition to Disease , Genome-Wide Association Study , Stroke , Whole Genome Sequencing , Adult , Female , Humans , Male , Middle Aged , Ankyrins/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid/genetics , Stroke/genetics
5.
Cell Mol Life Sci ; 81(1): 274, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902506

ABSTRACT

Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.


Subject(s)
Mutation , Neoplasms , Humans , Neoplasms/genetics , Regulatory Sequences, Nucleic Acid/genetics , Genome, Human , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic
6.
Nat Commun ; 15(1): 4839, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844462

ABSTRACT

Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation. Here we systematically profile the epigenome of the recently expanded murine Ly49 gene family that mainly encode either inhibitory or activating surface receptors on natural killer cells. We identify a set of cis-regulatory elements (CREs) for activating Ly49 genes. In addition, we show that in mice, inhibitory and activating Ly49 genes are regulated by two separate sets of proximal CREs, likely resulting from lineage-specific losses of CRE activity. Furthermore, we find that some Ly49 genes are cross-regulated by the CREs of other Ly49 genes, suggesting that the Ly49 family has begun to evolve a concerted cis-regulatory mechanism. Collectively, we demonstrate the different modes of cis-regulatory evolution for a rapidly expanding gene family.


Subject(s)
Evolution, Molecular , Multigene Family , NK Cell Lectin-Like Receptor Subfamily A , Animals , Mice , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Gene Expression Regulation , Killer Cells, Natural/immunology , Mice, Inbred C57BL
7.
Proc Natl Acad Sci U S A ; 121(26): e2319811121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889146

ABSTRACT

Rational design of plant cis-regulatory DNA sequences without expert intervention or prior domain knowledge is still a daunting task. Here, we developed PhytoExpr, a deep learning framework capable of predicting both mRNA abundance and plant species using the proximal regulatory sequence as the sole input. PhytoExpr was trained over 17 species representative of major clades of the plant kingdom to enhance its generalizability. Via input perturbation, quantitative functional annotation of the input sequence was achieved at single-nucleotide resolution, revealing an abundance of predicted high-impact nucleotides in conserved noncoding sequences and transcription factor binding sites. Evaluation of maize HapMap3 single-nucleotide polymorphisms (SNPs) by PhytoExpr demonstrates an enrichment of predicted high-impact SNPs in cis-eQTL. Additionally, we provided two algorithms that harnessed the power of PhytoExpr in designing functional cis-regulatory variants, and de novo creation of species-specific cis-regulatory sequences through in silico evolution of random DNA sequences. Our model represents a general and robust approach for functional variant discovery in population genetics and rational design of regulatory sequences for genome editing and synthetic biology.


Subject(s)
Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid , Zea mays , Regulatory Sequences, Nucleic Acid/genetics , Zea mays/genetics , Quantitative Trait Loci , Algorithms , Gene Expression Regulation, Plant , Deep Learning , Plants/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Models, Genetic , Genes, Plant , Binding Sites/genetics
8.
Iran J Immunol ; 21(2): 166-175, 2024 06 30.
Article in English | MEDLINE | ID: mdl-38912647

ABSTRACT

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disorder characterized by the fusion of vertebral joints and axial arthritis. The programmed death-1 (PD-1) inhibitory receptor has a pivotal role in controlling T cell function and may have a significant impact on the pathogenesis of autoimmune diseases such as AS pathogenesis. Objective: To investigate PD-1 gene expression and its epigenetic regulation by detecting methylated CpG islands in the regulatory sites of the gene. This will provide insight into the mechanisms involved in the disease. Methods: 30 AS patients and 30 healthy individuals were examined to detect the 16 CpG islands in intron 1 using bisulfite conversion and methylation-specific PCR technique. In addition, RNA samples were isolated from fresh peripheral blood mononuclear cells (PBMCs), and after complementary DNA (cDNA) synthesis, the expression level of the PD-1 gene was evaluated using Real-Time PCR. Results: The CpG islands located in the intronic zone of the PD-1 gene were hyper-methylated in both the patients with AS and the healthy controls. The gene expression of PD-1 was significantly downregulated in AS patients compared with the controls (p=0.017). A negative correlation between the Bath Ankylosing Spondylitis Disease Activity Index and PD-1 gene expression was also revealed. Conclusion: The low level of PD-1 gene expression is implicated in the pathogenesis of AS. However, in both groups, the methylation level of the intron 1 CpG islands of the PD-1 gene suggests that other regulatory mechanisms are more relevant to PD-1 gene expression than methylation in the intron.


Subject(s)
CpG Islands , DNA Methylation , Epigenesis, Genetic , Programmed Cell Death 1 Receptor , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Male , Female , Adult , CpG Islands/genetics , Transcriptome , Gene Expression Regulation , Middle Aged , Gene Expression Profiling , Regulatory Sequences, Nucleic Acid/genetics , Young Adult , Introns/genetics
9.
Methods Mol Biol ; 2792: 251-264, 2024.
Article in English | MEDLINE | ID: mdl-38861093

ABSTRACT

The cis-regulatory elements (CREs) are the short stretches of noncoding DNA upstream of a gene, which play a critical role in fine-tuning gene expression. Photorespiration is a multi-organellar, energy-expensive biochemical process that remains intricately linked to photosynthesis and is conserved in plants. Recently, much focus has been devoted in generating plants with engineered alternative photorespiratory bypasses to enhance photosynthetic efficiency without compromising the beneficial aspect of photorespiration. Varied constitutive or inducible promoters for generating transgenic plants harboring multiple transgenes have been introduced over years; however, most of them suffer from unintended effects. Consequently, a demand for synthetic tunable promoters based on canonical CRE signatures derived from native genes is on the rise. Here, in this chapter, we have provided a detailed method for in silico identification and characterization of CREs associated with photorespiration. In addition to the detailed protocol, we have presented an example of a typical result and explained the significance of the result. Specifically, the method covers how to identify and generate tunable synthetic promoters based on native CREs using three key photorespiratory genes from Arabidopsis and two web-based tools, namely, PlantPAN3.0 and AthaMap. Finally, we have also furnished a protocol on how to test the efficacies of the synthetic promoters harboring predicted CREs using transient tobacco expression coupled with luciferase-based promoter assay in response to ambient conditions and under short-term abiotic stress conditions.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Photosynthesis , Plants, Genetically Modified , Promoter Regions, Genetic , Stress, Physiological , Stress, Physiological/genetics , Arabidopsis/genetics , Photosynthesis/genetics , Plants, Genetically Modified/genetics , Regulatory Sequences, Nucleic Acid/genetics
11.
Plant J ; 119(1): 525-539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38693717

ABSTRACT

Regulation of gene expression in eukaryotes is controlled by cis-regulatory modules (CRMs). A major class of CRMs are enhancers which are composed of activating cis-regulatory elements (CREs) responsible for upregulating transcription. To date, most enhancers and activating CREs have been studied in angiosperms; in contrast, our knowledge about these key regulators of gene expression in green algae is limited. In this study, we aimed at characterizing putative activating CREs/CRMs from the histone genes of the unicellular model alga Chlamydomonas reinhardtii. To test the activity of four candidates, reporter constructs consisting of a tetramerized CRE, an established promoter, and a gene for the mCerulean3 fluorescent protein were incorporated into the nuclear genome of C. reinhardtii, and their activity was quantified by flow cytometry. Two tested candidates, Eupstr and Ehist cons, significantly upregulated gene expression and were characterized in detail. Eupstr, which originates from highly expressed genes of C. reinhardtii, is an orientation-independent CRE capable of activating both the RBCS2 and ß2-tubulin promoters. Ehist cons, which is a CRM from histone genes of angiosperms, upregulates the ß2-tubulin promoter in C. reinhardtii over a distance of at least 1.5 kb. The octamer motif present in Ehist cons was identified in C. reinhardtii and the related green algae Chlamydomonas incerta, Chlamydomonas schloesseri, and Edaphochlamys debaryana, demonstrating its high evolutionary conservation. The results of this investigation expand our knowledge about the regulation of gene expression in green algae. Furthermore, the characterized activating CREs/CRMs can be applied as valuable genetic tools.


Subject(s)
Chlamydomonas reinhardtii , Histones , Promoter Regions, Genetic , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Histones/metabolism , Histones/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant , Regulatory Sequences, Nucleic Acid/genetics
12.
Am J Hum Genet ; 111(7): 1301-1315, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38815586

ABSTRACT

To date, clinical genetic testing for Mendelian disease variants has focused heavily on exonic coding and intronic gene regions. This multi-step study was undertaken to provide an evidence base for selecting and applying computational approaches for use in clinical classification of 5' cis-regulatory region variants. Curated datasets of clinically reported disease-causing 5' cis-regulatory region variants and variants from matched genomic regions in population controls were used to calibrate six bioinformatic tools as predictors of variant pathogenicity. Likelihood ratio estimates were aligned to code weights following ClinGen recommendations for application of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) classification scheme. Considering code assignment across all reference dataset variants, performance was best for CADD (81.2%) and REMM (81.5%). Optimized thresholds provided moderate evidence toward pathogenicity (CADD, REMM) and moderate (CADD) or supporting (REMM) evidence against pathogenicity. Both sensitivity and specificity of prediction were improved when further categorizing variants based on location in an EPDnew-defined promoter region. Combining predictions (CADD, REMM, and location in a promoter region) increased specificity at the expense of sensitivity. Importantly, the optimal CADD thresholds for assigning ACMG/AMP codes PP3 (≥10) and BP4 (≤8) were vastly different from recommendations for protein-coding variants (PP3 ≥25.3; BP4 ≤22.7); CADD <22.7 would incorrectly assign BP4 for >90% of reported disease-causing cis-regulatory region variants. Our results demonstrate the need to consider a tiered approach and tailored score thresholds to optimize bioinformatic impact prediction for clinical classification of 5' cis-regulatory region variants.


Subject(s)
Computational Biology , Genetic Diseases, Inborn , Regulatory Sequences, Nucleic Acid , Humans , Computational Biology/methods , Regulatory Sequences, Nucleic Acid/genetics , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/classification , Genetic Variation , Calibration , Genetic Testing/methods
13.
Sci Rep ; 14(1): 10078, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698030

ABSTRACT

Comparative analyses between traditional model organisms, such as the fruit fly Drosophila melanogaster, and more recent model organisms, such as the red flour beetle Tribolium castaneum, have provided a wealth of insight into conserved and diverged aspects of gene regulation. While the study of trans-regulatory components is relatively straightforward, the study of cis-regulatory elements (CREs, or enhancers) remains challenging outside of Drosophila. A central component of this challenge has been finding a core promoter suitable for enhancer-reporter assays in diverse insect species. Previously, we demonstrated that a Drosophila Synthetic Core Promoter (DSCP) functions in a cross-species manner in Drosophila and Tribolium. Given the over 300 million years of divergence between the Diptera and Coleoptera, we reasoned that DSCP-based reporter constructs will be useful when studying cis-regulation in a variety of insect models across the holometabola and possibly beyond. To this end, we sought to create a suite of new DSCP-based reporter vectors, leveraging dual compatibility with piggyBac and PhiC31-integration, the 3xP3 universal eye marker, GATEWAY cloning, different colors of reporters and markers, as well as Gal4-UAS binary expression. While all constructs functioned properly with a Tc-nub enhancer in Drosophila, complications arose with tissue-specific Gal4-UAS binary expression in Tribolium. Nevertheless, the functionality of these constructs across multiple holometabolous orders suggests a high potential compatibility with a variety of other insects. In addition, we present the piggyLANDR (piggyBac-LoxP AttP Neutralizable Destination Reporter) platform for the establishment of proper PhiC31 landing sites free from position effects. As a proof-of-principle, we demonstrated the workflow for piggyLANDR in Drosophila. The potential utility of these tools ranges from molecular biology research to pest and disease-vector management, and will help advance the study of gene regulation beyond traditional insect models.


Subject(s)
Drosophila melanogaster , Genes, Reporter , Genetic Vectors , Promoter Regions, Genetic , Tribolium , Animals , Genetic Vectors/genetics , Tribolium/genetics , Drosophila melanogaster/genetics , Enhancer Elements, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Insecta/genetics , Animals, Genetically Modified
14.
Mol Biol Rep ; 51(1): 612, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704770

ABSTRACT

BACKGROUND: The α-Major Regulatory Element (α-MRE), also known as HS-40, is located upstream of the α-globin gene cluster and has a crucial role in the long-range regulation of the α-globin gene expression. This enhancer is polymorphic and several haplotypes were identified in different populations, with haplotype D almost exclusively found in African populations. The purpose of this research was to identify the HS-40 haplotype associated with the 3.7 kb α-thalassemia deletion (-α3.7del) in the Portuguese population, and determine its ancestry and influence on patients' hematological phenotype. METHODS AND RESULTS: We selected 111 Portuguese individuals previously analyzed by Gap-PCR to detect the presence of the -α3.7del: 50 without the -α3.7del, 34 heterozygous and 27 homozygous for the -α3.7del. The HS-40 region was amplified by PCR followed by Sanger sequencing. Four HS-40 haplotypes were found (A to D). The distribution of HS-40 haplotypes and genotypes are significantly different between individuals with and without the -α3.7del, being haplotype D and genotype AD the most prevalent in patients with this deletion in homozygosity. Furthermore, multiple correspondence analysis revealed that individuals without the -α3.7del are grouped with other European populations, while samples with the -α3.7del are separated from these and found more closely related to the African population. CONCLUSION: This study revealed for the first time an association of the HS-40 haplotype D with the -α3.7del in the Portuguese population, and its likely African ancestry. These results may have clinical importance as in vitro analysis of haplotype D showed a decrease in its enhancer activity on α-globin gene.


Subject(s)
Haplotypes , Sequence Deletion , alpha-Globins , alpha-Thalassemia , Female , Humans , Male , alpha-Globins/genetics , alpha-Thalassemia/genetics , Black People/genetics , Gene Frequency/genetics , Genotype , Haplotypes/genetics , Portugal , Regulatory Sequences, Nucleic Acid/genetics , Sequence Deletion/genetics
15.
Nat Commun ; 15(1): 3699, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698035

ABSTRACT

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Subject(s)
Archaea , Archaeal Viruses , Archaeal Viruses/genetics , Archaea/genetics , Archaea/virology , Archaea/immunology , Promoter Regions, Genetic/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Regulatory Sequences, Nucleic Acid/genetics , Viral Proteins/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Metagenome/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics
17.
Sci Adv ; 10(21): eadj4452, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781344

ABSTRACT

Most genetic variants associated with psychiatric disorders are located in noncoding regions of the genome. To investigate their functional implications, we integrate epigenetic data from the PsychENCODE Consortium and other published sources to construct a comprehensive atlas of candidate brain cis-regulatory elements. Using deep learning, we model these elements' sequence syntax and predict how binding sites for lineage-specific transcription factors contribute to cell type-specific gene regulation in various types of glia and neurons. The elements' evolutionary history suggests that new regulatory information in the brain emerges primarily via smaller sequence mutations within conserved mammalian elements rather than entirely new human- or primate-specific sequences. However, primate-specific candidate elements, particularly those active during fetal brain development and in excitatory neurons and astrocytes, are implicated in the heritability of brain-related human traits. Additionally, we introduce PsychSCREEN, a web-based platform offering interactive visualization of PsychENCODE-generated genetic and epigenetic data from diverse brain cell types in individuals with psychiatric disorders and healthy controls.


Subject(s)
Brain , Epigenesis, Genetic , Regulatory Sequences, Nucleic Acid , Humans , Brain/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Evolution, Molecular , Mental Disorders/genetics , Regulatory Elements, Transcriptional/genetics , Neurons/metabolism , Gene Expression Regulation , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38743016

ABSTRACT

Varicose vein disease (VVD) is a common health problem worldwide. Microfibril-associated protein 5 (MFAP5) is one of the potential key players in its pathogenesis. Our previous microarray analysis revealed the cg06256735 and cg15815843 loci in the regulatory regions of the MFAP5 gene as hypomethylated in varicose veins which correlated with its up-regulation. The aim of this work was to validate preliminary microarray data, estimate the level of 5-hydroxymethylcytosine (5hmC) at these loci, and determine the methylation status of one of them in different layers of the venous wall. For this, methyl- and hydroxymethyl-sensitive restriction techniques were used followed by real-time PCR and droplet digital PCR, correspondingly, as well as bisulfite pyrosequencing of +/- oxidized DNA. Our microarray data on hypomethylation at the cg06256735 and cg15815843 loci in whole varicose vein segments were confirmed and it was also demonstrated that the level of 5hmC at these loci is increased in VVD. Specifically, among other layers of the venous wall, tunica (t.) intima is the main contributor to hypomethylation at the cg06256735 locus in varicose veins. Thus, it was shown that hypomethylation at the cg06256735 and cg15815843 loci takes place in VVD, with evidence to suggest that it happens through their active demethylation leading to up-regulation of the MFAP5 gene, and t. intima is most involved in this biochemical process.


Subject(s)
5-Methylcytosine , DNA Methylation , Varicose Veins , Varicose Veins/genetics , Varicose Veins/metabolism , Humans , Male , Female , Middle Aged , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adult , Aged , Regulatory Sequences, Nucleic Acid/genetics , Genetic Loci
19.
Nat Commun ; 15(1): 3839, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714659

ABSTRACT

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


Subject(s)
CRISPR-Cas Systems , Exons , Introns , RNA Splicing , RNA, Guide, CRISPR-Cas Systems , Survival of Motor Neuron 2 Protein , Humans , RNA Splicing/genetics , Survival of Motor Neuron 2 Protein/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Introns/genetics , Exons/genetics , HEK293 Cells , Oligonucleotides, Antisense/genetics , Muscular Atrophy, Spinal/genetics , Regulatory Sequences, Nucleic Acid/genetics , RNA Precursors/genetics , RNA Precursors/metabolism
20.
BMC Bioinformatics ; 25(1): 179, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714913

ABSTRACT

BACKGROUND: As genomic studies continue to implicate non-coding sequences in disease, testing the roles of these variants requires insights into the cell type(s) in which they are likely to be mediating their effects. Prior methods for associating non-coding variants with cell types have involved approaches using linkage disequilibrium or ontological associations, incurring significant processing requirements. GaiaAssociation is a freely available, open-source software that enables thousands of genomic loci implicated in a phenotype to be tested for enrichment at regulatory loci of multiple cell types in minutes, permitting insights into the cell type(s) mediating the studied phenotype. RESULTS: In this work, we present Regulatory Landscape Enrichment Analysis (RLEA) by GaiaAssociation and demonstrate its capability to test the enrichment of 12,133 variants across the cis-regulatory regions of 44 cell types. This analysis was completed in 134.0 ± 2.3 s, highlighting the efficient processing provided by GaiaAssociation. The intuitive interface requires only four inputs, offers a collection of customizable functions, and visualizes variant enrichment in cell-type regulatory regions through a heatmap matrix. GaiaAssociation is available on PyPi for download as a command line tool or Python package and the source code can also be installed from GitHub at https://github.com/GreallyLab/gaiaAssociation . CONCLUSIONS: GaiaAssociation is a novel package that provides an intuitive and efficient resource to understand the enrichment of non-coding variants across the cis-regulatory regions of different cells, empowering studies seeking to identify disease-mediating cell types.


Subject(s)
Software , Genetic Variation , Humans , Genomics/methods , Computational Biology/methods , Phenotype , Regulatory Sequences, Nucleic Acid/genetics , Linkage Disequilibrium
SELECTION OF CITATIONS
SEARCH DETAIL