Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.571
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1363797, 2024.
Article in English | MEDLINE | ID: mdl-39184137

ABSTRACT

Purpose: We investigated the capability and imaging criteria of T1 mapping and arterial spin labeling (ASL) MRI to identify renal injury in patients with liver cirrhosis. Methods: We recruited 27 patients with cirrhosis and normal renal function (cirrhosis-NR), 10 with cirrhosis and renal dysfunction (cirrhosis-RD) and 23 normal controls (NCs). All participants were examined via renal T1 mapping and ASL imaging. Renal blood flow (RBF) derived from ASL was measured from the renal cortex, and T1 values were measured from the renal parenchyma (cortex and medulla). MRI parameters were compared between groups. Diagnostic performances for detecting renal impairment were statistically analyzed. Results: Cortical T1 (cT1) and medullary T1 (mT1) were significantly lower in the NCs than in the cirrhosis-NR group. The cortical RBF showed no significant changes between the NCs and cirrhosis-NR group but was markedly decreased in the cirrhosis-RD group. The areas under the curve (AUCs) for discriminating cirrhosis-NR from NCs were 0.883 and 0.826 by cT1 and mT1, respectively. Cortical RBF identified cirrhosis-RD with AUC of 0.978, and correlated with serum creatinine (r = -0.334) and the estimated glomerular filtration rate (r = 0.483). A classification and regression tree based on cortical RBF and cT1 achieved 85% accuracy in detecting renal impairment in the cirrhosis. Conclusion: Renal T1 values might be sensitive predictors of early renal impairment in patients with cirrhosis-NR. RBF enabled quantifying renal perfusion impairment in patients with cirrhosis-RD. The diagnostic algorithm based on cortical RBF and T1 values allowed detecting renal injury during cirrhosis.


Subject(s)
Liver Cirrhosis , Magnetic Resonance Imaging , Spin Labels , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/diagnostic imaging , Male , Female , Middle Aged , Magnetic Resonance Imaging/methods , Aged , Adult , Renal Circulation , Glomerular Filtration Rate , Kidney/diagnostic imaging , Case-Control Studies
2.
Ups J Med Sci ; 1292024.
Article in English | MEDLINE | ID: mdl-39114321

ABSTRACT

Background: Diabetic kidney disease is a major contributor to end stage renal disease. A change in kidney oxygen homeostasis leading to decreased tissue oxygen tension is an important factor initiating alterations in kidney function in diabetes. However, the mechanism contributing to changed oxygen homeostasis is still unclear. Hyperglycemia-induced production of reactive oxygen species and an altered response to them have previously been demonstrated. In the present study, chronic treatment with DL-sulforaphane to induce nuclear factor erythroid 2-related factor 2 (Nrf2) expression, a master transcriptional regulator binding to antioxidant response elements inducing increased protection against reactive oxygen species, is studied. Methods: Sprague-Dawley rats were made diabetic using streptozotocin and either left untreated or received daily subcutaneous injections of DL-sulforaphane for 4 weeks. Age-matched non-diabetic rats served as controls. After 4 weeks of treatment, rats were anesthetized using thiobutabarbital, and kidney functions were studied in terms of glomerular filtration rate (GFR), renal blood flow (RBF), sodium transport, kidney oxygen consumption, and kidney oxygen tension. Mitochondria was isolated from kidney cortical tissue and investigated using high-resolution respirometry. Results: GFR was increased in diabetics but not RBF resulting in increased filtration fraction in diabetics. DL-sulforaphane treatment did not affect RBF and GFR in controls but decreased the same parameters in diabetics. Increased GFR resulted in increased sodium transport and oxygen consumption, hence decreased efficiency in diabetics compared to controls. Increased oxygen consumption in diabetics resulted in decreased cortical tissue oxygen tension. DL-sulforaphane treatment decreased oxygen consumption in diabetics, whereas transport efficiency was not significantly affected. DL-sulforaphane treatment increased cortical pO2 in diabetics. Conclusions: DL-sulforaphane treatment affects renal hemodynamics, improving cortical oxygen tension but not mitochondrial efficiency.


Subject(s)
Diabetes Mellitus, Experimental , Glomerular Filtration Rate , Hemodynamics , Isothiocyanates , Kidney , NF-E2-Related Factor 2 , Oxygen Consumption , Rats, Sprague-Dawley , Sulfoxides , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Rats , Isothiocyanates/pharmacology , Male , NF-E2-Related Factor 2/metabolism , Kidney/metabolism , Sulfoxides/pharmacology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/physiopathology , Streptozocin , Reactive Oxygen Species/metabolism , Renal Circulation/drug effects , Mitochondria/metabolism
3.
Crit Care Explor ; 6(8): e1134, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39110074

ABSTRACT

IMPORTANCE: Pediatric acute kidney injury (AKI) is a prevalent and morbid complication of shock. Its pathogenesis and early identification remain elusive. OBJECTIVES: We aim to determine whether renal blood flow (RBF) measurements by point-of-care ultrasound (POCUS) and renin-angiotensin-aldosterone system (RAAS) hormones in pediatric shock associate with vasoactive requirements and AKI. DESIGN, SETTING, AND PARTICIPANTS: This is a single-center prospective, noninterventional observational cohort study in one tertiary PICU in North American from 2020 to 2022 that enrolled children younger than 18 years with shock without preexisting end-stage renal disease. MAIN OUTCOMES AND MEASURES: RBF was measured by POCUS on hospital days 1 and 3 and plasma RAAS hormone levels were measured on day 1. The primary outcome was the presence of AKI by Kidney Disease Improving Global Outcomes criteria at first ultrasound with key secondary outcomes of creatinine, blood urea nitrogen (BUN), Vasoactive-Inotrope Score (VIS), and norepinephrine equivalent dosing (NED) 48 hours after first ultrasound. RESULTS: Fifty patients were recruited (20 with AKI, mean age 10.5 yr, 48% female). POCUS RBF showed lower qualitative blood flow (power Doppler ultrasound [PDU] score) and higher regional vascular resistance (renal resistive index [RRI]) in children with AKI (p = 0.017 and p = 0.0007). Renin and aldosterone levels were higher in the AKI cohort (p = 0.003 and p = 0.007). Admission RRI and PDU associated with higher day 3 VIS and NED after adjusting for age, day 1 VIS, and RAAS hormones. Admission renin associated with higher day 3 creatinine and BUN after adjusting for age, day 1 VIS, and the ultrasound parameters. CONCLUSIONS AND RELEVANCE: In pediatric shock, kidney blood flow was abnormal and renin and aldosterone were elevated in those with AKI. Kidney blood flow abnormalities are independently associated with future cardiovascular dysfunction; renin elevations are independently associated with future kidney dysfunction. Kidney blood flow by POCUS may identify children who will have persistent as opposed to resolving AKI. RAAS perturbations may drive AKI in pediatric shock.


Subject(s)
Acute Kidney Injury , Renal Circulation , Renin-Angiotensin System , Humans , Female , Child , Male , Prospective Studies , Acute Kidney Injury/blood , Acute Kidney Injury/physiopathology , Acute Kidney Injury/etiology , Renin-Angiotensin System/physiology , Adolescent , Shock/blood , Shock/physiopathology , Child, Preschool , Cohort Studies , Infant , Kidney/physiopathology , Kidney/blood supply , Kidney/diagnostic imaging
4.
World J Urol ; 42(1): 471, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110171

ABSTRACT

PURPOSE: Using ex vivo normothermic machine perfusion (NMP) with whole blood we assessed marginal porcine kidneys under reperfusion. The aim was to link measureable machine and clinical blood parameters with the currently used visual assessment. This could serve as a baseline for a standardized evaluation score to identify potentially transplantable kidneys in the future. METHODS: Kidneys and autologous whole blood were procured from slaughterhouse pigs (n = 33) and were perfused for 4 h using NMP. The hemodynamic parameters arterial pressure (AP), renal blood flow (RBF) and intrarenal resistance (IRR) were measured. Activity of aspartate transaminase (AST), gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and lactate were assessed in blood at 0/1/2/4 h. Kidneys were grouped into "potentially transplantable" (PT) or "not transplantable" (NT) based on their overall macroscopic appearance after NMP by an experienced physician. RESULTS: PT-kidneys (n = 20) had a significantly lower IRR and higher RBF than NT-kidneys (n = 13). GGT, ALP and LDH did not differ significantly, but at 4 h, AST was significantly higher in PT-kidneys compared to NT-kidneys. Lactate levels kept increasing during NMP in NT-kidneys and were significantly higher at 1/2/4 h than in PT-kidneys. CONCLUSION: The immediately assessed macroscopic aspects of examined kidneys correlated with hemodynamic parameters, increased lactate and lower AST in this study. In the future, NMP with whole blood could be a useful tool to extend the donor pool by allowing the assessment of otherwise unknown characteristics of marginal kidneys before transplantation.


Subject(s)
Hemodynamics , Kidney Transplantation , Kidney , Organ Preservation , Perfusion , Animals , Swine , Kidney/physiology , Hemodynamics/physiology , Organ Preservation/methods , Aspartate Aminotransferases/blood , L-Lactate Dehydrogenase/blood , gamma-Glutamyltransferase/blood , Renal Circulation/physiology , Alkaline Phosphatase/blood
5.
Am J Physiol Regul Integr Comp Physiol ; 327(3): R349-R361, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39005079

ABSTRACT

Angiotensin II (ANG II) is known to play an important role in regulating renal hemodynamics. We sought to quantify this effect in an in vivo rat model with high-resolution renal arterial (RA) impedance. This study examines the effects of ANG II and its type 1 receptor blocker telmisartan (TELM) on RA impedance. In baroreflex-deactivated rats, we measured RA pressure (Pr) and blood flow (Fr) during random ventricular pacing to induce pressure fluctuation at three different mean Pr (60, 80, and 100 mmHg). We then estimated RA impedance as the transfer function from Fr to Pr. The RA impedance was found to align with a three-element Windkessel model consisting of proximal (Rp) and distal (Rd) resistance and compliance (C). Our study showed Rd reflected the composite characteristics of afferent and efferent arterioles. Rd increased with increasing Pr under the baseline condition with a slope of 1.03 ± 0.21 (× 10-1) min·mL-1. ANG II significantly increased the slope by 0.72 ± 0.29 (× 10-1) min·mL-1 (P < 0.05) without affecting the intercept. TELM significantly reduced the intercept by 34.49 ± 4.86 (× 10-1) mmHg·min·mL-1 (P < 0.001) from the baseline value of 37.93 ± 13.36 (× 10-1) mmHg·min·mL-1, whereas it did not affect the slope. In contrast, Rp was less sensitive than Rd to ANG II or TELM, suggesting Rp may represent the characteristics of elastic large arteries. Our findings provide valuable insights into the influence of ANG II on the dynamics of the renal vasculature.NEW & NOTEWORTHY This present method of quantifying high-resolution renal arterial impedance could contribute to elucidating the characteristics of renal vasculature influenced by physiological mechanisms, renal diseases, or pharmacological effects. The present findings help construct a lumped-parameter renal hemodynamic model that reflects the influence of angiotensin II.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Angiotensin II , Rats, Sprague-Dawley , Renal Artery , Renal Circulation , Telmisartan , Vascular Resistance , Animals , Telmisartan/pharmacology , Angiotensin II/pharmacology , Male , Angiotensin II Type 1 Receptor Blockers/pharmacology , Renal Artery/drug effects , Renal Circulation/drug effects , Vascular Resistance/drug effects , Benzimidazoles/pharmacology , Rats , Benzoates/pharmacology , Models, Cardiovascular
6.
Clin Nucl Med ; 49(9): e447-e450, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38914023

ABSTRACT

ABSTRACT: A 60-year-old man with a history of end-stage renal disease received renal transplant and had decreasing renal function 4 months later. Nuclear medicine renal flow and functional study showed severely decreased blood flow and decreased function of the right renal allograft. There was focal increased radiotracer uptake at blood flow phase around the anastomosis of the renal allograft artery and the right external iliac artery. CT angiogram revealed right external iliac artery pseudoaneurysm. Interventional radiology angiography reconfirmed the pseudoaneurysm and revealed stenosis at the proximal transplant renal artery. After stent placement, however, there was worse renal allograft blood flow.


Subject(s)
Aneurysm, False , Kidney Transplantation , Renal Artery , Stents , Humans , Kidney Transplantation/adverse effects , Male , Middle Aged , Aneurysm, False/diagnostic imaging , Renal Artery/diagnostic imaging , Renal Circulation , Anastomosis, Surgical , Constriction, Pathologic , Renal Artery Obstruction/diagnostic imaging , Renal Artery Obstruction/physiopathology , Renal Artery Obstruction/surgery
7.
Urolithiasis ; 52(1): 84, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847881

ABSTRACT

AIM: To assess the impact of endoscopic stone surgeries on renal perfusion and blood flow in children. MATERIALS AND METHODS: Children who underwent percutaneous nephrolithotomy (PCNL), retrograde intrarenal surgery (RIRS), ureterorenoscopy (URS), endoscopic combined intrarenal surgery (ECIRS) were included to the study. Renal Doppler ultrasonography (RDUS) was performed one day before the operation, and on the postoperative 1st day and 1st month. Peak systolic velocity (PSV) and end-diastolic velocity (EDV) were measured, and resistive index (RI) was calculated with the (PSV-EDV)/PSV formula. RDUS parameters were compared before and after surgery and between ipsilateral and contralateral kidneys. RESULTS: A total of 45 children with a median age was 8 (2-17) years were included (15 (33.3%) girls, 30 (66.7%) boys). PCNL was performed in 13 children (28.9%), RIRS 11 (24.4%), URS 12 (26.7%), and ECIRS 9 (20%). There was no significant difference in renal and segmental PSV, EDV and RI values of operated kidney in the preoperative, postoperative periods. There was no significant difference between RDUS parameters of the ipsilateral and contralateral kidneys in preoperative or postoperative periods. PSV and EDV values were significantly higher in the 1st postoperative month in the group without preoperative DJ stent than in the group with DJ stent (p = 0,031, p = 0,041, respectively). However, RI values were similar. The mean RI were below the threshold value of 0.7 in each period. CONCLUSION: RDUS parameters didn't show a significant difference in children. Endoscopic surgeries can be safely performed in pediatric stone disease.


Subject(s)
Kidney Calculi , Nephrolithotomy, Percutaneous , Ureteral Calculi , Ureteroscopy , Humans , Child , Female , Male , Adolescent , Prospective Studies , Kidney Calculi/surgery , Child, Preschool , Ureteral Calculi/surgery , Ureteroscopy/adverse effects , Ureteroscopy/methods , Nephrolithotomy, Percutaneous/methods , Nephrolithotomy, Percutaneous/adverse effects , Ultrasonography, Doppler , Kidney/blood supply , Kidney/surgery , Kidney/physiopathology , Kidney/diagnostic imaging , Renal Circulation , Blood Flow Velocity
8.
PLoS One ; 19(6): e0304227, 2024.
Article in English | MEDLINE | ID: mdl-38870103

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is a common complication of septic shock and together these conditions carry a high mortality risk. In septic patients who develop severe AKI, renal cortical perfusion is deficient despite normal macrovascular organ blood flow. This intra-renal perfusion abnormality may be amenable to pharmacological manipulation, which may offer mechanistic insight into the pathophysiology of septic AKI. The aim of the current study is to investigate the effects of vasopressin and angiotensin II on renal microcirculatory perfusion in a cohort of patients with septic shock. METHODS AND ANALYSIS: In this single centre, mechanistically focussed, randomised controlled study, 45 patients with septic shock will be randomly allocated to either of the study vasopressors (vasopressin or angiotensin II) or standard therapy (norepinephrine). Infusions will be titrated to maintain a mean arterial pressure (MAP) target set by the attending clinician. Renal microcirculatory assessment will be performed for the cortex and medulla using contrast-enhanced ultrasound (CEUS) and urinary oxygen tension (pO2), respectively. Renal macrovascular flow will be assessed via renal artery ultrasound. Measurement of systemic macrovascular flow will be performed through transthoracic echocardiography (TTE) and microvascular flow via sublingual incident dark field (IDF) video microscopy. Measures will be taken at baseline, +1 and +24hrs following infusion of the study drug commencing. Blood and urine samples will also be collected at the measurement time points. Longitudinal data will be compared between groups and over time. DISCUSSION: Vasopressors are integral to the management of patients with septic shock. This study aims to further understanding of the relationship between this therapy, renal perfusion and the development of AKI. In addition, using CEUS and urinary pO2, we hope to build a more complete picture of renal perfusion in septic shock by interrogation of the constituent parts of the kidney. Results will be published in peer-reviewed journals and presented at academic meetings. TRIAL REGISTRATION: The REPERFUSE study was registered on Clinical Trials.gov (NCT06234592) on the 30th Jan 24.


Subject(s)
Acute Kidney Injury , Microcirculation , Shock, Septic , Vasoconstrictor Agents , Humans , Shock, Septic/drug therapy , Shock, Septic/physiopathology , Vasoconstrictor Agents/therapeutic use , Vasoconstrictor Agents/administration & dosage , Microcirculation/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Kidney/drug effects , Kidney/physiopathology , Kidney/blood supply , Vasopressins/administration & dosage , Vasopressins/therapeutic use , Angiotensin II/administration & dosage , Male , Female , Norepinephrine/administration & dosage , Norepinephrine/therapeutic use , Renal Circulation/drug effects , Middle Aged , Adult
9.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892356

ABSTRACT

An angiotensin receptor/neprilysin inhibitor (ARNI), a heart failure treatment, is a combination drug made up of sacubitril, a neprilysin inhibitor, and valsartan, a vascular receptor blocker. No human or veterinary studies regarding the effect of ARNI on renal haemodynamics in the absence of cardiac or renal issues exist. Therefore, we investigated the effect of ARNI on renal haemodynamics in five healthy dogs. ARNI was administered to all five dogs at an oral dose of 20 mg/kg twice daily for 4 weeks. Renal haemodynamics were assessed on the day before ARNI administration (BL), on Day 7, and on Day 28. The glomerular filtration rate (GFR) significantly increased on Day 28 compared to BL and Day 7, whereas renal plasma flow increased on Day 7 and Day 28 compared to BL. Systolic blood pressure significantly decreased between BL and Day 28. Plasma atrial natriuretic peptide (ANP) concentrations increased on Day 7 compared to BL. Additionally, ANP concentrations increased on Day 28 in three of the five dogs. Different ANP concentrations were observed in the remaining two dogs. Both urine output volume and heart rate remained relatively stable and did not exhibit significant change. In conclusion, ARNI may enhance renal haemodynamics in healthy dogs. ARNI could be a valuable drug for treating both heart and kidney disease in dogs.


Subject(s)
Angiotensin Receptor Antagonists , Hemodynamics , Kidney , Neprilysin , Valsartan , Animals , Dogs , Neprilysin/antagonists & inhibitors , Hemodynamics/drug effects , Angiotensin Receptor Antagonists/pharmacology , Kidney/drug effects , Kidney/metabolism , Valsartan/pharmacology , Male , Aminobutyrates/pharmacology , Blood Pressure/drug effects , Atrial Natriuretic Factor/blood , Glomerular Filtration Rate/drug effects , Female , Drug Combinations , Biphenyl Compounds/pharmacology , Tetrazoles/pharmacology , Renal Circulation/drug effects
10.
Anesthesiology ; 141(3): 554-565, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38787807

ABSTRACT

BACKGROUND: Hemorrhagic shock (HS) and rhabdomyolysis (RM) are two important risk factors for acute kidney injury after severe trauma; however, the effects of the combination of RM and HS on kidney function are unknown. The purpose of this study was to determine the impact of RM and HS on renal function, oxygenation, perfusion, and morphology in a pig model. METHODS: Forty-seven female pigs were divided into five groups: sham, RM, HS, HS and moderate RM (RM4/HS), and HS and severe RM (RM8/HS). Rhabdomyolysis was induced by intramuscular injection of glycerol 50% with a moderate dose (4 ml/kg for the RM4/HS group) or a high dose (8 ml/kg for the RM and RM8/HS groups). Among animals with HS, after 90 min of hemorrhage, animals were resuscitated with fluid followed by transfusion of the withdrawn blood. Animals were followed for 48 h. Macro- and microcirculatory parameters measurements were performed. RESULTS: RM alone induced a decrease in creatinine clearance at 48 h (19 [0 to 41] vs. 102 [56 to 116] ml/min for RM and sham, respectively; P = 0.0006) without alteration in renal perfusion and oxygenation. Hemorrhagic shock alone impaired temporarily renal microcirculation, function, and oxygenation that were restored with fluid resuscitation. The RM4/HS and RM8/HS groups induced greater impairment of renal microcirculation and function than HS alone at the end of blood spoliation that was not improved by fluid resuscitation. Mortality was increased in the RM8/HS and RM4/HS groups in the first 48 h (73% vs. 56% vs. 9% for the RM8/HS, RM4/HS, and HS groups, respectively). CONCLUSIONS: The combination of HS and RM induced an early deleterious effect on renal microcirculation, function, and oxygenation with decreased response to resuscitation and transfusion compared with HS or RM alone.


Subject(s)
Disease Models, Animal , Kidney , Microcirculation , Rhabdomyolysis , Shock, Hemorrhagic , Animals , Shock, Hemorrhagic/physiopathology , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/therapy , Female , Swine , Microcirculation/physiology , Rhabdomyolysis/physiopathology , Kidney/blood supply , Kidney/physiopathology , Renal Circulation/physiology , Oxygen/blood , Kidney Function Tests/methods
11.
Peptides ; 179: 171246, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38821119

ABSTRACT

Changes in renal hemodynamics impact renal function during physiological and pathological conditions. In this context, renal vascular resistance (RVR) is regulated by components of the Renin-Angiotensin System (RAS) and the Kallikrein-Kinin System (KKS). However, the interaction between these vasoactive peptides on RVR is still poorly understood. Here, we studied the crosstalk between angiotensin-(1-7) and kinins on RVR. The right kidneys of Wistar rats were isolated and perfused in a closed-circuit system. The perfusion pressure and renal perfusate flow were continuously monitored. Ang-(1-7) (1.0-25.0 nM) caused a sustained, dose-dependent reduction of relative RVR (rRVR). This phenomenon was sensitive to 10 nM A-779, a specific Mas receptor (MasR) antagonist. Bradykinin (BK) promoted a sustained and transient reduction in rRVR at 1.25 nM and 125 nM, respectively. The transient effect was abolished by 4 µM des-Arg9-Leu8-bradykinin (DALBK), a specific kinin B1 receptor (B1R) antagonist. Accordingly, des-Arg9-bradykinin (DABK) 1 µM (a B1R agonist) increased rRVR. Interestingly, pre-perfusion of Ang-(1-7) changed the sustained reduction of rRVR triggered by 1.25 nM BK into a transient effect. On the other hand, pre-perfusion of Ang-(1-7) primed and potentiated the DABK response, this mechanism being sensitive to A-779 and DALBK. Binding studies performed with CHO cells stably transfected with MasR, B1R, and kinin B2 receptor (B2R) showed no direct interaction between Ang-(1-7) with B1R or B2R. In conclusion, our findings suggest that Ang-(1-7) differentially modulates kinin's effect on RVR in isolated rat kidneys. These results help to expand the current knowledge regarding the crosstalk between the RAS and KKS complex network in RVR.


Subject(s)
Angiotensin I , Bradykinin , Peptide Fragments , Receptor, Bradykinin B1 , Vascular Resistance , Animals , Cricetinae , Male , Rats , Angiotensin I/pharmacology , Angiotensin I/metabolism , Angiotensin II/analogs & derivatives , Bradykinin/pharmacology , Bradykinin/analogs & derivatives , CHO Cells , Cricetulus , Kallikrein-Kinin System/physiology , Kallikrein-Kinin System/drug effects , Kidney/metabolism , Kidney/drug effects , Kinins/metabolism , Peptide Fragments/pharmacology , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Rats, Wistar , Receptor, Bradykinin B1/metabolism , Receptors, G-Protein-Coupled/metabolism , Renal Circulation/drug effects , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Vascular Resistance/drug effects
12.
Exp Clin Transplant ; 22(3): 189-199, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38695588

ABSTRACT

OBJECTIVES: Kidney transplant survival can be improved with better graft surveillance postoperatively. In the quest to explore new technologies, we explored the feasibility of an implantable Doppler probe as a blood flow monitoring device in kidney transplant patients. This qualitative study was embeddedin a feasibility trial and aimed to test the device's clinical acceptability and obtain suggestions for the development of the intervention. Objectives included exploring the experiences of feasibility study participants and identifying barriers to the implementation of implantable Doppler probes in clinical practice. MATERIALS AND METHODS: We conducted semi-structured interviews containing open-ended questions with 12 feasibility study participants recruited by purposive sampling. All interviews were audio-recorded with verbatim transcription. Thematic data analysis was performed at the latent level by using an inductive approach with a previously published 6-phase guide. RESULTS: Three key themes emerged: (1) perceived value of the intervention in clinical practice, (2) challenges and barriers to implementation of the intervention, and (3) suggestions forthe development of the intervention. Due to functional limitations and lack of research, medical professional participants revealed clinical equipoise regarding the utility of implantable Doppler probes. However,the device was well received by patient participants. Challenges included device training needs for medical professionals and educational sessions for patients. Innovative ideas for development included the insertion of a display screen, adopting disposable units to reduce overall cost, online access allowing remote monitoring, decreasing external monitoring unit size, and integrating a wireless connection with the probe to reduce signal errors and increase patient safety. CONCLUSIONS: The clinical need for blood flow sensing technology in kidney transplants has been widely acknowledged. Implantable Doppler probes may be a beneficial adjunct in the early postoperative surveillance of kidney transplant patients. However, the device's technical limitations are the main challenges to its acceptance in clinical practice.


Subject(s)
Feasibility Studies , Interviews as Topic , Kidney Transplantation , Predictive Value of Tests , Qualitative Research , Ultrasonography, Doppler , Humans , Kidney Transplantation/adverse effects , Female , Male , Ultrasonography, Doppler/instrumentation , Middle Aged , Adult , Treatment Outcome , Equipment Design , Renal Circulation , Aged , Health Knowledge, Attitudes, Practice , Graft Survival , Blood Flow Velocity
13.
Kardiologiia ; 64(4): 38-44, 2024 Apr 30.
Article in Russian, English | MEDLINE | ID: mdl-38742514

ABSTRACT

AIM: To evaluate a potential role of different patterns of intrarenal blood flow using Doppler ultrasound as a part of determining the severity of venous congestion, predicting impairment of renal function and an unfavorable prognosis in patients with acute decompensated chronic heart failure (ADCHF). MATERIAL AND METHODS: This prospective observational single-site study included 75 patients admitted in the intensive care unit for ADCHF. Upon admission all patients underwent bedside renal venous Doppler ultrasound to determine the blood flow pattern (continuous, biphasic, monophasic). In one hour after the initiation of intravenous diuretic therapy, sodium concentration was measured in a urine sample. The primary endpoint was the development of acute kidney injury (AKI). The secondary endpoints were the development of diuretic resistance (a need to increase the furosemide daily dose by more than 2 times compared with the baseline), decreased natriuretic response (defined as urine sodium concentration less than 50-70 mmol/l), and in-hospital death. RESULTS: According to the data of Doppler ultrasound, normal renal blood flow was observed in 40 (53%) patients, biphasic in 21 (28%) patients, and monophasic in 14 (19%) patients. The monophasic pattern of intrarenal blood flow was associated with the highest incidence of AKI: among 14 patients in this group, AKI developed in 100% of cases (OR 3.8, 95% CI: 2.5-5.8, p<0.01), while among patients with normal and moderate impairment of renal blood flow, there was no significant increase in the risk of developing AKI. The odds of in-hospital death were increased 25.77 times in patients with monophasic renal blood flow (95% CI: 5.35-123.99, p<0.001). Patients with a monophasic intrarenal blood flow pattern were also more likely to develop diuretic resistance compared to patients with other blood flow patterns (p<0.001) and had a decreased sodium concentration to less than 50 mmol/l (p<0.001) in a spot urine test obtained one hour after the initiation of furosemide administration. CONCLUSION: Patients with monophasic intrarenal blood flow are at a higher risk of developing AKI, diuretic resistance with decreased natriuretic response, and in-hospital death.


Subject(s)
Acute Kidney Injury , Heart Failure , Hemodynamics , Humans , Female , Male , Heart Failure/physiopathology , Aged , Prognosis , Prospective Studies , Acute Kidney Injury/physiopathology , Acute Kidney Injury/etiology , Middle Aged , Renal Circulation/physiology , Ultrasonography, Doppler/methods , Diuretics/administration & dosage , Kidney/physiopathology
14.
Med Phys ; 51(6): 4069-4080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38709908

ABSTRACT

PURPOSE: Assessing renal perfusion in-vivo is challenging and quantitative information regarding renal hemodynamics is hardly incorporated in medical decision-making while abnormal renal hemodynamics might play a crucial role in the onset and progression of renal disease. Combining physiological stimuli with rubidium-82 positron emission tomography/computed tomography (82Rb PET/CT) offers opportunities to test the kidney perfusion under various conditions. The aim of this study is: (1) to investigate the application of a one-tissue compartment model for measuring renal hemodynamics with dynamic 82Rb PET/CT imaging, and (2) to evaluate whether dynamic PET/CT is sensitive to detect differences in renal hemodynamics in stress conditions compared to resting state. METHODS: A one-tissue compartment model for the kidney was applied to cardiac 82Rb PET/CT scans that were obtained for ischemia detection as part of clinical care. Retrospective data, collected from 17 patients undergoing dynamic myocardial 82Rb PET/CT imaging in rest, were used to evaluate various CT-based volumes of interest (VOIs) of the kidney. Subsequently, retrospective data, collected from 10 patients (five impaired kidney functions and five controls) undergoing dynamic myocardial 82Rb PET/CT imaging, were used to evaluate image-derived input functions (IDIFs), PET-based VOIs of the kidney, extraction fractions, and whether dynamic 82Rb PET/CT can measure renal hemodynamics differences using the renal blood flow (RBF) values in rest and after exposure to adenosine pharmacological stress. RESULTS: The delivery rate (K1) values showed no significant (p = 0.14) difference between the mean standard deviation (SD) K1 values using one CT-based VOI and the use of two, three, and four CT-based VOIs, respectively 2.01(0.32), 1.90(0.40), 1.93(0.39), and 1.94(0.40) mL/min/mL. The ratio between RBF in rest and RBF in pharmacological stress for the controls were overall significantly lower compared to the impaired kidney function group for both PET-based delineation methods (region growing and iso-contouring), with the smallest median interquartile range (IQR) of 0.40(0.28-0.66) and 0.96(0.62-1.15), respectively (p < 0.05). The K1 of the impaired kidney function group were close to 1.0 mL/min/mL. CONCLUSIONS: This study demonstrated that obtaining renal K1 and RBF values using 82Rb PET/CT was feasible using a one-tissue compartment model. Applying iso-contouring as the PET-based VOI of the kidney and using AA as an IDIF is suggested for consideration in further studies. Dynamic 82Rb PET/CT imaging showed significant differences in renal hemodynamics in rest compared to when exposed to adenosine. This indicates that dynamic 82Rb PET/CT has potential to detect differences in renal hemodynamics in stress conditions compared to the resting state, and might be useful as a novel diagnostic tool for assessing renal perfusion.


Subject(s)
Hemodynamics , Kidney , Positron Emission Tomography Computed Tomography , Rubidium Radioisotopes , Humans , Male , Kidney/diagnostic imaging , Kidney/blood supply , Female , Renal Circulation , Models, Biological , Middle Aged , Aged , Image Processing, Computer-Assisted/methods , Retrospective Studies
15.
Am J Physiol Renal Physiol ; 327(1): F113-F127, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38660712

ABSTRACT

The kidneys maintain fluid-electrolyte balance and excrete waste in the presence of constant fluctuations in plasma volume and systemic blood pressure. The kidneys perform these functions to control capillary perfusion and glomerular filtration by modulating the mechanisms of autoregulation. An effect of these modulations are spontaneous, natural fluctuations in glomerular perfusion. Numerous other mechanisms can lead to fluctuations in perfusion and flow. The ability to monitor these spontaneous physiological fluctuations in vivo could facilitate the early detection of kidney disease. The goal of this work was to investigate the use of resting-state magnetic resonance imaging (rsMRI) to detect spontaneous physiological fluctuations in the kidney. We performed rsMRI of rat kidneys in vivo over 10 min, applying motion correction to resolve time series in each voxel. We observed spatially variable, spontaneous fluctuations in rsMRI signal between 0 and 0.3 Hz, in frequency bands associated with autoregulatory mechanisms. We further applied rsMRI to investigate changes in these fluctuations in a rat model of diabetic nephropathy. Spectral analysis was performed on time series of rsMRI signals in the kidney cortex and medulla. The power from spectra in specific frequency bands from the cortex correlated with severity of glomerular pathology caused by diabetic nephropathy. Finally, we investigated the feasibility of using rsMRI of the human kidney in two participants, observing the presence of similar, spatially variable fluctuations. This approach may enable a range of preclinical and clinical investigations of kidney function and facilitate the development of new therapies to improve outcomes in patients with kidney disease.NEW & NOTEWORTHY This work demonstrates the development and use of resting-state MRI to detect low-frequency, spontaneous physiological fluctuations in the kidney consistent with previously observed fluctuations in perfusion and potentially due to autoregulatory function. These fluctuations are detectable in rat and human kidneys, and the power of these fluctuations is affected by diabetic nephropathy in rats.


Subject(s)
Diabetic Nephropathies , Kidney , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Animals , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Kidney/physiopathology , Kidney/diagnostic imaging , Rats , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/diagnostic imaging , Renal Circulation , Humans , Homeostasis/physiology
16.
Urologia ; 91(3): 486-493, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38666713

ABSTRACT

INTRODUCTION: Kidney perfusion on CT is an encouraging surrogate for renal scintigraphy in assessing renal function. However, data on dynamic volumetric CT in patients with kidney obstruction is lacking. Thus, the aim of this study is to determine the feasibility of CT-based renal perfusion using a dynamic volume to assess renal hemodynamics at different degrees and durations of obstruction. MATERIALS AND METHODS: We included patients with unilateral kidney obstruction in our single-center, prospective study. The patients were divided into three groups. Patients without dilatation of the pelvicalyceal system (PCS) and normal parenchyma thickness were included into Group 1; patients with PCS dilatation and parenchyma thickness 1.8-2.4 cm-into Group 2; and patients with ureteropyelocalicoectasia and parenchyma thickness less than 1.8 cm-into Group 3. RESULTS: Total of 56 patients were enrolled. In Group 1 mean values of cortical and medullar arterial blood flow, blood volume, and extraction fraction were within the normal range. Changes in contralateral kidney were not determined. Patients from Group 2 showed significant differences in blood flow parameters in the cortical and medulla of the obstructed kidney. No changes in perfusion values in the contralateral kidney was observed. In patients from Group 3 there was a marked decrease in perfusion on the side of obstruction compared to Group 2, indicating that the degree of expansion of the PCS directly correlates with the change in blood flow. However, in the contralateral kidney, these indicators exceeded the normal values of perfusion. CONCLUSION: CT perfusion allows to objectively assess changes in blood flow in the setting of renal obstruction. The degree of obstruction directly affects the measured rate of blood flow.


Subject(s)
Kidney , Perfusion Imaging , Tomography, X-Ray Computed , Ureteral Obstruction , Humans , Ureteral Obstruction/diagnostic imaging , Ureteral Obstruction/physiopathology , Prospective Studies , Male , Female , Middle Aged , Kidney/diagnostic imaging , Kidney/blood supply , Kidney/physiopathology , Perfusion Imaging/methods , Adult , Aged , Feasibility Studies , Renal Circulation
17.
Shock ; 61(6): 885-893, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38662580

ABSTRACT

ABSTRACT: Sepsis is the most frequent risk factor for acute kidney injury (AKI) in critically ill infants. Sepsis-induced dysregulation of kidney microcirculation in newborns is unresolved. The objective of this study was to use the translational swine model to evaluate changes in kidney function during the early phase of sepsis in newborns and the impact of fluid plus norepinephrine resuscitation. Newborn pigs (3-7-day-old) were allocated randomly to three groups: 1) sham, 2) sepsis (cecal ligation and puncture) without subsequent resuscitation, and 3) sepsis with lactated Ringer plus norepinephrine resuscitation. All animals underwent standard anesthesia and mechanical ventilation. Cardiac output and glomerular filtration rate were measured noninvasively. Mean arterial pressure, total renal blood flow, cortical perfusion, medullary perfusion, and medullary tissue oxygen tension (mtPO 2 ) were determined for 12 h. Cecal ligation and puncture decreased mean arterial pressure and cardiac output by more than 50%, with a proportional increase in renal vascular resistance and a 60-80% reduction in renal blood flow, cortical perfusion, medullary perfusion, and mtPO 2 compared to sham. Cecal ligation and puncture also decreased glomerular filtration rate by ~79% and increased AKI biomarkers. Isolated foci of tubular necrosis were observed in the septic piglets. Except for mtPO 2 , changes in all these parameters were ameliorated in resuscitated piglets. Resuscitation also attenuated sepsis-induced increases in the levels of plasma C-reactive protein, proinflammatory cytokines, lactate dehydrogenase, alanine transaminase, aspartate aminotransferase, and renal NLRP3 inflammasome. These data suggest that newborn pigs subjected to cecal ligation and puncture develop hypodynamic septic AKI. Early implementation of resuscitation lessens the degree of inflammation, AKI, and liver injury.


Subject(s)
Acute Kidney Injury , Animals, Newborn , Fluid Therapy , Norepinephrine , Resuscitation , Sepsis , Animals , Swine , Sepsis/therapy , Sepsis/physiopathology , Resuscitation/methods , Fluid Therapy/methods , Acute Kidney Injury/therapy , Acute Kidney Injury/metabolism , Inflammation , Kidney/metabolism , Renal Circulation , Glomerular Filtration Rate
18.
Adv Kidney Dis Health ; 31(2): 87-99, 2024 03.
Article in English | MEDLINE | ID: mdl-38649221

ABSTRACT

Hepatorenal syndrome type 1 (HRS-1) is a unique form of acute kidney injury that affects individuals with decompensated cirrhosis with ascites. The primary mechanism leading to reduction of kidney function in HRS-1 is hemodynamic in nature. Cumulative evidence points to a cascade of events that led to a profound reduction in kidney perfusion. A state of increased intrahepatic vascular resistance characteristic of advanced cirrhosis and portal hypertension is accompanied by maladaptive peripheral arterial vasodilation and reduction in systemic vascular resistance and mean arterial pressure. As a result of a fall in effective arterial blood volume, there is a compensatory activation of the sympathetic nervous system and the renin-angiotensin system, local renal vasoconstriction, loss of renal autoregulation, decrease in renal blood flow, and ultimately a fall in glomerular filtration rate. Systemic release of nitric oxide stimulated by the fibrotic liver, bacterial translocation, and inflammation constitute key components of the pathogenesis. While angiotensin II and noradrenaline remain the critical mediators of renal arterial and arteriolar vasoconstriction, other novel molecules have been recently implicated. Although the above-described mechanistic pathway remains the backbone of the pathogenesis of HRS-1, other noxious elements may be present in advanced cirrhosis and likely contribute to the renal impairment. Direct liver-kidney crosstalk via the hepatorenal sympathetic reflex can further reduce renal blood flow independently of the systemic derangements. Tense ascites may lead to intraabdominal hypertension and abdominal compartment syndrome. Cardio-hemodynamic processes have also been increasingly recognized. Porto-pulmonary hypertension, cirrhotic cardiomyopathy, and abdominal compartment syndrome may lead to renal congestion and complicate the course of HRS-1. In addition, a degree of ischemic or toxic (cholemic) tubular injury may overlap with the underlying circulatory dysfunction and further exacerbate the course of acute kidney injury. Improving our understanding of the pathogenesis of HRS-1 may lead to improvements in therapeutic options for this seriously ill population.


Subject(s)
Hepatorenal Syndrome , Humans , Hepatorenal Syndrome/physiopathology , Hepatorenal Syndrome/therapy , Hepatorenal Syndrome/etiology , Liver Cirrhosis/physiopathology , Liver Cirrhosis/complications , Renal Circulation/physiology , Hemodynamics/physiology , Renin-Angiotensin System/physiology , Kidney/physiopathology , Hypertension, Portal/physiopathology , Ascites/physiopathology
19.
Exp Physiol ; 109(5): 791-803, 2024 May.
Article in English | MEDLINE | ID: mdl-38460127

ABSTRACT

The mechanisms behind renal vasodilatation elicited by stimulation of ß-adrenergic receptors are not clarified. As several classes of K channels are potentially activated, we tested the hypothesis that KV7 and BKCa channels contribute to the decreased renal vascular tone in vivo and in vitro. Changes in renal blood flow (RBF) during ß-adrenergic stimulation were measured in anaesthetized rats using an ultrasonic flow probe. The isometric tension of segmental arteries from normo- and hypertensive rats and segmental arteries from wild-type mice and mice lacking functional KV7.1 channels was examined in a wire-myograph. The ß-adrenergic agonist isoprenaline increased RBF significantly in vivo. Neither activation nor inhibition of KV7 and BKCa channels affected the ß-adrenergic RBF response. In segmental arteries from normo- and hypertensive rats, inhibition of KV7 channels significantly decreased the ß-adrenergic vasorelaxation. However, inhibiting BKCa channels was equally effective in reducing the ß-adrenergic vasorelaxation. The ß-adrenergic vasorelaxation was not different between segmental arteries from wild-type mice and mice lacking KV7.1 channels. As opposed to rats, inhibition of KV7 channels did not affect the murine ß-adrenergic vasorelaxation. Although inhibition and activation of KV7 channels or BKCa channels significantly changed baseline RBF in vivo, none of the treatments affected ß-adrenergic vasodilatation. In isolated segmental arteries, however, inhibition of KV7 and BKCa channels significantly reduced the ß-adrenergic vasorelaxation, indicating that the regulation of RBF in vivo is driven by several actors in order to maintain an adequate RBF. Our data illustrates the challenge in extrapolating results from in vitro to in vivo conditions.


Subject(s)
Kidney , Vasodilation , Animals , Vasodilation/drug effects , Vasodilation/physiology , Male , Rats , Mice , Kidney/metabolism , Kidney/blood supply , KCNQ1 Potassium Channel/metabolism , Isoproterenol/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Adrenergic beta-Agonists/pharmacology , Mice, Knockout , Receptors, Adrenergic, beta/metabolism , Renal Circulation/drug effects , Renal Circulation/physiology , Mice, Inbred C57BL , Rats, Wistar , Hypertension/physiopathology , Hypertension/metabolism
20.
Vasc Endovascular Surg ; 58(6): 683-684, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38509023
SELECTION OF CITATIONS
SEARCH DETAIL