Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.215
Filter
1.
Eur J Med Res ; 29(1): 326, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867322

ABSTRACT

BACKGROUND: Liver ischemia-reperfusion injury (LIRI) is closely associated with immune infiltration, which commonly occurs after liver surgery, especially liver transplantation. Therefore, it is crucial to identify the genes responsible for LIRI and develop effective therapeutic strategies that target immune response. Methylation modifications in mRNA play various crucial roles in different diseases. This study aimed to identify potential methylation-related markers in patients with LIRI and evaluate the corresponding immune infiltration. METHODS: Two Gene Expression Omnibus datasets containing human liver transplantation data (GSE12720 and GSE151648) were downloaded for integrated analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to investigate the functional enrichment of differentially expressed genes (DEGs). Differentially expressed methylation-related genes (DEMRGs) were identified by overlapping DEG sets and 65 genes related to N6-methyladenosine (m6A), 7-methylguanine (m7G), 5-methylcytosine (m5C), and N1-methyladenosine (m1A). To evaluate the relationship between DEMRGs, a protein-protein interaction (PPI) network was utilized. The core DEMRGs were screened using three machine learning algorithms: least absolute shrinkage and selection operator, random forest, and support vector machine-recursive feature elimination. After verifying the diagnostic efficacy using the receiver operating characteristic curve, we validated the expression of the core DEMRGs in clinical samples and performed relative cell biology experiments. Additionally, the immune status of LIRI was comprehensively assessed using the single sample gene set enrichment analysis algorithm. The upstream microRNA and transcription factors of the core DEMRGs were also predicted. RESULTS: In total, 2165 upregulated and 3191 downregulated DEGs were identified, mainly enriched in LIRI-related pathways. The intersection of DEGs and methylation-related genes yielded 28 DEMRGs, showing high interaction in the PPI network. Additionally, the core DEMRGs YTHDC1, METTL3, WTAP, and NUDT3 demonstrated satisfactory diagnostic efficacy and significant differential expression and corresponding function based on cell biology experiments. Furthermore, immune infiltration analyses indicated that several immune cells correlated with all core DEMRGs in the LIRI process to varying extents. CONCLUSIONS: We identified core DEMRGs (YTHDC1, METTL3, WTAP, and NUDT3) associated with immune infiltration in LIRI through bioinformatics and validated them experimentally. This study may provide potential methylation-related gene targets for LIRI immunotherapy.


Subject(s)
Computational Biology , Machine Learning , Reperfusion Injury , Humans , Computational Biology/methods , Reperfusion Injury/genetics , Reperfusion Injury/immunology , Liver/metabolism , Liver/pathology , Gene Expression Profiling/methods , Protein Interaction Maps/genetics , Algorithms
2.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849370

ABSTRACT

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Subject(s)
Apoptosis , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Receptors, Immunologic , STAT Transcription Factors , Signal Transduction , Animals , Macrophages/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Kidney/pathology , Kidney/metabolism , Mice, Knockout , Male , Fibrosis , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Cell Polarity , TOR Serine-Threonine Kinases/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics
3.
J Cell Mol Med ; 28(11): e18366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856956

ABSTRACT

Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.


Subject(s)
Apoptosis , Cyclic AMP , Rats, Sprague-Dawley , Receptors, Odorant , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Rats , Male , Cyclic AMP/metabolism , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/pathology , MAP Kinase Signaling System/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Brain Injuries/metabolism , Brain Injuries/etiology , Brain Injuries/pathology , Neurons/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Signal Transduction
4.
Mol Biomed ; 5(1): 22, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902590

ABSTRACT

Hepatic ischemia-reperfusion injury (HIRI) is a critical pathophysiological process during liver transplantation (LT). Multiple genes and signal pathways are dysregulated during HIRI. This study aims to identify genes as potential therapeutic targets for ameliorating HIRI. Datasets containing samples from the human donor liver (GSE151648) and mouse HIRI model (GSE117066) were analyzed to determine differentially expressed genes (DEGs). The selected DEGs were confirmed by real-time PCR and western blot in the hepatocyte hypoxia-reoxygenation (HR) model, mouse HIRI model, and human liver samples after transplantation. Genetic inhibition was used to further clarify the underlying mechanism of the gene in vitro and in vivo. Among the DEGs, CSRNP1 was significantly upregulated (|log FC|= 2.08, P < 0.001), and was positively correlated with the MAPK signal pathway (R = 0.67, P < 0.001). CSRNP1 inhibition by siRNA significantly suppressed apoptosis in the AML-12 cell line after HR (mean Annexin+ ratio = 60.62% vs 42.47%, P = 0.0019), but the protective effect was eliminated with an additional MAPK activator. Knocking down CSRNP1 gene expression by intravenous injection of AAV-shRNA markedly reduced liver injury in mouse HIRI model (ALT: AAV-NC vs AAV-shCsrnp1 = 26,673.5 ± 2761.2 vs 3839.7 ± 1432.8, P < 0.001; AST: AAV-NC vs AAV-shCsrnp1 = 8640.5 ± 1450.3 vs 1786.8 ± 518.3, P < 0.001). Liver-targeted delivery of siRNA by nanoparticles effectively inhibited intra-hepatic genetic expression of Csrnp1 and alleviated IRI by reducing tissue inflammation and hepatocyte apoptosis. Furthermore, CSRNP1 inhibition was associated with reduced activation of the MAPK pathway both in vitro and in vivo. In conclusion, our results demonstrated that CSRNP1 could be a potential therapeutic target to ameliorate HIRI in an MAPK-dependent manner.


Subject(s)
Apoptosis , Liver Transplantation , Reperfusion Injury , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/genetics , Animals , Liver Transplantation/adverse effects , Humans , Mice , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Male , Cell Line , Liver/metabolism , Liver/pathology , Hepatocytes/metabolism , Hepatocytes/drug effects , Disease Models, Animal , Mice, Inbred C57BL
5.
Mol Med ; 30(1): 82, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862918

ABSTRACT

BACKGROUND: Programmed cell death is an important mechanism for the development of hepatic ischemia and reperfusion (IR) injury, and multiple novel forms of programmed cell death are involved in the pathological process of hepatic IR. ERRFI1 is involved in the regulation of cell apoptosis in myocardial IR. However, the function of ERRFI1 in hepatic IR injury and its modulation of programmed cell death remain largely unknown. METHODS: Here, we performed functional and molecular mechanism studies in hepatocyte-specific knockout mice and ERRFI1-silenced hepatocytes to investigate the significance of ERRFI1 in hepatic IR injury. The histological severity of livers, enzyme activities, hepatocyte apoptosis and ferroptosis were determined. RESULTS: ERRFI1 expression increased in liver tissues from mice with IR injury and hepatocytes under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Hepatocyte-specific ERRFI1 knockout alleviated IR-induced liver injury in mice by reducing cell apoptosis and ferroptosis. ERRFI1 knockdown reduced apoptotic and ferroptotic hepatocytes induced by OGD/R. Mechanistically, ERRFI1 interacted with GRB2 to maintain its stability by hindering its proteasomal degradation. Overexpression of GRB2 abrogated the effects of ERRFI1 silencing on hepatocyte apoptosis and ferroptosis. CONCLUSIONS: Our results revealed that the ERRFI1-GRB2 interaction and GRB2 stability are essential for ERRFI1-regulated hepatic IR injury, indicating that inhibition of ERRFI1 or blockade of the ERRFI1-GRB2 interaction may be potential therapeutic strategies in response to hepatic IR injury.


Subject(s)
Apoptosis , Ferroptosis , GRB2 Adaptor Protein , Hepatocytes , Mice, Knockout , Reperfusion Injury , Animals , Humans , Male , Mice , Apoptosis/genetics , Disease Models, Animal , Ferroptosis/genetics , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/genetics , Hepatocytes/metabolism , Liver/metabolism , Liver/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics
6.
Nat Commun ; 15(1): 4760, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834654

ABSTRACT

Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Coenzyme A Ligases , Ferroptosis , Liver , Receptors, Transferrin , Reperfusion Injury , Up-Regulation , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Animals , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Ferroptosis/genetics , Liver/metabolism , Liver/pathology , Mice , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Male , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Mice, Inbred C57BL , Humans , Liver Transplantation , RNA Stability/genetics , Antigens, CD
7.
Gene ; 926: 148650, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38851364

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is frequently caused by renal ischemia-reperfusion injury (IRI). Identifying potential renal IRI disease biomarkers would be useful for evaluating AKI severity. OBJECTIVE: We used proteomics and metabolomics to investigate the differences in renal venous blood between ischemic and healthy kidneys in an animal model by identifying differentially expressed proteins (DEPs) and differentially expressed protein metabolites (DEMs). METHODS: Nine pairs of renal venous blood samples were collected before and at 20, 40, and 60 min post ischemia. The ischemia time of Group A, B and C was 20,40 and 60 min. The proteome and metabolome of renal venous blood were evaluated to establish the differences between renal venous blood before and after ischemia. RESULTS: We identified 79 common DEPs in all samples of Group A, 80 in Group B, and 131 in Group C. Further common DEPs among all three groups were Tyrosineprotein kinase, GPR15LG, KAZALD1, ADH1B. We also identified 81, 64, and 83 common DEMs in each group respectively, in which 30 DEMs were further common to all groups. Bioinformatic analysis of the DEPs and DEMs was conducted. CONCLUSION: This study demonstrated that different pathological processes occur during short- and long-term renal IRI. Tyrosine protein kinase, GPR15LG, Kazal-type serine peptidase inhibitor domain 1, and all-trans-retinol dehydrogenase are potential biomarkers of renal IRI.


Subject(s)
Acute Kidney Injury , Biomarkers , Proteomics , Renal Veins , Reperfusion Injury , Reperfusion Injury/blood , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Animals , Male , Proteomics/methods , Biomarkers/blood , Acute Kidney Injury/blood , Proteome , Rats , Metabolomics/methods , Kidney/metabolism , Disease Models, Animal , Metabolome , Rats, Sprague-Dawley , Multiomics
8.
Ann Hepatol ; 29(4): 101506, 2024.
Article in English | MEDLINE | ID: mdl-38710471

ABSTRACT

INTRODUCTION AND OBJECTIVES: Epigenetic changes represent a mechanism connecting external stresses with long-term modifications of gene expression programs. In solid organ transplantation, ischemia-reperfusion injury (IRI) appears to induce epigenomic changes in the graft, although the currently available data are extremely limited. The present study aimed to characterize variations in DNA methylation and their effects on the transcriptome in liver transplantation from brain-dead donors. PATIENTS AND METHODS: 12 liver grafts were evaluated through serial biopsies at different timings in the procurement-transplantation process: T0 (warm procurement, in donor), T1 (bench surgery), and T2 (after reperfusion, in recipient). DNA methylation (DNAm) and transcriptome profiles of biopsies were analyzed using microarrays and RNAseq. RESULTS: Significant variations in DNAm were identified, particularly between T2 and T0. Functional enrichment of the best 1000 ranked differentially methylated promoters demonstrated that 387 hypermethylated and 613 hypomethylated promoters were involved in spliceosomal assembly and response to biotic stimuli, and inflammatory immune responses, respectively. At the transcriptome level, T2 vs. T0 showed an upregulation of 337 and downregulation of 61 genes, collectively involved in TNF-α, NFKB, and interleukin signaling. Cell enrichment analysis individuates macrophages, monocytes, and neutrophils as the most significant tissue-cell type in the response. CONCLUSIONS: In the process of liver graft procurement-transplantation, IRI induces significant epigenetic changes that primarily act on the signaling pathways of inflammatory responses dependent on TNF-α, NFKB, and interleukins. Our DNAm datasets are the early IRI methylome literature and will serve as a launch point for studying the impact of epigenetic modification in IRI.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Profiling , Liver Transplantation , Liver , Reperfusion Injury , Liver Transplantation/adverse effects , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Humans , Liver/metabolism , Liver/pathology , Male , Middle Aged , Female , Gene Expression Profiling/methods , Transcriptome , Adult , Aged
9.
J Clin Invest ; 134(13)2024 May 14.
Article in English | MEDLINE | ID: mdl-38743492

ABSTRACT

Steatotic donor livers are becoming more and more common in liver transplantation. However, the current use of steatotic grafts is less acceptable than normal grafts due to their higher susceptibility to ischemia/reperfusion (I/R) injury. To investigate the mechanism underlying the susceptibility of steatotic liver to I/R injury, we detected cell death markers and inflammation in clinical donor livers and animal models. We found that caspase-8-mediated hepatic apoptosis is activated in steatotic liver I/R injury. However, ablation of caspase-8 only slightly mitigated steatotic liver I/R injury without affecting inflammation. We further demonstrated that RIPK1 kinase induces both caspase-8-mediated apoptosis and cell death-independent inflammation. Inhibition of RIPK1 kinase significantly protects against steatotic liver I/R injury by alleviating both hepatic apoptosis and inflammation. Additionally, we found that RIPK1 activation is induced by Z-DNA binding protein 1 (ZBP1) but not the canonical TNF-α pathway during steatotic liver I/R injury. Deletion of ZBP1 substantially decreases the steatotic liver I/R injury. Mechanistically, ZBP1 is amplified by palmitic acid-activated JNK pathway in steatotic livers. Upon I/R injury, excessive reactive oxygen species trigger ZBP1 activation by inducing its aggregation independent of the Z-nucleic acids sensing action in steatotic livers, leading to the kinase activation of RIPK1 and the subsequent aggravation of liver injury. Thus, ZBP1-mediated RIPK1-driven apoptosis and inflammation exacerbate steatotic liver I/R injury, which could be targeted to protect steatotic donor livers during transplantation.


Subject(s)
Apoptosis , Caspase 8 , Fatty Liver , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases , Reperfusion Injury , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Mice , Humans , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Caspase 8/metabolism , Caspase 8/genetics , Liver/pathology , Liver/metabolism , Mice, Knockout , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Male , Liver Transplantation , Mice, Inbred C57BL
10.
Free Radic Biol Med ; 221: 111-124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38763207

ABSTRACT

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.


Subject(s)
Apoptosis , Calcium Channels , Dynamins , Mice, Inbred C57BL , Mitochondria , Mitochondrial Dynamics , Reperfusion Injury , Animals , Humans , Male , Mice , Apoptosis/genetics , Caco-2 Cells , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Disease Models, Animal , Dynamins/metabolism , Dynamins/genetics , Intestines/blood supply , Intestines/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control
11.
Curr Med Sci ; 44(3): 589-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748370

ABSTRACT

OBJECTIVE: Renal fibrosis is the ultimate pathway of various forms of acute and chronic kidney damage. Notably, the knockout of transient receptor potential channel 6 (TRPC6) has shown promise in alleviating renal fibrosis. However, the regulatory impact of TRPC6 on renal fibrosis remains unclear. METHODS: In vivo, TRPC6 knockout (TRPC6-/-) mice and age-matched 129 SvEv (WT) mice underwent unilateral renal ischemia-reperfusion (uIR) injury surgery on the left renal pedicle or sham operation. Kidneys and serum were collected on days 7, 14, 21, and 28 after euthanasia. In vitro, primary tubular epithelial cells (PTECs) were isolated from TRPC6-/- and WT mice, followed by treatment with transforming growth factor ß1 (TGFß1) for 72 h. The anti-fibrotic effect of TRPC6-/- and the underlying mechanisms were assessed through hematoxylin-eosin staining, Masson staining, immunostaining, qRT-PCR, and Western blotting. RESULTS: Increased TRPC6 expression was observed in uIR mice and PTECs treated with TGFß1. TRPC6-/- alleviated renal fibrosis by reducing the expression of fibrotic markers (Col-1, α-SMA, and vimentin), as well as decreasing the apoptosis and inflammation of PTECs during fibrotic progression both in vivo and in vitro. Additionally, we found that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3ß) signaling pathway, a pivotal player in renal fibrosis, was down-regulated following TRPC6 deletion. CONCLUSION: These results suggest that the ablation of TRPC6 may mitigate renal fibrosis by inhibiting the apoptosis and inflammation of PTECs through down-regulation of the PI3K/AKT/GSK3ß pathway. Targeting TRPC6 could be a novel therapeutic strategy for preventing chronic kidney disease.


Subject(s)
Fibrosis , Glycogen Synthase Kinase 3 beta , Mice, Knockout , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TRPC6 Cation Channel , Animals , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Male , Kidney/pathology , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/etiology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Apoptosis
12.
Int J Med Sci ; 21(6): 1037-1048, 2024.
Article in English | MEDLINE | ID: mdl-38774758

ABSTRACT

Background: Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. Methods: Dot blotting analysis was used to profile m6A levels in liver tissues at different reperfusion time points in hepatic I/R mouse models. Hepatocyte-specific METTL3 knockdown (HKD) mice were used to determine the function of METTL3 during hepatic I/R. RNA sequencing and western blotting were performed to assess the potential signaling pathways involved with the deficiency of METTL3. Finally, AAV8-TBG-METTL3 was injected through the tail vein to further elucidate the role of METTL3 in hepatic I/R injury. Results: The m6A modification levels and the expression of METTL3 were upregulated in mouse livers during hepatic I/R injury. METTL3 deficiency led to an exacerbated inflammatory response and increased cell death during hepatic I/R, whereas overexpression of METTL3 reduced the extent of liver injury. Bioinformatic analysis revealed that the MAPK pathway was significantly enriched in the livers of METTL3-deficient mice. METTL3 protected the liver from I/R injury, possibly by inhibiting the phosphorylation of JNK and ERK, but not P38. Conclusions: METTL3 deficiency aggravates hepatic I/R injury in mice by activating the MAPK signaling pathway. METTL3 may be a potential therapeutic target in hepatic I/R injury.


Subject(s)
Liver , MAP Kinase Signaling System , Methyltransferases , Reperfusion Injury , Animals , Humans , Male , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Apoptosis/genetics , Disease Models, Animal , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , MAP Kinase Signaling System/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Reperfusion Injury/genetics , Reperfusion Injury/pathology , HEK293 Cells
13.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731829

ABSTRACT

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Subject(s)
Acute Kidney Injury , Cell Cycle Proteins , Kidney Tubules, Proximal , Reperfusion Injury , Animals , Male , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Proliferation , Disease Models, Animal , Hippo Signaling Pathway , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice, Inbred C57BL , Mice, Knockout , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Signal Transduction
14.
Cell Mol Life Sci ; 81(1): 244, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814462

ABSTRACT

Four-and-a-half LIM domains protein 2 (FHL2) is an adaptor protein that may interact with hypoxia inducible factor 1α (HIF-1α) or ß-catenin, two pivotal protective signaling in acute kidney injury (AKI). However, little is known about the regulation and function of FHL2 during AKI. We found that FHL2 was induced in renal tubular cells in patients with acute tubular necrosis and mice model of ischemia-reperfusion injury (IRI). In cultured renal proximal tubular cells (PTCs), hypoxia induced FHL2 expression and promoted the binding of HIF-1 to FHL2 promoter. Compared with control littermates, mice with PTC-specific deletion of FHL2 gene displayed worse renal function, more severe morphologic lesion, more tubular cell death and less cell proliferation, accompanying by downregulation of AQP1 and Na, K-ATPase after IRI. Consistently, loss of FHL2 in PTCs restricted activation of HIF-1 and ß-catenin signaling simultaneously, leading to attenuation of glycolysis, upregulation of apoptosis-related proteins and downregulation of proliferation-related proteins during IRI. In vitro, knockdown of FHL2 suppressed hypoxia-induced activation of HIF-1α and ß-catenin signaling pathways. Overexpression of FHL2 induced physical interactions between FHL2 and HIF-1α, ß-catenin, GSK-3ß or p300, and the combination of these interactions favored the stabilization and nuclear translocation of HIF-1α and ß-catenin, enhancing their mediated gene transcription. Collectively, these findings identify FHL2 as a direct downstream target gene of HIF-1 signaling and demonstrate that FHL2 could play a critical role in protecting against ischemic AKI by promoting the activation of HIF-1 and ß-catenin signaling through the interactions with its multiple protein partners.


Subject(s)
Acute Kidney Injury , Kidney Tubules, Proximal , LIM-Homeodomain Proteins , Muscle Proteins , Reperfusion Injury , Transcription Factors , beta Catenin , Animals , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Mice , beta Catenin/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Signal Transduction , Mice, Inbred C57BL , Mice, Knockout , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Proliferation , Apoptosis
15.
Nat Commun ; 15(1): 4114, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750057

ABSTRACT

Cellular sensitivity to ferroptosis is primarily regulated by mechanisms mediating lipid hydroperoxide detoxification. We show that inositol-requiring enzyme 1 (IRE1α), an endoplasmic reticulum (ER) resident protein critical for the unfolded protein response (UPR), also determines cellular sensitivity to ferroptosis. Cancer and normal cells depleted of IRE1α gain resistance to ferroptosis, while enhanced IRE1α expression promotes sensitivity to ferroptosis. Mechanistically, IRE1α's endoribonuclease activity cleaves and down-regulates the mRNA of key glutathione biosynthesis regulators glutamate-cysteine ligase catalytic subunit (GCLC) and solute carrier family 7 member 11 (SLC7A11). This activity of IRE1α is independent of its role in regulating the UPR and is evolutionarily conserved. Genetic deficiency and pharmacological inhibition of IRE1α have similar effects in inhibiting ferroptosis and reducing renal ischemia-reperfusion injury in mice. Our findings reveal a previously unidentified role of IRE1α to regulate ferroptosis and suggests inhibition of IRE1α as a promising therapeutic strategy to mitigate ferroptosis-associated pathological conditions.


Subject(s)
Amino Acid Transport System y+ , Endoribonucleases , Ferroptosis , Glutathione , Protein Serine-Threonine Kinases , Ferroptosis/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Animals , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Glutathione/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Unfolded Protein Response , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Male , Mice, Knockout
16.
Sci Rep ; 14(1): 10783, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734725

ABSTRACT

Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸß2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.


Subject(s)
Disease Models, Animal , Enterocolitis, Necrotizing , Gene Expression Profiling , Reperfusion Injury , Animals , Enterocolitis, Necrotizing/genetics , Enterocolitis, Necrotizing/pathology , Enterocolitis, Necrotizing/metabolism , Rats , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Ischemic Preconditioning/methods , Transcriptome
17.
Front Immunol ; 15: 1370647, 2024.
Article in English | MEDLINE | ID: mdl-38694511

ABSTRACT

Background: Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. Methods: To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. Results: We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. Conclusions: Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.


Subject(s)
Endothelial Cells , Liver , Mitophagy , Reperfusion Injury , Humans , Mitophagy/genetics , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Endothelial Cells/metabolism , Liver/metabolism , Liver/pathology , Gene Expression Profiling , Male , Gene Regulatory Networks , Transcriptome , Female
18.
Nat Med ; 30(5): 1448-1460, 2024 May.
Article in English | MEDLINE | ID: mdl-38760586

ABSTRACT

In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.


Subject(s)
Heart Transplantation , Heterografts , Transplantation, Heterologous , Humans , Animals , Swine , Male , Female , Graft Rejection/immunology , Graft Rejection/genetics , Proteomics , Metabolomics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Transcriptome , Gene Expression Profiling , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lipidomics , Reperfusion Injury/immunology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Multiomics
19.
J Gene Med ; 26(5): e3692, 2024 May.
Article in English | MEDLINE | ID: mdl-38745073

ABSTRACT

BACKGROUND: Sevoflurane (Sevo) preconditioning and postconditioning play a protective role against injury induced by hepatic ischemia/reperfusion (I/R). At the same time, the involvement of macrophage infiltration in this process and the precise mechanisms are unclear. Here, we designed this research to elucidate the protective effects of Sevo against hepatic I/R injury and the molecules involved. METHODS: The alleviating effect of Sevo on the liver injury was analyzed by liver function analysis, hematoxylin and eosin staining, Masson trichrome staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling, western blot analysis and an enzyme-linked immunosorbent assay. An in vitro cell model was developed using alpha mouse liver 12 (AML12) cells, and the cell model was treated with oxygen-glucose deprivation and reoxygenation and Sevo. Multiple bioinformatics databases were used to screen transcriptional regulators related to hepatic I/R injury and the targets of Krueppel-like factor 5 (KLF5). KLF5 expression was artificially upregulated alone or with integrin beta-2 (ITGB2) knockdown to substantiate their involvement in Sevo-mediated hepatoprotection. RESULTS: Sevo protected the liver against I/R injury by reducing cell apoptosis and inflammatory response. KLF5 was upregulated in liver tissues following I/R injury, whereas KLF5 overexpression aggravated macrophage infiltration and liver injury induced by I/R injury. KLF5 bound to the promoter of ITGB2 to enhance ITGB2 transcription. Knockdown of ITGB2 reversed the aggravation of injury caused by KLF5 overexpression in mice and AML12 cells. CONCLUSIONS: Sevo blocked KLF5-mediated transcriptional activation of ITGB2, thereby inhibiting macrophage infiltration in hepatic I/R injury.


Subject(s)
Kruppel-Like Transcription Factors , Liver , Macrophages , Reperfusion Injury , Sevoflurane , Animals , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Mice , Macrophages/metabolism , Sevoflurane/pharmacology , Liver/metabolism , Liver/pathology , Transcriptional Activation , Male , Disease Models, Animal , Apoptosis , CD18 Antigens/metabolism , CD18 Antigens/genetics , Cell Line , Mice, Inbred C57BL , Gene Expression Regulation
20.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710691

ABSTRACT

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Subject(s)
Glycogen Synthase Kinase 3 beta , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Rats , S100 Proteins/metabolism , S100 Proteins/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Signal Transduction , Male , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology , Apoptosis , Cell Line , Cell Hypoxia , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...