Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.356
Filter
1.
PLoS One ; 19(7): e0305213, 2024.
Article in English | MEDLINE | ID: mdl-38954712

ABSTRACT

BACKGROUND AND AIM: Mild hypothermia in hepatic ischemia-reperfusion injury is increasingly being studied. This study aimed to conduct a systematic evaluation of the effectiveness of mild hypothermia in improving hepatic ischemia-reperfusion injury. METHODS: We systematically searched CNKI, WanFang Data, PubMed, Embase, and Web of Science for original studies that used animal experiments to determine how mild hypothermia(32-34°C) pretreatment improves hepatic ischemia-reperfusion injury(in situ 70% liver IR model). The search period ranged from the inception of the databases to May 5, 2023. Two researchers independently filtered the literature, extracted the data, and assessed the risk of bias incorporated into the study. The meta-analysis was performed using RevMan 5.4.1 and Stata 15 software. RESULTS: Eight randomized controlled trials (RCTs) involving a total of 117 rats/mice were included. The results showed that the ALT levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [Standardized Mean Difference (SMD) = -5.94, 95% CI(-8.09, -3.78), P<0.001], and AST levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [SMD = -4.45, 95% CI (-6.10, -2.78), P<0.001]. The hepatocyte apoptosis rate in the mild hypothermia pretreatment group was significantly lower than that in the normothermic control group [SMD = -6.86, 95% CI (-10.38, -3.33), P<0.001]. Hepatocyte pathology score in the mild hypothermia pretreatment group was significantly lower than that in the normothermic control group [SMD = -4.36, 95% CI (-5.78, -2.95), P<0.001]. There was no significant difference in MPO levels between the mild hypothermia preconditioning group and the normothermic control group [SMD = -4.83, 95% CI (-11.26, 1.60), P = 0.14]. SOD levels in the mild hypothermia preconditioning group were significantly higher than those in the normothermic control group [SMD = 3.21, 95% CI (1.27, 5.14), P = 0.001]. MDA levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [SMD = -4.06, 95% CI (-7.06, -1.07) P = 0.008]. CONCLUSION: Mild hypothermia can attenuate hepatic ischemia-reperfusion injury, effectively reduce oxidative stress and inflammatory response, prevent hepatocyte apoptosis, and protect liver function.


Subject(s)
Hypothermia, Induced , Liver , Reperfusion Injury , Reperfusion Injury/prevention & control , Reperfusion Injury/therapy , Animals , Hypothermia, Induced/methods , Liver/pathology , Mice , Rats , Disease Models, Animal
2.
Brain Behav ; 14(7): e3608, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956886

ABSTRACT

INTRODUCTION: Cerebral ischemia reperfusion injury (CIRI) often leads to deleterious complications after stroke patients receive reperfusion therapy. Exercise preconditioning (EP) has been reported to facilitate brain function recovery. We aim to explore the specific mechanism of EP in CIRI. METHODS: Sprague-Dawley rats were randomized into Sham, middle cerebral artery occlusion (MCAO), and EP groups (n = 11). The rats in the EP group received adaptive training for 3 days (10 m/min, 20 min/day, with a 0° incline) and formal training for 3 weeks (6 days/week, 25 m/min, 30 min/day, with a 0° incline). Then, rats underwent MCAO surgery to establish CIRI models. After 48 h, neurological deficits and cerebral infarction of the rats were measured. Neuronal death and apoptosis in the cerebral cortices were detected. Furthermore, RNA sequencing was conducted to investigate the specific mechanism of EP on CIRI, and qPCR and Western blotting were further applied to confirm RNA sequencing results. RESULTS: EP improved neurological deficit scores and reduced cerebral infarction in MCAO rats. Additionally, pre-ischemic exercise also alleviated neuronal death and apoptosis of the cerebral cortices in MCAO rats. Importantly, 17 differentially expressed genes (DEGs) were identified through RNA sequencing, and these DEGs were mainly enriched in the HIF-1 pathway, cellular senescence, proteoglycans in cancer, and so on. qPCR and Western blotting further confirmed that EP could suppress TIMP1, SOCS3, ANGPTL4, CDO1, and SERPINE1 expressions in MCAO rats. CONCLUSION: EP can improve CIRI in vivo, the mechanism may relate to TIMP1 expression and HIF-1 pathway, which provided novel targets for CIRI treatment.


Subject(s)
Infarction, Middle Cerebral Artery , Physical Conditioning, Animal , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/therapy , Rats , Male , Physical Conditioning, Animal/physiology , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/metabolism , Brain Ischemia/therapy , Sequence Analysis, RNA , Disease Models, Animal , Apoptosis , Ischemic Preconditioning/methods
3.
Ann Transplant ; 29: e944153, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39016049

ABSTRACT

BACKGROUND Ginkgetin inhibits growth of tumor cells, reducing blood lipids, and improving atherosclerosis, but the protective effect of ginkgetin in donation after cardiac death (DCD) livers is still unknown. The aim of this study was to determine whether pretreatment of DCD donor livers with ginkgetin can reduce inflammatory response through the JAK2/STAT3 signaling pathway. MATERIAL AND METHODS Twenty male Sprague-Dawley rats (200-250 g) were randomly divided into 4 groups: Sham, DCD, Ginkgetin (0.6 mg/kg) pretreatment 1 h before surgery, and Ginkgetin (0.6 mg/kg) plus broussonin E (0.3 mg/kg) (JAK2/STAT3 signaling agonist) pretreatment 1 h before surgery. Rat livers were subjected to 30 min warm ischemia and 24 h cold storage to simulate the preservation process of DCD donor livers, followed by normothermic machine perfusion for 1 h to simulate liver reperfusion in vivo. Liver tissues and perfusate samples were collected for further studies. RESULTS Ginkgetin pretreatment significantly decreased the values of ALT and AST (P<0.05), and improved histological alterations according to improved Suzuki's Score (P<0.05). Ginkgetin also inhibited the protein expression levels of p-JAK2/JAK2 and p-STAT3/STAT3 (P<0.05). Furthermore, ginkgetin pretreatment inhibited levels of interleukin-1ß, interleukin-6 and tumor necrosis factor a (P<0.05) to suppress inflammatory response. In addition, broussonin E reversed the improvement of ginkgetin on DCD donor livers. CONCLUSIONS Ginkgetin can inhibit the inflammatory response through the JAK2/STAT3 signaling pathway to improve the quality of DCD donor livers.


Subject(s)
Biflavonoids , Janus Kinase 2 , Liver Transplantation , Liver , Rats, Sprague-Dawley , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Male , Signal Transduction/drug effects , Rats , Liver/metabolism , Liver/drug effects , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , Inflammation/prevention & control , Organ Preservation/methods , Tissue Donors , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism
4.
Cochrane Database Syst Rev ; 7: CD011671, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979743

ABSTRACT

BACKGROUND: Kidney transplantation is the optimal treatment for kidney failure. Donation, transport and transplant of kidney grafts leads to significant ischaemia reperfusion injury. Static cold storage (SCS), whereby the kidney is stored on ice after removal from the donor until the time of implantation, represents the simplest preservation method. However, technology is now available to perfuse or "pump" the kidney during the transport phase ("continuous") or at the recipient centre ("end-ischaemic"). This can be done at a variety of temperatures and using different perfusates. The effectiveness of these treatments manifests as improved kidney function post-transplant. OBJECTIVES: To compare machine perfusion (MP) technologies (hypothermic machine perfusion (HMP) and (sub) normothermic machine perfusion (NMP)) with each other and with standard SCS. SEARCH METHODS: We contacted the information specialist and searched the Cochrane Kidney and Transplant Register of Studies until 15 June 2024 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA: All randomised controlled trials (RCTs) and quasi-RCTs comparing machine perfusion techniques with each other or versus SCS for deceased donor kidney transplantation were eligible for inclusion. All donor types were included (donor after circulatory death (DCD) and brainstem death (DBD), standard and extended/expanded criteria donors). Both paired and unpaired studies were eligible for inclusion. DATA COLLECTION AND ANALYSIS: The results of the literature search were screened, and a standard data extraction form was used to collect data. Both of these steps were performed by two independent authors. Dichotomous outcome results were expressed as risk ratios (RR) with 95% confidence intervals (CI). Survival analyses (time-to-event) were performed with the generic inverse variance meta-analysis of hazard ratios (HR). Continuous scales of measurement were expressed as a mean difference (MD). Random effects models were used for data analysis. The primary outcome was the incidence of delayed graft function (DGF). Secondary outcomes included graft survival, incidence of primary non-function (PNF), DGF duration, economic implications, graft function, patient survival and incidence of acute rejection. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS: Twenty-two studies (4007 participants) were included. The risk of bias was generally low across all studies and bias domains. The majority of the evidence compared non-oxygenated HMP with standard SCS (19 studies). The use of non-oxygenated HMP reduces the rate of DGF compared to SCS (16 studies, 3078 participants: RR 0.78, 95% CI 0.69 to 0.88; P < 0.0001; I2 = 31%; high certainty evidence). Subgroup analysis revealed that continuous (from donor hospital to implanting centre) HMP reduces DGF (high certainty evidence). In contrast, this benefit over SCS was not seen when non-oxygenated HMP was not performed continuously (low certainty evidence). Non-oxygenated HMP reduces DGF in both DCD and DBD settings in studies performed in the 'modern era' and when cold ischaemia times (CIT) were short. The number of perfusions required to prevent one episode of DGF was 7.69 and 12.5 in DCD and DBD grafts, respectively. Continuous non-oxygenated HMP versus SCS also improves one-year graft survival (3 studies, 1056 participants: HR 0.46, 0.29 to 0.75; P = 0.002; I2 = 0%; high certainty evidence). Assessing graft survival at maximal follow-up confirmed a benefit of continuous non-oxygenated HMP over SCS (4 studies, 1124 participants (follow-up 1 to 10 years): HR 0.55, 95% CI 0.40 to 0.77; P = 0.0005; I2 = 0%; high certainty evidence). This effect was not seen in studies where HMP was not continuous. The effect of non-oxygenated HMP on our other outcomes (PNF, incidence of acute rejection, patient survival, hospital stay, long-term graft function, duration of DGF) remains uncertain. Studies performing economic analyses suggest that HMP is either cost-saving (USA and European settings) or cost-effective (Brazil). One study investigated continuous oxygenated HMP versus non-oxygenated HMP (low risk of bias in all domains); the simple addition of oxygen during continuous HMP leads to additional benefits over non-oxygenated HMP in DCD donors (> 50 years), including further improvements in graft survival, improved one-year kidney function, and reduced acute rejection. One large, high-quality study investigated end-ischaemic oxygenated HMP versus SCS and found end-ischaemic oxygenated HMP (median machine perfusion time 4.6 hours) demonstrated no benefit compared to SCS. The impact of longer periods of end-ischaemic HMP is unknown. One study investigated NMP versus SCS (low risk of bias in all domains). One hour of end ischaemic NMP did not improve DGF compared with SCS alone. An indirect comparison revealed that continuous non-oxygenated HMP (the most studied intervention) was associated with improved graft survival compared with end-ischaemic NMP (indirect HR 0.31, 95% CI 0.11 to 0.92; P = 0.03). No studies investigated normothermic regional perfusion (NRP) or included any donors undergoing NRP. AUTHORS' CONCLUSIONS: Continuous non-oxygenated HMP is superior to SCS in deceased donor kidney transplantation, reducing DGF, improving graft survival and proving cost-effective. This is true for both DBD and DCD kidneys, both short and long CITs, and remains true in the modern era (studies performed after 2008). In DCD donors (> 50 years), the simple addition of oxygen to continuous HMP further improves graft survival, kidney function and acute rejection rate compared to non-oxygenated HMP. Timing of HMP is important, and benefits have not been demonstrated with short periods (median 4.6 hours) of end-ischaemic HMP. End-ischaemic NMP (one hour) does not confer meaningful benefits over SCS alone and is inferior to continuous HMP in an indirect comparison of graft survival. Further studies assessing NMP for viability assessment and therapeutic delivery are warranted and in progress.


Subject(s)
Graft Survival , Kidney Transplantation , Organ Preservation , Perfusion , Randomized Controlled Trials as Topic , Humans , Cold Temperature , Delayed Graft Function/prevention & control , Kidney , Kidney Transplantation/methods , Organ Preservation/methods , Perfusion/methods , Perfusion/instrumentation , Reperfusion Injury/prevention & control , Temperature , Tissue Donors
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1048-1058, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977334

ABSTRACT

OBJECTIVE: To explore the mechanism by which soybean isoflavone (SI) reduces calcium overload induced by cerebral ischemia-reperfusion (I/R). METHODS: Forty-eight SD rats were randomized into 4 groups to receive sham operation, cerebral middle artery occlusion for 2 h followed by 24 h of reperfusion (I/R model group), or injection of adeno-associated virus carrying Frizzled-2 siRNA or empty viral vector into the lateral cerebral ventricle after modeling.Western blotting was used to examine Frizzled-2 knockdown efficiency and changes in protein expressions in the Wnt/Ca2+ signaling pathway.Calcium levels and pathological changes in the ischemic penumbra (IP) were measured using calcium chromogenic assay and HE staining, respectively.Another 72 SD randomly allocated for sham operation, I/R modeling, or soy isoflavones pretreatment before modeling were examined for regional cerebral blood flow using a Doppler flowmeter, and the cerebral infarct volume was assessed using TTC staining.Pathologies in the IP area were evaluated using HE and Nissl staining, and ROS level, Ca2+ level, cell apoptosis, and intracellular calcium concentration were analyzed using immunofluorescence assay or flow cytometry; the protein expressions of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP were detected with Western blotting and immunohistochemistry. RESULTS: In rats with cerebral I/R, Frizzled-2 knockdown significantly lowered calcium concentration (P < 0.001) and the expression levels of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP area.In soy isoflavones-pretreated rats, calcium concentration, ROS and MDA levels, cell apoptosis rate, cerebral infarct volume, and expression levels of Wnt/Ca2+ signaling pathway-related proteins were all significantly lower while SOD level was higher than those in rats in I/R model group. CONCLUSION: Soy isoflavones can mitigate calcium overload in rats with cerebral I/R by inhibiting the Wnt/Ca2+ signaling pathway.


Subject(s)
Brain Ischemia , Calcium , Glycine max , Isoflavones , Rats, Sprague-Dawley , Reperfusion Injury , Wnt Signaling Pathway , Animals , Isoflavones/pharmacology , Isoflavones/therapeutic use , Rats , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Wnt Signaling Pathway/drug effects , Brain Ischemia/metabolism , Calcium/metabolism , Glycine max/chemistry , Apoptosis/drug effects , Male , Wnt-5a Protein/metabolism , RNA, Small Interfering/genetics
6.
Ulus Travma Acil Cerrahi Derg ; 30(7): 510-517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967530

ABSTRACT

BACKGROUND: Post-ischemia reperfusion can lead to oxidative stress and an increase in oxidative markers. Employing preventive strategies and antioxidant agents may help mitigate ischemia-reperfusion injury (IRI). The use of a tourniquet in extremity surgery has been associated with IRI. This study aims to investigate the impact of three different approaches- brachial plexus block, total intravenous anesthesia (TIVA), and inhalation anesthesia-on IRI during upper extremity surgery using a tourniquet. METHODS: Patients aged 18 to 45 with American Society of Anesthesiologists (ASA) I-II scores were randomly assigned to one of three groups: Group A received an axillary block with bupivacaine; Group I underwent inhalation anesthesia with sevoflurane; and Group T received TIVA with propofol and remifentanil infusion. Blood samples were collected to measure glucose, lactate, total anti-oxidant status (TAS), total oxidant status (TOS), and ischemia-modified albumin (IMA) levels at various time points: before anesthesia (t1), 1 minute before tourniquet release (t2), 20 minutes after tourniquet release (t3), and 4 hours after tourniquet release (t4). RESULTS: In Group I, lactate levels at t3, and glucose levels at t2 and t3, were higher compared to the other groups. Group A exhibited lower IMA levels at t2, t3, and t4 than the other groups. Additionally, Group I had lower IMA levels at t2, t3, and t4 compared to Group T. TAS levels were higher in Group I at t2, t3, and t4 compared to the other groups. TOS levels at t2 and t3 were lower in Group A than in Group I. CONCLUSION: Axillary anesthesia results in a sympathetic block, promoting better perfusion of the upper extremity. This study demonstrated lower levels of oxidative stress markers with axillary plexus block. Therefore, these results suggest that the axillary block has the potential to mitigate IRI.


Subject(s)
Anesthesia, Intravenous , Brachial Plexus Block , Propofol , Reperfusion Injury , Sevoflurane , Tourniquets , Upper Extremity , Humans , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Adult , Male , Female , Anesthesia, Intravenous/methods , Brachial Plexus Block/methods , Middle Aged , Upper Extremity/blood supply , Upper Extremity/surgery , Sevoflurane/administration & dosage , Young Adult , Propofol/administration & dosage , Adolescent , Anesthesia, Inhalation/methods , Anesthetics, Inhalation/administration & dosage , Bupivacaine/administration & dosage , Remifentanil/administration & dosage , Methyl Ethers/administration & dosage , Anesthetics, Local/administration & dosage , Oxidative Stress/drug effects , Anesthetics, Intravenous/administration & dosage , Piperidines/administration & dosage
7.
Plast Reconstr Surg ; 154(1): 100e-111e, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38985983

ABSTRACT

BACKGROUND: Despite the increasing popularity of various materials for ischemia-reperfusion (I/R) injury mitigation, research on botulinum toxin type A (BoNTA) remains limited. This study assesses BoNTA's efficacy in protecting flaps from I/R injury by inhibiting the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system and reducing reactive oxygen species (ROS) production. METHODS: Seventy-six Sprague-Dawley rats were studied. We examined the effects of BoNTA on superoxide production in four rats using a lucigenin-enhanced chemiluminescence assay (LECL). Another group of 60 rats had their superficial inferior epigastric artery (SIEA) flaps treated with either BoNTA or saline and clamped for 0, 1, and 4 hours before reperfusion. Flap survival and histological outcomes were assessed five days post-operation. ROS production in SIEA flaps and femoral vessels was analyzed in 12 additional rats, post-I/R injury. RESULTS: The LECL results showed that the BoNTA group had significantly lower superoxide production compared to controls, with notable reductions at 4 hours. While no significant differences were noted at the 0 and 1-hour marks, the 4-hour mark showed significant protective effects in BoNTA-treated groups. The survival rate was 90% for BoNTA-treated rats versus 60% for controls ( P = 0.028). Significant reductions in ROS were also observed in the 4-hour I/R group. CONCLUSIONS: BoNTA effectively protects against I/R injury by inhibiting the NADPH oxidase system and reducing ROS levels. These results support further investigation into the specific mechanisms of NADPH oxidase inhibition by BoNTA and its potential clinical applications, given its safety profile. CLINICAL RELEVANCE STATEMENT: The findings from the present study are expected to provide a basis for clinical studies regarding this use of BoNTA.


Subject(s)
Botulinum Toxins, Type A , NADPH Oxidases , Rats, Sprague-Dawley , Reactive Oxygen Species , Reperfusion Injury , Animals , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Botulinum Toxins, Type A/pharmacology , Botulinum Toxins, Type A/administration & dosage , NADPH Oxidases/metabolism , NADPH Oxidases/antagonists & inhibitors , Rats , Male , Reactive Oxygen Species/metabolism , Surgical Flaps/blood supply , Superoxides/metabolism , Disease Models, Animal
8.
J Cardiothorac Surg ; 19(1): 435, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997740

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (I/R) can affect patient outcomes and can even be life-threatening. This study aimed to explore the role of Shionone in cerebral I/R and reveal its mechanism of action through the cerebral I/R in vitro model. METHODS: SH-SY5Y cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to induce cerebral I/R in vitro model. SH-SY5Y cells were treated with different concentrations of Shionone. Cell counting kit-8 and flow cytometry assays were used to detect cell viability and apoptosis levels. The levels of superoxide dismutase, catalase, and malondialdehyde were determined using their corresponding kits to examine the level of oxidative stress. The inflammation response was detected by IL-6, IL-1ß, and TNF-α levels, using enzyme-linked-immunosorbent-assay. RT-qPCR was performed to measure the mRNA levels of p38 and NF-κB. Western blotting was used to quantify the apoptosis-related proteins and p38MAPK/NF-κB signaling pathway proteins. RESULTS: Shionone exhibited no toxic effects on SH-SY5Y cells. Shionone inhibited OGD/R-induced cell apoptosis, improved the inflammatory response caused by OGD/R, and reduced the level of oxidative stress in cells. Western blot assay results showed that Shionone alleviated OGD/R-induced injury by inhibiting the activity of the p38 MAPK/NF-κB signaling pathway. The p38/MAPK agonist P79350 reversed the beneficial effects of Shionone. CONCLUSION: Shionone alleviates cerebral I/R and may thus be a novel therapeutic strategy for treating cerebral I/R.


Subject(s)
Apoptosis , Glucose , NF-kappa B , Oxygen , Reperfusion Injury , p38 Mitogen-Activated Protein Kinases , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Glucose/deficiency , NF-kappa B/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Apoptosis/drug effects , Oxygen/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Cell Survival/drug effects , Cell Line, Tumor
9.
Chem Biol Interact ; 398: 111090, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38825057

ABSTRACT

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play pivotal roles in the pathology of cerebral ischemia. In this study, we investigated whether phelligridimer A (PA), an active compound isolated from the medicinal and edible fungus Phellinus igniarius, ameliorates ischemic cerebral injury by restoring mitochondrial function and restricting ER stress. An in vitro cellular model of ischemic stroke-induced neuronal damage was established by exposing HT-22 neuronal cells to oxygen-glucose deprivation/reoxygenation (OGD/R). An in vivo animal model was established in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The results showed that PA (1-10 µM) dose-dependently increased HT-22 cell viability, reduced OGD/R-induced lactate dehydrogenase release, and reversed OGD/R-induced apoptosis. PA reduced OGD/R-induced accumulation of reactive oxygen species, restored mitochondrial membrane potential, and increased ATP levels. Additionally, PA reduced the expression of the 78-kDa glucose-regulated protein (GRP78) and the phosphorylation of inositol-requiring enzyme-1α (p-IRE1α) and eukaryotic translation-initiation factor 2α (p-eIF2α). PA also inhibited the activation of the mitogen-activated protein kinase (MAPK) pathway in the OGD/R model. Moreover, treatment with PA restored the expression of mitofusin 2 (Mfn-2), a protein linking mitochondria and ER. The silencing of Mfn-2 abolished the protective effects of PA. The results from the animal study showed that PA (3-10 mg/kg) significantly reduced the volume of cerebral infarction and neurological deficits, which were accompanied by an increased level of Mfn-2, and decreased activation of the ER stress in the penumbra of the ipsilateral side after MCAO/R in rats. Taken together, these results indicate that PA counteracts cerebral ischemia-induced injury by restoring mitochondrial function and reducing ER stress. Therefore, PA might be a novel protective agent to prevent ischemia stroke-induced neuronal injury.


Subject(s)
Brain Ischemia , Endoplasmic Reticulum Stress , GTP Phosphohydrolases , Rats, Sprague-Dawley , Reactive Oxygen Species , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , GTP Phosphohydrolases/metabolism , Rats , Male , Endoplasmic Reticulum Stress/drug effects , Mice , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Apoptosis/drug effects , Cell Line , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Membrane Potential, Mitochondrial/drug effects , Glucose/metabolism , Cell Survival/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Heat-Shock Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Eukaryotic Initiation Factor-2/metabolism
10.
Bull Exp Biol Med ; 176(6): 827-829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38890211

ABSTRACT

The severity of ischemic injury was evaluated by densitometry of brain samples stained with 2,3,5-triphenyltetrazolium chloride (TTC) on a rat model of cerebral ischemia/reperfusion (common carotid artery occlusion) and the neuroprotective activity of an extract of Astragalus membranaceus, Scutellaria baicalensis, and Phlojodicarpus sibiricus was assessed. Occlusion of the common carotid arteries led to a weakening of TTC staining of the brain tissue: densitometric indicators of the staining intensity for the cortex and striatum were lower than the corresponding indicators of sham-operated rats by 18.3 and 10.4%. The mean intensity of staining of brain samples did not differ in rats treated with the extract and sham-operated animals, which attested to its neuroprotective effect. The applied method is convenient for evaluation of the severity of ischemic brain damage at the early stages and screening potential neuroprotective agents.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Plant Extracts , Animals , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Astragalus propinquus/chemistry , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Tetrazolium Salts/chemistry , Brain/drug effects , Brain/pathology , Rats, Wistar , Disease Models, Animal , Scutellaria baicalensis
11.
Transpl Int ; 37: 12686, 2024.
Article in English | MEDLINE | ID: mdl-38911062

ABSTRACT

Optimizing graft preservation is key for ex-situ split grafts in pediatric liver transplantation (PSLT). Hypothermic Oxygenated Perfusion (HOPE) improves ischemia-reperfusion injury (IRI) and post-operative outcomes in adult LT. This study compares the use of HOPE in ex-situ partial grafts to static cold storage ex-situ partial grafts (SCS-Split) and to the gold standard living donor liver transplantation (LDLT). All consecutive HOPE-Split, SCS-Split and LDLT performed between 2018-2023 for pediatric recipients were included. Post-reperfusion syndrome (PRS, drop ≥30% in systolic arterial pressure) and reperfusion biopsies served as early indicators of IRI. We included 47 pediatric recipients (15 HOPE-Split, 17 SCS-Split, and 15 LDLT). In comparison to SCS-Split, HOPE-Split had a significantly shorter cold ischemia time (CIT) (470min vs. 538 min; p =0.02), lower PRS rates (13.3% vs. 47.1%; p = 0.04) and a lower IRI score (3 vs. 4; p = 0.03). The overall IRI score (3 vs. 3; p = 0.28) and PRS (13.3% vs. 13.3%; p = 1) after HOPE-Split were comparable to LDLT, despite a longer CIT (470 min vs. 117 min; p < 0.001). Surgical complications, one-year graft, and recipient survival did not differ among the groups. In conclusion, HOPE-Split mitigates early IRI in pediatric recipients in comparison to SCS-Split, approaching the gold standard of LDLT.


Subject(s)
Liver Transplantation , Living Donors , Organ Preservation , Perfusion , Reperfusion Injury , Humans , Liver Transplantation/methods , Liver Transplantation/adverse effects , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Male , Female , Child , Child, Preschool , Organ Preservation/methods , Perfusion/methods , Adolescent , Infant , Cold Ischemia , Graft Survival , Retrospective Studies , Liver/blood supply
12.
Curr Oncol ; 31(6): 2895-2906, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38920705

ABSTRACT

Ischemia-reperfusion injury (IRI) during liver transplantation has been implicated in the recurrence of hepatocellular carcinoma (HCC). This systematic review aimed to evaluate interventions to reduce IRI during liver transplantation for HCC and their impact on oncologic outcomes. A comprehensive literature search retrieved four retrospective studies involving 938 HCC patients, utilising interventions such as post-operative prostaglandin administration, hypothermic machine perfusion, and normothermic machine perfusion. Overall, treated patients exhibited reduced post-operative hepatocellular injury and inflammation and significantly enhanced recurrence-free survival. Despite these promising results, the impact of these interventions on overall survival remains unclear. This underscores the imperative for further prospective research to comprehensively understand the efficacy of these interventions in HCC patients undergoing transplantation. The findings highlight the potential benefits of these strategies while emphasising the need for continued investigation into their overall impact.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Reperfusion Injury , Humans , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Liver Transplantation/methods , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/surgery , Treatment Outcome , Allografts
14.
Metab Brain Dis ; 39(5): 741-752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833094

ABSTRACT

Apoptosis is the crucial pathological mechanism following cerebral ischemic injury. Our previous studies demonstrated that clonidine, one agonist of alpha2-adrenergic receptor (α2-AR), could attenuate cerebral ischemic injury in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). However, it's unclear whether clonidine exerts neuroprotective effects by regulating neuronal apoptosis. In this study, we elucidated whether clonidine can exert anti-apoptotic effects in cerebral ischemic injury, and further explored the possible mechanisms. Neurological deficit score was measured to evaluate the neurological function. TTC staining was used for the measurement of brain infarct size. Hematoxylin-Eosin (HE) staining was applied to examine the cell morphology. TUNEL and DAPI fluorescent staining methods were used to analyze the cell apoptosis in brain tissue. Fluorescence quantitative real-time PCR was performed to assess the gene expression of Caspase-3 and P53. Western blotting assay was applied to detect the protein expression of Caspase-3 and P53. The results showed that clonidine improved neurological function, reduced brain infarct size, alleviated neuronal damage, and reduced the ratio of cell apoptosis in the brain with MCAO/R injury. moreover, clonidine down-regulated the gene and protein expression of Caspase-3 and P53 which were over-expressed after MCAO/R injury. Whereas, yohimbine (one selective α2-AR antagonist) mitigated the anti-apoptosis effects of clonidine, accompanied by reversed gene and protein expression changes. The results indicated that clonidine attenuated cerebral MCAO/R injury via suppressing neuronal apoptosis, which may be mediated, at least in part, by activating α2-AR.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Apoptosis , Clonidine , Neurons , Neuroprotective Agents , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Clonidine/pharmacology , Clonidine/therapeutic use , Apoptosis/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Male , Rats , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/prevention & control , Infarction, Middle Cerebral Artery/drug therapy , Caspase 3/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology
15.
Ulus Travma Acil Cerrahi Derg ; 30(6): 390-396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863289

ABSTRACT

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury is a significant clinical condition that can arise during liver resections, trauma, and shock. Geraniol, an isoterpene molecule commonly found in nature, possesses antioxidant and hepatoprotective properties. This study investigates the impact of geraniol on hepatic damage by inducing experimental liver I/R injury in rats. METHODS: Twenty-eight male Wistar Albino rats weighing 350-400 g were utilized for this study. The rats were divided into four groups: control group, I/R group, 50 mg/kg geraniol+I/R group, and 100 mg/kg geraniol+I/R group. Ischemia times were set at 15 minutes with reperfusion times at 20 minutes. Ischemia commenced 15 minutes after geraniol administration. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactic acid were measured, along with superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in liver tissues. Liver tissues were also examined histopathologically. RESULTS: It was observed that intraperitoneal administration of 50 mg/kg and 100 mg/kg geraniol significantly reduced AST, lactic acid, and tumor necrosis factor-alpha (TNF-α) levels. The serum ALT level decreased significantly in the 50 mg/kg group, whereas no significant decrease was found in the 100 mg/kg group. SOD and GPx enzyme activities were shown to increase significantly in the 100 mg/kg group. Although there was an increase in these enzyme levels in the 50 mg/kg group, it was not statistically significant. Similarly, CAT enzyme activity increased in both the 50 mg/kg and 100 mg/kg groups, but the increase was not significant. The Suzuki score significantly decreased in both the 50 mg/kg and 100 mg/kg groups. CONCLUSION: The study demonstrates that geraniol reduced hepatic damage both biochemically and histopathologically and increased antioxidant defense enzymes. These findings suggest that geraniol could be used to prevent hepatic I/R injury, provided it is corroborated by large-scale and comprehensive studies.


Subject(s)
Acyclic Monoterpenes , Disease Models, Animal , Liver , Rats, Wistar , Reperfusion Injury , Terpenes , Animals , Acyclic Monoterpenes/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Male , Rats , Terpenes/pharmacology , Terpenes/therapeutic use , Liver/drug effects , Liver/pathology , Liver/blood supply , Antioxidants/pharmacology , Oxidative Stress/drug effects , Aspartate Aminotransferases/blood
16.
Ulus Travma Acil Cerrahi Derg ; 30(6): 375-381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863285

ABSTRACT

BACKGROUND: This study investigates the protective effects of etomidate against oxidative damage in an experimental model of ovarian ischemia-reperfusion injury. METHODS: A total of 24 female rats were randomized into three groups. Group 1 served as the control. Group 2 underwent an ovarian torsion/detorsion procedure. Group 3 underwent similar procedures as Group 2; additionally, 4 mg/kg of etomidate was administered intraperitoneally 30 minutes before ovarian detorsion. Blood samples were analyzed for lipid peroxidation, pro-inflammatory cytokine levels, and antioxidant enzyme activity RESULTS: Biochemical analysis of blood samples revealed reductions in pro-inflammatory cytokines, including interleukin-1 Beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), in Group 3 compared to Group 2 (p=0.005, p=0.016, and p<0.001, respectively). Additionally, a decrease in malondialdehyde (MDA) levels was observed in Group 3 compared to Group 2 (p<0.001). In contrast, activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were significantly increased in Group 3 compared to Group 2 (p=0.031 and p=0.001, respectively). Furthermore, Group 3 demonstrated notable reductions in histopathological scores for follicular degeneration, vascular occlusion, bleeding, and inflammation compared to Group 2 (p<0.001, p<0.001, p<0.001, and p=0.001, respectively). CONCLUSION: Etomidate alleviates ischemia-reperfusion injury in a rat ovarian torsion-detorsion model by improving both histopathological and biochemical outcomes.


Subject(s)
Etomidate , Reperfusion Injury , Animals , Female , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Etomidate/pharmacology , Rats , Ovarian Torsion/drug therapy , Disease Models, Animal , Malondialdehyde/blood , Ovary/drug effects , Ovary/blood supply , Ovary/pathology , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Superoxide Dismutase/metabolism , Superoxide Dismutase/blood , Antioxidants/pharmacology , Random Allocation
17.
Drug Des Devel Ther ; 18: 2461-2474, 2024.
Article in English | MEDLINE | ID: mdl-38915866

ABSTRACT

Objective: Insulin attaches insulin receptor to activate the PI3-kinase/Akt signaling to maintain glucose homeostasis and inhibit apoptosis. This study determined whether preconditioning with insulin and glucose protects the kidney against ischemia-reperfusion injury (IRI). Methods: Kidney IRI was performed in C57BL/6 mice by clamping the renal vessels for 30 min, followed by reperfusion for 24 h. A total subcutaneous 0.1 unit of insulin along with 10% glucose in drinking water was treated on the mice for 24 h before kidney IRI. The kidney function and injuries were investigated through the determination of BUN and Cr in blood plasma, as well as the apoptosis and the expression of P-AKT, BAX, and caspase-3 in the kidneys. The role of P-AKT in insulin-treated IRI kidneys was tested using an AKT inhibitor. The effects of the preconditional duration of insulin and glucose on IRI kidneys were investigated by expanding the treatment duration to 1, 3, and 6 days. Results: Preconditioning with insulin and glucose protected the kidney against IRI as manifested by a decrease in creatinine and BUN and a reduction of kidney tubular injury. The protection effect was mediated by P-AKT-BAX-caspase-3 signaling pathway resulting in suppression of apoptotic cell death. An AKT inhibitor partially reversed the protective effects of preconditional insulin. The preconditional duration for 1, 3, and 6 days had no differences in improving kidney functions and pathology. Conclusion: A short-term preconditioning with insulin and glucose protected the kidney from IRI through the activation of p-AKT and subsequent reduction of BAX-caspase-3-induced apoptosis. The short-term precondition provides a practicable strategy for protecting the kidney against predictable IRI, such as kidney transplant and major surgical operations with high risk of hypotension.


Subject(s)
Caspase 3 , Glucose , Insulin , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , Reperfusion Injury , Signal Transduction , bcl-2-Associated X Protein , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Signal Transduction/drug effects , Insulin/pharmacology , Male , Caspase 3/metabolism , Glucose/metabolism , bcl-2-Associated X Protein/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Apoptosis/drug effects
18.
Immun Inflamm Dis ; 12(6): e1271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888355

ABSTRACT

INTRODUCTION: Ischemia-reperfusion (I/R) injury, resulting from blood flow interruption and its subsequent restoration, is a prevalent complication in liver surgery. The liver, as a crucial organ for carbohydrate and lipid metabolism, exhibits decreased tolerance to hepatic I/R in patients with diabetes mellitus (DM), resulting in a significant increase in hepatic dysfunction following surgery. This may be attributed to elevated oxidative stress and inflammation. Our prior research established sinomenine's (SIN) protective role against hepatic I/R injury. Nevertheless, the impact of SIN on hepatic I/R injury in DM rats remains unexplored. OBJECTIVE AND METHODS: This study aimed to investigate the therapeutic potential of SIN in hepatic I/R injury in DM rats and elucidate its mechanism. Diabetic and hepatic I/R injury models were established in rats through high-fat/sugar diet, streptozotocin injection, and hepatic blood flow occlusion. Liver function, oxidative stress, inflammatory reaction, histopathology, and Nrf-2/HO-1 signaling pathway were evaluated by using UV spectrophotometry, biochemical assays, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, and Western blot analysis. RESULTS: High-dose SIN (300 mg/kg) significantly attenuated hepatic I/R injury in DM rats, reducing serum activities of ALT and AST, decreasing the AST/ALT ratio, enhancing tissue contents of SOD and GSH-Px, suppressing the levels of TNF-α and IL-6, improving the liver histopathology, and activating Nrf-2/HO-1 signaling by promoting Nrf-2 trans-location from cytoplasm to nucleus. Low-dose SIN (100 mg/kg) was ineffective. CONCLUSIONS: This study demonstrates that high-dose sinomenine's mitigates hepatic I/R-induced inflammation and oxidative stress in diabetes mellitus (DM) rats via Nrf-2/HO-1 activation, suggesting its potential as a preventive strategy for hepatic I/R injury in DM patients.


Subject(s)
Diabetes Mellitus, Experimental , Liver , Morphinans , Oxidative Stress , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Oxidative Stress/drug effects , Morphinans/pharmacology , Morphinans/administration & dosage , Morphinans/therapeutic use , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Male , Liver/metabolism , Liver/drug effects , Liver/pathology , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects
19.
Mol Biomed ; 5(1): 22, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902590

ABSTRACT

Hepatic ischemia-reperfusion injury (HIRI) is a critical pathophysiological process during liver transplantation (LT). Multiple genes and signal pathways are dysregulated during HIRI. This study aims to identify genes as potential therapeutic targets for ameliorating HIRI. Datasets containing samples from the human donor liver (GSE151648) and mouse HIRI model (GSE117066) were analyzed to determine differentially expressed genes (DEGs). The selected DEGs were confirmed by real-time PCR and western blot in the hepatocyte hypoxia-reoxygenation (HR) model, mouse HIRI model, and human liver samples after transplantation. Genetic inhibition was used to further clarify the underlying mechanism of the gene in vitro and in vivo. Among the DEGs, CSRNP1 was significantly upregulated (|log FC|= 2.08, P < 0.001), and was positively correlated with the MAPK signal pathway (R = 0.67, P < 0.001). CSRNP1 inhibition by siRNA significantly suppressed apoptosis in the AML-12 cell line after HR (mean Annexin+ ratio = 60.62% vs 42.47%, P = 0.0019), but the protective effect was eliminated with an additional MAPK activator. Knocking down CSRNP1 gene expression by intravenous injection of AAV-shRNA markedly reduced liver injury in mouse HIRI model (ALT: AAV-NC vs AAV-shCsrnp1 = 26,673.5 ± 2761.2 vs 3839.7 ± 1432.8, P < 0.001; AST: AAV-NC vs AAV-shCsrnp1 = 8640.5 ± 1450.3 vs 1786.8 ± 518.3, P < 0.001). Liver-targeted delivery of siRNA by nanoparticles effectively inhibited intra-hepatic genetic expression of Csrnp1 and alleviated IRI by reducing tissue inflammation and hepatocyte apoptosis. Furthermore, CSRNP1 inhibition was associated with reduced activation of the MAPK pathway both in vitro and in vivo. In conclusion, our results demonstrated that CSRNP1 could be a potential therapeutic target to ameliorate HIRI in an MAPK-dependent manner.


Subject(s)
Apoptosis , Liver Transplantation , Reperfusion Injury , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/genetics , Animals , Liver Transplantation/adverse effects , Humans , Mice , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Male , Cell Line , Liver/metabolism , Liver/pathology , Hepatocytes/metabolism , Hepatocytes/drug effects , Disease Models, Animal , Mice, Inbred C57BL
20.
Physiol Rep ; 12(11): e16050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839736

ABSTRACT

In posterior spine surgery, retractors exert pressure on paraspinal muscles, elevating intramuscular pressure and compromising blood flow, potentially causing muscle injury during ischemia-reperfusion. Ginkgo biloba extract (EGb 761), known for its antioxidant and free radical scavenging properties and its role in treating cerebrovascular diseases, is investigated for its protective effects against muscle ischemia-reperfusion injury in vitro and in vivo. Animals were randomly divided into the control group, receiving normal saline, and experimental groups, receiving varying doses of EGb761 (25/50/100/200 mg/kg). A 2-h hind limb tourniquet-induced ischemia was followed by reperfusion. Blood samples collected pre-ischemia and 24 h post-reperfusion, along with muscle tissue samples after 24 h, demonstrated that EGb761 at 1000 µg/mL effectively inhibited IL-6 and TNF-α secretion in RAW 264.7 cells without cytotoxicity. EGb761 significantly reduced nitric oxide (NO) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, and increased glutathione (GSH) levels compared to the control after 24 h. Muscle tissue sections revealed more severe damage in the control group, indicating EGb761's potential in mitigating inflammatory responses and oxidative stress during ischemia-reperfusion injury, effectively protecting against muscle damage.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Ginkgo biloba , Hindlimb , Muscle, Skeletal , Plant Extracts , Reperfusion Injury , Animals , Ginkgo biloba/chemistry , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Plant Extracts/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Mice , Hindlimb/blood supply , Male , Rats , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Interleukin-6/metabolism , Rats, Sprague-Dawley , Ginkgo Extract
SELECTION OF CITATIONS
SEARCH DETAIL
...