Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Cytogenet Genome Res ; 164(1): 60-68, 2024.
Article in English | MEDLINE | ID: mdl-38744250

ABSTRACT

INTRODUCTION: Currently, there are 38 valid species of freshwater stingrays, and these belong to the subfamily Potamotrygoninae. However, cytogenetic information about this group is limited, with studies mainly using classical techniques, Giemsa, and C-banding. METHODS: In this study, we used classical and molecular cytogenetic techniques - mapping of 18S and 5S rDNA and simple sequence repeats (SSRs) - in order to investigate the karyotypic composition of Potamotrygon schroederi and reveal the karyoevolutionary trends of this group. RESULTS: The species presented 2n = 66 chromosomes with 18m + 12sm + 16st + 20a, heterochromatic blocks distributed in the centromeric regions of all the chromosomes, and terminal blocks in the q arm of pairs 2 and 3. Mapping of 18S rDNA regions revealed multiple clusters on pairs 2 and 7 and a homolog of pair 24. The 5S rDNA region was found in the pericentromeric portion of the subtelocentric pair 16. Furthermore, dinucleotide SSRs sequences were found in the centromeric and terminal regions of different chromosomal pairs, with preferential accumulation in pair 17. In addition, we identified conspicuous blocks of (GATA)n and (GACA)n sequences colocalized with the 5S rDNA (pair 16). CONCLUSION: In general, this study corroborates the general trend of a reduction in 2n in the species of Potamotrygoninae subfamily. Moreover, we found that the location of rDNA regions is very similar among Potamotrygon species, and the SSRs accumulation in the second subtelocentric pair (17) seems to be a common trait in this genus.


Subject(s)
Karyotype , Animals , RNA, Ribosomal, 5S/genetics , Microsatellite Repeats/genetics , RNA, Ribosomal, 18S/genetics , Repetitive Sequences, Nucleic Acid/genetics , DNA, Ribosomal/genetics , Centromere/genetics , Karyotyping , In Situ Hybridization, Fluorescence , Chromosome Mapping , Chromosome Banding
2.
BMC Ecol Evol ; 24(1): 72, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816840

ABSTRACT

Ctenoluciidae is a Neotropical freshwater fish family composed of two genera, Ctenolucius (C. beani and C. hujeta) and Boulengerella (B. cuvieri, B. lateristriga, B. lucius, B. maculata, and B. xyrekes), which present diploid number conservation of 36 chromosomes and a strong association of telomeric sequences with ribosomal DNAs. In the present study, we performed chromosomal mapping of microsatellites and transposable elements (TEs) in Boulengerella species and Ctenolucius hujeta. We aim to understand how those sequences are distributed in these organisms' genomes and their influence on the chromosomal evolution of the group. Our results indicate that repetitive sequences may had an active role in the karyotypic diversification of this family, especially in the formation of chromosomal hotspots that are traceable in the diversification processes of Ctenoluciidae karyotypes. We demonstrate that (GATA)n sequences also accumulate in the secondary constriction formed by the 18 S rDNA site, which shows consistent size heteromorphism between males and females in all Boulengerella species, suggesting an initial process of sex chromosome differentiation.


Subject(s)
Characiformes , Chromosome Mapping , Repetitive Sequences, Nucleic Acid , Retroelements , Animals , Characiformes/genetics , Male , Female , Retroelements/genetics , Repetitive Sequences, Nucleic Acid/genetics , Evolution, Molecular , Microsatellite Repeats/genetics , Karyotype , Chromosomes/genetics
3.
Cytogenet Genome Res ; 164(1): 52-59, 2024.
Article in English | MEDLINE | ID: mdl-38631304

ABSTRACT

INTRODUCTION: Eukaryotic genomes are composed of simple, repetitive sequences, including satellite DNAs (satDNA), which are noncoding sequences arranged in tandem arrays. These sequences play a crucial role in genomic functions and innovations, influencing processes such as the maintenance of nuclear material, the formation of heterochromatin and the differentiation of sex chromosomes. In this genomic era, advances in next-generation sequencing and bioinformatics tools have facilitated the exhaustive cataloging of repetitive elements in genomes, particularly in non-model species. This study focuses on the satDNA content of Ancistrus sp., a diverse species of fish from the Loricariidae family. The genus Ancistrus shows significant karyotypic evolution, with extensive variability from the ancestral diploid number. METHODS: By means of bioinformatic approaches, 40 satDNA families in Ancistrus sp., constituting 5.19% of the genome were identified. Analysis of the abundance and divergence landscape revealed diverse profiles, indicating recent amplification and homogenization of these satDNA sequences. RESULTS: The most abundant satellite, AnSat1-142, constitutes 2.1% of the genome, while the least abundant, AnSat40-52, represents 0.0034%. The length of the monomer repeat varies from 16 to 142 base pairs, with an average length of 61 bp. These results contribute to understanding the genomic dynamics and evolution of satDNAs in Ancistrus sp. CONCLUSION: The study underscores the variability of satDNAs between fish species and provides valuable information on chromosome organization and the evolution of repetitive elements in non-model organisms.


Subject(s)
Catfishes , Computational Biology , DNA, Satellite , Genomics , DNA, Satellite/genetics , Animals , Catfishes/genetics , Catfishes/classification , Computational Biology/methods , Genomics/methods , Evolution, Molecular , Genome/genetics , Repetitive Sequences, Nucleic Acid/genetics , Male , Female , Phylogeny , In Situ Hybridization, Fluorescence
4.
Cytogenet Genome Res ; 164(1): 43-51, 2024.
Article in English | MEDLINE | ID: mdl-38547850

ABSTRACT

INTRODUCTION: Passeriformes has the greatest species diversity among Neoaves, and the Tyrannidae is the richest in this order with about 600 valid species. The diploid number of this family remains constant, ranging from 2n = 76 to 84, but the chromosomal morphology varies, indicating the occurrence of different chromosomal rearrangements. Cytogenetic studies of the Tyrannidae remain limited, with approximately 20 species having been karyotyped thus far. This study aimed to describe the karyotypes of two species from this family, Myiopagis viridicata and Sirystes sibilator. METHODS: Skin biopsies were taken from each individual to establish fibroblast cell cultures and to obtain chromosomal preparations using the standard methodology. The chromosomal distribution of constitutive heterochromatin was investigated by C-banding, while the location of simple repetitive sequences (SSRs), 18S rDNA, and telomeric sequences was found through fluorescence in situ hybridization. RESULTS: The karyotypes of both species are composed of 2n = 80. The 18S rDNA probes hybridized into two pairs of microchromosomes in M. viridicata, but only a single pair in S. sibilator. Only the telomeric portions of each chromosome in both species were hybridized by the telomere sequence probes. Most of the SSRs were found accumulated in the centromeric and telomeric regions of several macro- and microchromosomes in both species, which likely correspond to the heterochromatin-rich regions. CONCLUSION: Although both species analyzed showed a conserved karyotype organization (2n = 80), our study revealed significant differences in their chromosomal architecture, rDNA distribution, and SSR accumulation. These findings were discussed in the context of the evolution of Tyrannidae karyotypes.


Subject(s)
Chromosome Banding , Genetic Variation , Heterochromatin , In Situ Hybridization, Fluorescence , Karyotype , Telomere , Animals , Telomere/genetics , Heterochromatin/genetics , Passeriformes/genetics , Karyotyping , Male , RNA, Ribosomal, 18S/genetics , Cytogenetic Analysis , Repetitive Sequences, Nucleic Acid/genetics , Female , DNA, Ribosomal/genetics , Cytogenetics/methods
5.
Plant J ; 118(6): 1832-1847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461471

ABSTRACT

Juncus is the largest genus of Juncaceae and was considered holocentric for a long time. Recent findings, however, indicated that 11 species from different clades of the genus have monocentric chromosomes. Thus, the Juncus centromere organization and evolution need to be reassessed. We aimed to investigate the major repetitive DNA sequences of two accessions of Juncus effusus and its centromeric structure by employing whole-genome analyses, fluorescent in situ hybridization, CENH3 immunodetection, and chromatin immunoprecipitation sequencing. We showed that the repetitive fraction of the small J. effusus genome (~270 Mbp/1C) is mainly composed of Class I and Class II transposable elements (TEs) and satellite DNAs. Three identified satellite DNA families were mainly (peri)centromeric, with two being associated with the centromeric protein CENH3, but not strictly centromeric. Two types of centromere organization were discerned in J. effusus: type 1 was characterized by a single CENH3 domain enriched with JefSAT1-155 or JefSAT2-180, whereas type 2 showed multiple CENH3 domains interrupted by other satellites, TEs or genes. Furthermore, while type 1 centromeres showed a higher degree of satellite identity along the array, type 2 centromeres had less homogenized arrays along the multiple CENH3 domains per chromosome. Although the analyses confirmed the monocentric organization of J. effusus chromosomes, our data indicate a more dynamic arrangement of J. effusus centromeres than observed for other plant species, suggesting it may constitute a transient state between mono- and holocentricity.


Subject(s)
Centromere , Chromosomes, Plant , DNA, Satellite , In Situ Hybridization, Fluorescence , Centromere/genetics , Chromosomes, Plant/genetics , DNA, Satellite/genetics , Genome, Plant/genetics , DNA Transposable Elements/genetics , DNA, Plant/genetics , Repetitive Sequences, Nucleic Acid/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Mol Genet Genomics ; 298(5): 1023-1035, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37233800

ABSTRACT

Repetitive DNA are sequences repeated hundreds or thousands of times and an abundant part of eukaryotic genomes. SatDNA represents the majority of the repetitive sequences, followed by transposable elements. The species Holochilus nanus (HNA) belongs to the rodent tribe Oryzomyini, the most taxonomically diverse of Sigmodontinae subfamily. Cytogenetic studies on Oryzomyini reflect such diversity by revealing an exceptional range of karyotype variability. However, little is known about the repetitive DNA content and its involvement in chromosomal diversification of these species. In the search for a more detailed understanding about the composition of repetitive DNA on the genome of HNA and other species of Oryzomyini, we employed a combination of bioinformatic, cytogenetic and molecular techniques to characterize the repetitive DNA content of these species. RepeatExplorer analysis showed that almost half of repetitive content of HNA genome are composed by Long Terminal Repeats and a less significant portion are composed by Short Interspersed Nuclear Elements and Long Interspersed Nuclear Elements. RepeatMasker showed that more than 30% of HNA genome are composed by repetitive sequences, with two main waves of repetitive element insertion. It was also possible to identify a satellite DNA sequence present in the centromeric region of Oryzomyini species, and a repetitive sequence enriched on the long arm of HNA X chromosome. Also, comparative analysis between HNA genome with and without B chromosome did not evidence any repeat element enriched on the supernumerary, suggesting that B chromosome of HNA is composed by a fraction of repeats from all the genome.


Subject(s)
Arvicolinae , Sigmodontinae , Animals , Rats , Sigmodontinae/genetics , Arvicolinae/genetics , Wetlands , Repetitive Sequences, Nucleic Acid/genetics , Karyotype , DNA, Satellite/genetics , DNA Transposable Elements/genetics
7.
Cytogenet Genome Res ; 163(5-6): 317-326, 2023.
Article in English | MEDLINE | ID: mdl-38368863

ABSTRACT

INTRODUCTION: The tribes Cophomantini, Scinaxini, and Dendropsophini are anurans that belong to Hylidae, with wide distribution in tropical and subtropical regions around the world. The taxonomy and systematics of this family remain in a state of ongoing revision. Previous cytogenetic analyses of genera Boana, Bokermannohyla, Ololygon, Scinax, and Dendropsophus described some karyotypic characters such as conventional staining, C-banding and NORs, and FISH with specific probes. METHODS: This study describes for the first time the karyotypes of four species: Bokermannohyla ibitipoca, Ololygon luizotavioi, Dendropsophus bipunctatus, and Dendropsophus ruschii. Furthermore, we map CA(15) and CAT(10) microsatellite sites for the aforementioned species and six more species from the same genera for insight into the chromosomal evolution within the subfamily Hyalinae. RESULTS: B. ibitipoca and O. luizotavioi had 2n = 24 and karyotypic formulas 18m + 4sm + 2st and 8m + 12sm + 4st, while D. bipunctatus and D. ruschii showed 2n = 30 and karyotypic formulas 12m + 12sm + 4st + 2t and 10m + 10sm + 6st + 4t, respectively. The diploid numbers and karyotypic formulas revealed here follow the previously reported trend for Hylidae, except B. ibitipoca has a particularity of eight metacentric chromosomes, more than what is commonly found in species of this genus. The microsatellites probes CA(15) and CAT(10) had markings accumulated in blocks in the centromeric, pericentromeric, and terminal regions that were more specific for some species, as well as markings scattered along the chromosomes. We present a comprehensive review table of current data on cytogenetics of these genera. CONCLUSION: Our findings showed that the karyotypes of the hylids studied here majority fit the postulated conserved diploid number (2n = 24) and morphological chromosome patterns, while the mapping of the microsatellites enabled us to detect differences between species that share similar chromosomal morphologies.


Subject(s)
Anura , Karyotype , Microsatellite Repeats , Animals , Anura/genetics , Anura/classification , Microsatellite Repeats/genetics , Repetitive Sequences, Nucleic Acid/genetics , Chromosome Mapping , Male , Forests , Female , Karyotyping , Genome/genetics , Chromosome Banding , Species Specificity , In Situ Hybridization, Fluorescence
8.
Mol Genet Genomics ; 296(3): 513-526, 2021 May.
Article in English | MEDLINE | ID: mdl-33625598

ABSTRACT

Repetitive DNAs comprise large portion of eukaryote genomes. In genome projects, the assembly of repetitive DNAs is challenging due to the similarity between repeats, which generate ambiguities for alignment. Fluorescence in situ hybridization (FISH) is a powerful technique for the physical mapping of various sequences on chromosomes. This technique is thus very helpful in chromosome-based genome assemblies, providing information on the fine architecture of genomes and their evolution. However, various protocols are currently used for FISH mapping, most of which are relatively laborious and expensive, or work properly only with a specific type of probes or sequences, and there is a need for a universal and affordable FISH protocol. Here we tested a FISH protocol for mapping of different DNA repeats, such as multigene families (rDNAs, U snDNAs, histone genes), satellite DNAs, microsatellites, transposable elements, DOP-PCR products, and telomeric motif (TTAGG)n, on the chromosomes of various insects and other arthropods. Different cell types and stages obtained from diverse tissues were used. The FISH procedure proved high quality and reliable results in all experiments performed. We obtained data on the chromosomal distribution of DNA repeats in representatives of insects and other arthropods. Thus, our results allow us to conclude that the protocol is universal and requires only time adjustment for chromosome/DNA denaturation. The use of this FISH protocol will facilitate studies focused on understanding the evolution and role of repetitive DNA in arthropod genomes.


Subject(s)
Arthropods/genetics , Chromosome Mapping/methods , DNA/genetics , In Situ Hybridization, Fluorescence/methods , Insecta/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Evolution, Molecular , Fluorescence , Multigene Family/genetics , Telomere/genetics
9.
Genetica ; 149(1): 55-62, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33449238

ABSTRACT

The eukaryote genome is enriched by different types of repetitive DNA sequences and is most abundant in heterochromatin regions. Historically, no function has been assigned to these sequences, which makes them the target of studies that have demonstrated their structural and functional importance in the genome. Despite having a constant chromosome number, the genus Melipona has species with wide variation in heterochromatin content, from 8 to 73%, which is an important feature to be investigated regarding its origin and evolution. In the present study, a repetitive DNA sequence of Melipona mondury was isolated by restriction enzyme digestion. This sequence was used to hybridize chromosomes of eight Melipona species that include representatives of the four subgenera and present divergent characteristics in relation to the heterochromatin content. Considering that rDNA localization has shown differences in Melipona, 16 species of this genus were analyzed with 18S rDNA probe. Our data suggest that heterochromatin growth occurred independently in the Michmelia and Melikerria subgenera, considering that the isolated repetitive DNA sequence was shared only by the Michmelia species. Amplification possibly occurred from the centromeric region, causing the displacement of the rDNA sites to the ends of the chromosomes. The repetitive DNA sequence used is a constituent of Michmelia heterochromatin, which that arose from the common ancestor of the species of this subgenus.


Subject(s)
Cytogenetic Analysis , Evolution, Molecular , Hymenoptera/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Chromosomes/genetics , DNA, Ribosomal/genetics , Genome/genetics , Heterochromatin/genetics , Hymenoptera/classification , Hymenoptera/ultrastructure , Phylogeny
10.
Sci Rep ; 10(1): 8866, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483238

ABSTRACT

LTR-retrotransposons, knobs and structural chromosome alterations contribute to shape the structure and organization of the Zea mays karyotype. Our initial nuclear DNA content data of Z. mays accessions revealed an intraspecific variation (2 C = 2.00 pg to 2 C = 6.10 pg), suggesting differences in their karyotypes. We aimed to compare the karyotypes of three Z. mays accessions in search of the differences and similarities among them. Karyotype divergences were demonstrated among the accessions, despite their common chromosome number (2n = 20) and ancestral origin. Cytogenomic analyses showed that repetitive sequences and structural chromosome alterations play a significant role in promoting intraspecific nuclear DNA content variation. In addition, heterozygous terminal deletion in chromosome 3 was pointed out as a cause of lower nuclear 2 C value. Besides this, translocation was also observed in the short arm of chromosome 1. Differently, higher 2 C value was associated with the more abundant distribution of LTR-retrotransposons from the family Grande in the karyotype. Moreover, heteromorphism involving the number and position of the 180-bp knob sequence was found among the accessions. Taken together, we provide insights on the pivotal role played by repetitive sequences and structural chromosome alterations in shaping the karyotype of Z. mays.


Subject(s)
Chromosome Aberrations , Repetitive Sequences, Nucleic Acid/genetics , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Heterozygote , Karyotyping , Metaphase , Seeds/genetics
11.
PLoS One ; 15(3): e0230390, 2020.
Article in English | MEDLINE | ID: mdl-32176736

ABSTRACT

The aim of the study was to detect and genetically characterize Arcobacter butzleri in pet red-footed tortoises suspected for Campylobacter spp., using molecular techniques. A written consent from tortoise owners was obtained, after explaining the advantages of the research to tortoise owners of Grenada. Fecal samples were collected from 114 tortoises from five parishes of the country and cultured for Campylobacter spp. using selective culture techniques. A. butzleri was isolated from 4.39% of pet tortoises. Total thirteen isolates were obtained; all identified as A. butzleri by a universal and a species-specific Polymerase Chain Reaction (PCR) and direct sequencing. Genetic characterization of these isolates was performed based on Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) that generated eight different genetic fingerprints with a discriminatory power of 0.91. Campylobacter species were not detected molecularly in any of the culture-positive samples. This is the first report of infection of pet tortoises in Grenada, West Indies with A. butzleri. This study emphasizes on the risk of zoonotic transmission of A. butzleri by exotic pets, which is a serious concern for public health.


Subject(s)
Arcobacter/genetics , Campylobacter/genetics , Repetitive Sequences, Nucleic Acid/genetics , Turtles/microbiology , Animals , Campylobacter/isolation & purification , DNA Fingerprinting/methods , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Feces/microbiology , Turtles/genetics
12.
Gene ; 738: 144477, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32061764

ABSTRACT

The wide variation found in the size of eukaryotic genomes is largely related to the accumulation of repetitive sequences. Studies show that these sequences can go through an evolutionary process (molecular co-optation) and acquire new genomic functions. Cytogenetic studies reveal a wide karyotypic variation between chelonians (order Testudines) (2n = 26-68), attributed mainly to the number of microchromosomes. The study of repetitive DNAs has the potential to provide data on the dynamics of these sequences, and how they influence the organization of the genome. Here, we reveal the first in situ mapping data of 45S rDNA, histone H3 genes, and telomeric sequences, for a species of the genus Rhinoclemmys, R. punctularia. The karyotype described here for R. punctularia is different from previous reports for the diploid complement of this species, with differences probably attributable to centric fissions and pericentric inversions or centromere repositioning. The 45S rDNA are on a single chromosome pair (like in other turtles), telomeric sequences are in terminal position on all the chromosomes, and histone H3 is dispersed in low copy number, with clusters in pericentromeric regions of three chromosome pairs. We report on the presence of a Gypsy retrotransposon insert located within H3 histone of R. punctularia, and the H3 region sequenced contained the open reading frame of the histone sequence. Comparative modeling revealed a functional pattern for the protein, thus suggesting that the Gypsy element might have been recruited for new functions in the genome of this species.


Subject(s)
Repetitive Sequences, Nucleic Acid/genetics , Retroelements/genetics , Turtles/genetics , Animals , Chromosome Mapping , Cytogenetics/methods , DNA, Ribosomal/genetics , Diploidy , Evolution, Molecular , Female , Histones/genetics , In Situ Hybridization, Fluorescence , Karyotype , Karyotyping/methods , Male , RNA, Ribosomal/genetics , Telomere/genetics
13.
Genetica ; 148(1): 25-32, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31997050

ABSTRACT

Cytogenetic data showed a variation in diploid chromosome number in the genus Hyphessobrycon ranging from 2n = 46 to 52, and studies involving repetitive DNA sequences are scarce in representatives of this genus. The purpose of this paper was the chromosomal mapping of repetitive sequences (rDNA, histone genes, U snDNA and microsatellites) and investigation of the amplification of 5S rDNA clusters in the Hyphessobrycon eques genome. Two H. eques populations displayed 2n = 52 chromosomes, with the acrocentric pair No. 24 bearing Ag-NORs corresponding with CMA3+/DAPI-. FISH with a 18S rDNA probe identified the NORs on the short (p) arms of the acrocentric pairs Nos. 22 and 24. The 5S rDNA probe visualized signals on almost all chromosomes in genomes of individuals from both populations (40 signals); FISH with H3 histone probe identified two chromosome pairs, with the pericentromeric location of signals; FISH with a U2 snDNA probe identified one chromosome pair bearing signals, on the interstitial chromosomal region. The mononucleotide (A), dinucleotide (CA) and tetranucleotide (GATA) repeats were observed on the centromeric/pericentromeric and/or terminal positions of all chromosomes, while the trinucleotide (CAG) repeat showed signals on few chromosomes. Molecular analysis of 5S rDNA and non-transcribed spacers (NTS) showed microsatellites (GATA and A repeats) and a fragment of retrotransposon (SINE3/5S-Sauria) inside the sequences. This study expanded the available cytogenetic data for H. eques and demonstrated to the dispersion of the 5S rDNA sequences on almost all chromosomes.


Subject(s)
Characidae/genetics , RNA, Ribosomal, 5S/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Characiformes/genetics , Chromosome Mapping/methods , Chromosomes , DNA, Ribosomal/genetics , Diploidy , Female , Genome/genetics , In Situ Hybridization, Fluorescence/methods , Karyotyping , Male , Microsatellite Repeats , RNA, Ribosomal, 18S/genetics , Species Specificity
14.
Appl Microbiol Biotechnol ; 104(5): 1891-1904, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31932894

ABSTRACT

The genus Colletotrichum comprises species with different lifestyles but is mainly known for phytopathogenic species that infect crops of agronomic relevance causing considerable losses. The fungi of the genus Colletotrichum are distributed in species complexes and within each complex some species have particularities regarding their lifestyle. The most commonly found and described lifestyles in Colletotrichum are endophytic and hemibiotrophic phytopathogenic. Several of these phytopathogenic species show wide genetic variability, which makes long-term maintenance of resistance in plants difficult. Different mechanisms may play an important role in the emergence of genetic variants but are not yet fully understood in this genus. These mechanisms include heterokaryosis, a parasexual cycle, sexual cycle, transposable element activity, and repeat-induced point mutations. This review provides an overview of the genus Colletotrichum, the species complexes described so far and the most common lifestyles in the genus, with a special emphasis on the mechanisms that may be responsible, at least in part, for the emergence of new genotypes under field conditions.


Subject(s)
Colletotrichum/growth & development , Colletotrichum/genetics , Genetic Variation/genetics , Plant Diseases/microbiology , DNA Transposable Elements/genetics , Endophytes , Genome, Fungal/genetics , Host Specificity , Repetitive Sequences, Nucleic Acid/genetics , Species Specificity
15.
PLoS One ; 15(1): e0227275, 2020.
Article in English | MEDLINE | ID: mdl-31923209

ABSTRACT

The aim of this work was to determine current cagA gene EPIYA motifs present in Colombian Helicobacter pylori isolates using a fast and reliable molecular test. DNA from eighty-five Helicobacter pylori-cagA positive strains were analyzed. Strains were obtained from patients diagnosed with functional dyspepsia at Clínica Fundadores in Bogotá. The 3' region of the cagA gene was amplified through conventional Polymerase Chain Reaction (PCR). Obtained amplicons were sequenced using the Sanger method and analyzed with bioinformatics tools. Additionally, a significant Spearman correlation coefficient was determined between the patients' age and the number of EPIYA-C repeats; with p values < 0.05 considered significant. Estimates were obtained using a 95% CI. The 3´ variable region of the cagA gene was amplified and PCR products of the following sizes corresponded to the following EPIYA motifs: 400 bp: EPIYA AB, 500 bp: EPIYA ABC, 600 bp: EPIYA ABCC and 700 bp: ABCCC. A single PCR band was observed for 58 out of 85 Helicobacter pylori isolates, with an EPIYA distribution motif as follows: 7/85 AB (8.2%), 34/85 ABC (40%), 26/85 ABCC (30.6%) and 18/85 ABCCC (21.2%). However, in 27 out of 85 Helicobacter pylori isolates, two or more bands were observed, where the most predominant cagA genotype were ABC-ABCC (26%, 7/27) and ABCC-ABCCC (22.2%, 6/27). A direct proportionality between the number of EPIYA-C repeats and an increase in the patients' age was observed, finding a greater number of EPIYA ABCC and ABCCC repeats in the population over 50 years old. All isolates were of the Western cagA type and 51.8% of them were found to have multiple EPIYA-C repeats. These standardized molecular test allowed to identify the number of EPIYA C motifs based on band size.


Subject(s)
Amino Acid Motifs/genetics , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Diagnostic Tests, Routine/standards , Genes, Bacterial/genetics , Helicobacter Infections/diagnosis , Helicobacter Infections/epidemiology , Helicobacter pylori/genetics , Adult , Aged , Colombia/epidemiology , DNA, Bacterial/genetics , Dyspepsia/microbiology , Female , Genotype , Helicobacter Infections/microbiology , Humans , Male , Middle Aged , Polymerase Chain Reaction/standards , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA/standards
16.
Mol Genet Genomics ; 295(1): 195-207, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31624915

ABSTRACT

The origin of supernumerary (B) chromosomes is clearly conditioned by their ancestry from the standard (A) chromosomes. Sequence similarity between A and B chromosomes is thus crucial to determine B chromosome origin. For this purpose, we compare here the DNA sequences from A and B chromosomes in the characid fish Characidium gomesi using two main approaches. First, we found 59 satellite DNA (satDNA) families constituting the satellitome of this species and performed FISH analysis for 18 of them. This showed the presence of six satDNAs on the B chromosome: one shared with sex chromosomes and autosomes, two shared with sex chromosomes, one shared with autosomes and two being B-specific. This indicated that B chromosomes most likely arose from the sex chromosomes. Our second approach consisted of the analysis of five repetitive DNA families: 18S and 5S ribosomal DNA (rDNA), the H3 histone gene, U2 snDNA and the most abundant satDNA (CgoSat01-184) on DNA obtained from microdissected B chromosomes and from B-lacking genomes. PCR and sequence analysis of these repetitive sequences was successful for three of them (5S rDNA, H3 histone gene and CgoSat01-184), and sequence comparison revealed that DNA sequences obtained from the B chromosomes displayed higher identity with C. gomesi genomic DNA than with those obtained from other Characidium species. Taken together, our results support the intraspecific origin of B chromosomes in C. gomesi and point to sex chromosomes as B chromosome ancestors, which raises interesting prospects for future joint research on the genetic content of sex and B chromosomes in this species.


Subject(s)
Characidae/genetics , Characiformes/genetics , DNA, Satellite/genetics , Sex Chromosomes/genetics , Animals , Chromosome Mapping/methods , DNA, Ribosomal/genetics , Evolution, Molecular , Histones/genetics , Karyotype , Repetitive Sequences, Nucleic Acid/genetics
17.
Int J Mol Sci ; 20(17)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438504

ABSTRACT

Neotropical cichlid fishes are one of the most diversified and evolutionarily successful species assemblages. Extremely similar forms and intraspecific polychromatism present challenges for the taxonomy of some of these groups. Several species complexes have a largely unknown origin and unresolved evolutionary processes. Dwarf cichlids of the genus Apistogramma, comprising more than a hundred species, exhibit intricate taxonomic and biogeographic patterns, with both allopatric and sympatric distributions. However, karyotype evolution and the role of chromosomal changes in Apistogramma are still unknown. In the present study, nine South American Apistogramma species were analyzed using conventional cytogenetic methods and the mapping of repetitive DNA sequences [18S rDNA, 5S rDNA, and (TTAGGG)n] by fluorescence in situ hybridization (FISH). Our results showed that Apistogramma has unique cytogenetic characteristics in relation to closely related groups, such as a reduced 2n and a large number of bi-armed chromosomes. Interspecific patterns revealed a scenario of remarkable karyotypic changes, including a reduction of 2n, the occurrence of B-chromosomes and evolutionary dynamic of rDNA tandem repeats. In addition to the well-known pre-zygotic reproductive isolation, the karyotype reorganization in the genus suggests that chromosomal changes could act as postzygotic barriers in areas where Apistogramma congeners overlap.


Subject(s)
Repetitive Sequences, Nucleic Acid/genetics , Animals , Cichlids , DNA, Ribosomal/genetics , Evolution, Molecular , Karyotype
18.
Zebrafish ; 16(4): 415-420, 2019 08.
Article in English | MEDLINE | ID: mdl-31188085

ABSTRACT

The family Centropomidae includes a number of fish species of high commercial value. One of these species, Centropomus undecimalis, is a target of artisanal, industrial, and sports fisheries and has also considerable potential for captive breeding, which has led to its inclusion in several aquaculture programs. While the biology and ecology of C. undecimalis are relatively well documented, few karyological data are available on this species, and they are still scarce for other centropomids. The few chromosomal data available on this family indicate a conserved karyotype 2n = 48, but it is unclear whether the chromosome microstructure is also conserved. In this study, new cytogenetic data are presented on C. undecimalis from the Amazon coastal zone, including C-banding, Ag-NOR, in situ hybridization with repetitive DNA probes (5S and 18S ribosomal genes), and telomeric (TTAGGG)n sequences. The diploid number of the species was 2n = 48, with heterochromatic blocks in the centromeric and pericentromeric regions, as well as distal signals; the nucleolus organizer regions (NORs) were associated with the heterochromatic region. The 18S and 5S recombinant DNA (rDNA) clusters were located in the distal region of chromosome pairs 1 and 11, respectively. The similarities of the karyotype macrostructure found among the centropomid species reinforce their exceptional chromosomal stability. However, the presence of heterochromatic blocks and location of NORs suggest the occurrence of structural rearrangements, which indicates that evolutionary dynamics at the microstructural level in this group may be relatively complex and should be evaluated carefully in any study that targets the production of hybrids for aquaculture.


Subject(s)
Genome/genetics , Perciformes/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Aquaculture , Hybridization, Genetic
19.
Infect Genet Evol ; 73: 460-469, 2019 09.
Article in English | MEDLINE | ID: mdl-31102740

ABSTRACT

To gain insight into the origin, evolution, dissemination and viral factors affecting HTLV-1-associated diseases, knowing the complete viral genome sequences is important. So far, no full-length HTLV-1 genome sequence has been reported from Iran. Here we report the complete nucleotide sequence of HTLV-1 viruses isolated from adult T cell leukemia/lymphoma (ATLL) patients from this region. The genome size of HTLV-1-MhD (Mashhad) was found to be 9036 bp and sequence analysis of the LTR region showed that it belongs to cosmopolitan subtype A. Comparing the sequences with isolates from another endemic area (HTLV-1ATK) revealed variations in the U3 region (~3.4%), while there was 99.1% and 97.0% similarity in R and U5 regions, respectively. The nucleotide sequences of HTLV-1 gag, pro and pol genes had a difference of 1.1% compared with HTLV-1 ATK with 16 nucleotides replaced in the gag and 27 in the pol regions. There was no variability in the amino acid sequences in the p24gag, however three residues were different in the p19gag and one in the p15gag. The nucleotide sequence of env showed a divergence of 1.5% compared to ATK with 22-nucleotide variation. The HTLV-1-MhD Tax, p13, p30, and p12 had 99.1, 100, 98.8, and 98%, respectively similarity with the prototype strain. Four amino acid changes were detected in ORF1 and ORF2 products p12 and p30, respectively, while the p13 region showed 100% conservation. The nucleotide identity between the isolates of Mashhad and those isolated from France, Germany, China, Canada and Brazil was 99.1%, 99.2%, 97.9%, 99% and 99.3%, respectively. Four amino acid changes compared with HTLV-1ATK from Japan were detected in ORF1 and ORF2 products p12 and p30, respectively, while the p13 region showed 100% conservation. This data could provide information regarding the evolutionary history, phylogeny, origin of the virus and vaccine design.


Subject(s)
Human T-lymphotropic virus 1/genetics , Leukemia-Lymphoma, Adult T-Cell/virology , Open Reading Frames/genetics , Peptide Hydrolases/genetics , Transcription Factors/genetics , Viral Regulatory and Accessory Proteins/genetics , Amino Acid Sequence , Base Sequence , Brazil , Canada , China , DNA, Viral/genetics , Female , France , Genes, Viral/genetics , Germany , Humans , Iran , Japan , Male , Middle Aged , Repetitive Sequences, Nucleic Acid/genetics
20.
Environ Pollut ; 252(Pt A): 180-187, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31146233

ABSTRACT

Pollution is a growing environmental problem throughout the world, and the impact of human activities on biodiversity and the genetic variability of natural populations is increasingly preoccupying, given that adaptive processes depend on this variability, in particular that found in the repetitive DNA. In the present study, the mitochondrial DNA (COI) and the distribution of repetitive DNA sequences (18S and 5S rDNA) in the fish genome were analysed in fish populations inhabiting both polluted and unpolluted waters in the northern Amazon basin. The results indicate highly complex ribosomal sequences in the fish genome from the polluted environment because these sequences are involved primarily in the maintenance of genome integrity, mediated by a systematic increase in the number of copies of the ribosomal DNA in response to changes in environmental conditions.


Subject(s)
DNA, Mitochondrial/genetics , Fishes/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 5S/genetics , Repetitive Sequences, Nucleic Acid/genetics , Water Pollution/adverse effects , Animals , Brazil , DNA, Ribosomal , Genome/genetics , Rivers/chemistry , Seafood
SELECTION OF CITATIONS
SEARCH DETAIL