Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54.174
Filter
2.
Nat Commun ; 15(1): 4632, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951500

ABSTRACT

ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-ß in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.


Subject(s)
Heart Defects, Congenital , Heart , Mice, Knockout , Neural Crest , Repressor Proteins , Animals , Neural Crest/metabolism , Neural Crest/embryology , Mice , Heart/embryology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Gene Expression Regulation, Developmental , Chromatin/metabolism , Signal Transduction , Myocardium/metabolism , Female
3.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968120

ABSTRACT

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Subject(s)
Dyrk Kinases , Hedgehog Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Signal Transduction , Zinc Finger Protein Gli2 , Zinc Finger Protein Gli3 , Animals , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Mice , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cell Proliferation , Cilia/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Nuclear Proteins , Repressor Proteins
4.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38955468

ABSTRACT

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Subject(s)
Cytosol , Mitochondria , Prohibitins , RNA, Double-Stranded , RNA, Mitochondrial , Humans , Cytosol/metabolism , Mitochondria/metabolism , RNA, Double-Stranded/metabolism , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Cell Line, Tumor , Repressor Proteins/metabolism , Repressor Proteins/genetics , RNA Transport , Exoribonucleases/metabolism , Exoribonucleases/genetics , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Mitochondrial Proteins
5.
Nat Commun ; 15(1): 5550, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956014

ABSTRACT

Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.


Subject(s)
Oocytes , Polyadenylation , Oocytes/metabolism , Animals , Humans , Female , Mice , Poly A/metabolism , In Vitro Oocyte Maturation Techniques , RNA, Messenger/metabolism , RNA, Messenger/genetics , Transcriptome , RNA, Messenger, Stored/metabolism , RNA, Messenger, Stored/genetics , Metaphase , Exoribonucleases , Repressor Proteins , Cell Cycle Proteins
6.
FASEB J ; 38(13): e23794, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967258

ABSTRACT

Obesity is often associated with low-grade inflammation. The incidence of obesity has increased annually worldwide, which seriously affects human health. A previous study indicated that long noncoding RNA SNHG12 was downregulated in obesity. Nevertheless, the role of SNHG12 in obesity remains to be elucidated. In this study, qRT-PCR, western blot, and ELISA were utilized to examine the gene and protein expression. Flow cytometry was employed to investigate the M2 macrophage markers. RNA pull-down assay and RIP were utilized to confirm the interactions of SNHG12, hnRNPA1, and HDAC9. Eventually, a high-fat diet-fed mouse model was established for in vivo studies. SNHG12 overexpression suppressed adipocyte inflammation and insulin resistance and promoted M2 polarization of macrophages that was caused by TNF-α treatment. SNHG12 interacted with hnRNPA1 to downregulate HDAC9 expression, which activated the Nrf2 signaling pathway. HDAC9 overexpression reversed the effect of SNHG12 overexpression on inflammatory response, insulin resistance, and M2 phenotype polarization. Overexpression of SNHG12 improved high-fat diet-fed mouse tissue inflammation. This study revealed the protective effect of SNHG12 against adipocyte inflammation and insulin resistance. This result further provides a new therapeutic target for preventing inflammation and insulin resistance in obesity.


Subject(s)
Adipocytes , Diet, High-Fat , Histone Deacetylases , Inflammation , Insulin Resistance , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , RNA, Long Noncoding , Repressor Proteins , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Inflammation/metabolism , Inflammation/genetics , Adipocytes/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Diet, High-Fat/adverse effects , Male , Obesity/metabolism , Obesity/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Macrophages/metabolism
7.
Arch Dermatol Res ; 316(7): 455, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967656

ABSTRACT

Tirbanibulin 1% ointment is a synthetic antiproliferative agent approved in 2021 by the European Union for treating actinic keratoses (AK). Topical tirbanibulin has clinically resolved HPV-57 ( +) squamous cell carcinoma (SCC), HPV-16 ( +) vulvar high-grade squamous intraepithelial lesion, epidermodysplasia verruciformis, and condyloma. We examined how tirbanibulin might affect HPV oncoprotein expression and affect other cellular pathways involved in cell proliferation and transformation. We treated the HeLa cell line, containing integrated HPV-18, with increasing doses of tirbanibulin to determine the effects on cell proliferation. Immunoblotting was performed with antibodies against the Src canonical pathway, HPV 18 E6 and E7 transcription regulation, apoptosis, and invasion and metastasis pathways. Cell proliferation assays with tirbanibulin determined the half-maximal inhibitory concentration (IC50) of HeLa cells to be 31.49 nmol/L. Increasing concentrations of tirbanibulin downregulates the protein expression of Src (p < 0.001), phospho-Src (p < 0.001), Ras (p < 0.01), c-Raf (p < 0.001), ERK1 (p < 0.001), phospho-ERK1 (p < 0.001), phospho-ERK2 (p < 0.01), phospho-Mnk1 (p < 0.001), eIF4E (p < 0.01), phospho-eIF4E (p < 0.001), E6 (p < 0.01), E7 (p < 0.01), Rb (p < 0.01), phospho-Rb (p < 0.001), MDM2 (p < 0.01), E2F1 (p < 0.001), phospho-FAK (p < 0.001), phospho-p130 Cas (p < 0.001), Mcl-1 (p < 0.01), and Bcl-2 (p < 0.001), but upregulates cPARP (p < 0.001), and cPARP/fPARP (p < 0.001). These results demonstrate that tirbanibulin may impact expression of HPV oncoproteins via the Src- MEK- pathway. Tirbanibulin significantly downregulates oncogenic proteins related to cell cycle regulation and cell proliferation while upregulating apoptosis pathways.


Tirbanibulin is Promising Novel Therapy for Human Papillomavirus (HPV)-associated Diseases.Tirbanibulin 1% ointment is an approved synthetic topical ointment for treating actinic keratoses (AK), a precancer of skin cancer. Topical tirbanibulin has previously been reported to clinically resolve human papillomavirus (HPV)-( +) diseases.In this study, we examine how tirbanibulin may affect the HPV and pathways associated with cancer.We treated the HeLa cell line to determine the effects on HPV cell proliferation. Increasing the concentration of tirbanibulin statistically significantly affected numerous cellular pathways often associated with cancer.These results demonstrate that tirbanibulin may impact expression of HPV oncoproteins and thereby kill cancer cells.


Subject(s)
Cell Proliferation , Down-Regulation , Human papillomavirus 18 , Oncogene Proteins, Viral , Humans , HeLa Cells , Cell Proliferation/drug effects , Oncogene Proteins, Viral/metabolism , Down-Regulation/drug effects , Papillomavirus Infections/virology , Papillomavirus Infections/drug therapy , Papillomavirus E7 Proteins/metabolism , Apoptosis/drug effects , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction/drug effects , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , Female , Human Papillomavirus Viruses , DNA-Binding Proteins
8.
Ann Transplant ; 29: e943688, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952007

ABSTRACT

BACKGROUND The relationship between clonal hematopoiesis (CH)-associated gene mutations and allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been extensively studied since next-generation sequencing (NGS) technology became widely available. However, research has mainly focused on the relationship between donor CH mutations and transplant prognosis, and research into the relationship between CH mutations in the recipient and acute graft-versus-host disease (aGVHD) is lacking. MATERIAL AND METHODS We analyzed NGS results and their correlation with aGVHD and prognosis in 196 AML patients undergoing allo-HSCT. RESULTS A total of 93 (47.4%) patients had CH mutations. The most frequently mutated genes were DNMT3A (28 of 196; 14.3%), TET2 (22 of 196; 11.2%), IDH1 (15 of 196; 7.7%), IDH2 (14 of 196; 7.1%), and ASXL1 (13 of 196; 6.6%). The incidence of aGVHD was higher in patients older than 45 years old with DTA mutations (DNMT3A, TET2 or ASXL1). DNMT3A mutation but not with TET2 or ASXL1 mutation was an independent risk factor for aGVHD in patients receiving allo-HSCT older than 45 years old. With a median follow-up of 42.7 months, CH mutations were not associated with overall survival and leukemia-free survival. CONCLUSIONS DNMT3A mutation, but not TET2 or ASXL1 mutation, was associated with higher incidence of aGVHD.


Subject(s)
Clonal Hematopoiesis , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Mutation , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Graft vs Host Disease/genetics , Graft vs Host Disease/etiology , Middle Aged , Adult , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Clonal Hematopoiesis/genetics , Young Adult , Adolescent , DNA Methyltransferase 3A , Dioxygenases , DNA (Cytosine-5-)-Methyltransferases/genetics , Aged , Prognosis , Transplantation, Homologous , High-Throughput Nucleotide Sequencing , DNA-Binding Proteins , Repressor Proteins
9.
Oncol Res ; 32(7): 1185-1195, 2024.
Article in English | MEDLINE | ID: mdl-38948024

ABSTRACT

Background: Long non-coding RNAs are important regulators in cancer biology and function either as tumor suppressors or as oncogenes. Their dysregulation has been closely associated with tumorigenesis. LINC00265 is upregulated in lung adenocarcinoma and is a prognostic biomarker of this cancer. However, the mechanism underlying its function in cancer progression remains poorly understood. Methods: Here, the regulatory role of LINC00265 in lung adenocarcinoma was examined using lung cancer cell lines, clinical samples, and xenografts. Results: We found that high levels of LINC00265 expression were associated with shorter overall survival rate of patients, whereas knockdown of LINC00265 inhibited proliferation of cancer cell lines and tumor growth in xenografts. Western blot and flow cytometry analyses indicated that silencing of LINC00265 induced autophagy and apoptosis. Moreover, we showed that LINC00265 interacted with and stabilized the transcriptional co-repressor Switch-independent 3a (SIN3A), which is a scaffold protein functioning either as a tumor repressor or as an oncogene in a context-dependent manner. Silencing of SIN3A also reduced proliferation of lung cancer cells, which was correlated with the induction of autophagy. These observations raise the possibility that LINC00265 functions to promote the oncogenic activity of SIN3A in lung adenocarcinoma. Conclusions: Our findings thus identify SIN3A as a LINC00265-associated protein and should help to understand the mechanism underlying LINC00265-mediated oncogenesis.


Subject(s)
Apoptosis , Autophagy , Cell Proliferation , Lung Neoplasms , RNA, Long Noncoding , Sin3 Histone Deacetylase and Corepressor Complex , Humans , RNA, Long Noncoding/genetics , Autophagy/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Apoptosis/genetics , Animals , Mice , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Repressor Proteins/genetics , Repressor Proteins/metabolism , Gene Expression Regulation, Neoplastic , Protein Stability , Gene Silencing , Oncogenes , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Xenograft Model Antitumor Assays
10.
Virol J ; 21(1): 152, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970084

ABSTRACT

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS: In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS: A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION: The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.


Subject(s)
Genetic Variation , Human papillomavirus 18 , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Phylogeny , Oncogene Proteins, Viral/genetics , China , Humans , Human papillomavirus 18/genetics , Human papillomavirus 18/classification , Papillomavirus E7 Proteins/genetics , Capsid Proteins/genetics , Female , Epitopes, T-Lymphocyte/genetics , Papillomavirus Infections/virology , Repressor Proteins/genetics , Epitopes, B-Lymphocyte/genetics , DNA-Binding Proteins
11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 349-358, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970508

ABSTRACT

OBJECTIVES: Obesity related glomerulopathy (ORG) is induced by obesity, but the pathogenesis remains unclear. This study aims to investigate the expression of early growth response protein 3 (EGR3) in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice, and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid (PA) induced human podocyte inflammatory damage. METHODS: Renal cortex tissues were collected from ORG patients (n=6) who have been excluded from kidney damage caused by other diseases and confirmed by histopathology, and from obese mice induced by high-fat diet (n=10). Human and mouse podocytes were intervened with 150 µmol/L PA for 48 hours. EGR3 was overexpressed or silenced in human podocytes. Enzyme linked immunosorbent assay (ELISA) was used to detcet the levels of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). Real-time RT-PCR was used to detect the mRNA expressions of EGR3, podocytes molecular markers nephrosis 1 (NPHS1), nephrosis 2 (NPHS2), podocalyxin (PODXL), and podoplanin (PDPN). RNA-seq was performed to detect differentially expressed genes (DEGs) after human podocytes overexpressing EGR3 and treated with 150 µmol/L PA compared with the control group. Co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS) was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results. Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1 (PRMT1), after silencing EGR3 and PRMT1 inhibitor intervention, the secretion of IL-6 and IL-1ß in PA-induced podocytes was detected. Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) after overexpression or silencing of EGR3. RESULTS: EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice (both P<0.01). In addition, after treating with 150 µmol/L PA for 48 hours, the expression of EGR3 in human and mouse podocytes was significantly upregulated (both P<0.05). Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1ß in the cell culture supernatant after PA intervention, respectively, and upregulated or downregulated the expression of NPHS1, PODXL, NPHS2,and PDPN (all P<0.05). RNA-seq showed a total of 988 DEGs, and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3. Co-IP confirmed that PRMT1 was an interacting protein with EGR3. Furthermore, PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1ß secretion after EGR3 silencing in human podocytes (both P<0.05). Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. CONCLUSIONS: EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.


Subject(s)
Early Growth Response Protein 3 , Obesity , Podocytes , Protein-Arginine N-Methyltransferases , Repressor Proteins , STAT3 Transcription Factor , Podocytes/metabolism , Podocytes/pathology , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Animals , Humans , Mice , STAT3 Transcription Factor/metabolism , Obesity/complications , Obesity/metabolism , Early Growth Response Protein 3/metabolism , Early Growth Response Protein 3/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Palmitic Acid/pharmacology , Diet, High-Fat/adverse effects , Inflammation/metabolism , Mice, Obese , Male , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Interleukin-6/genetics , Kidney Cortex/metabolism , Kidney Cortex/pathology
13.
Exp Mol Pathol ; 137: 104908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824688

ABSTRACT

PURPOSE: The aim of this study was to clarify DNA methylation profiles determining the clinicopathological diversity of urothelial carcinomas. METHODS: Genome-wide DNA methylation analysis was performed using the Infinium HumanMethylation450 BeadChip in 46 paired samples of non-cancerous urothelium (N) and corresponding cancerous tissue (T), and 26 samples of normal control urothelium obtained from patients without urothelial carcinomas (C). For genes of interest, correlation between DNA methylation and mRNA expression was examined using the Cancer Genome Atlas database. In addition, the role of a selected target for cancer-relevant endpoints was further examined in urothelial carcinoma cell lines. RESULTS: The genes showing significant differences in DNA methylation levels between papillary carcinomas and more aggressive non-papillary (nodular) carcinomas were accumulated in signaling pathways participating in cell adhesion and cytoskeletal remodeling. Five hundred ninety-six methylation sites showed differences in DNA methylation levels between papillary and nodular carcinomas. Of those sites, that were located in CpG-islands around transcription start site, 5'-untranslated region or 1st exon, 16 genes exhibited inverse correlations between DNA methylation and mRNA expression levels. Among the latter, only the KLF11 gene showed papillary T sample-specific DNA hypermethylation in comparison to C and N samples. The DNA methylation levels of KLF11 were not significantly different between T samples and N samples or T samples and C samples for patients with papillo-nodular or nodular carcinomas. Knockdown experiments using the urothelial carcinoma cell lines HT1376 and 5637, which are considered models for papillary carcinoma, revealed that KLF11 participates in altering the adhesiveness of cells to laminin-coated dishes, although cell growth was not affected. CONCLUSION: These data indicate that DNA hypermethylation of KLF11 may participate in the generation of papillary urothelial carcinomas through induction of aberrant cancer cell adhesion to the basement membrane.


Subject(s)
Carcinoma, Papillary , Cell Adhesion , DNA Methylation , Urinary Bladder Neoplasms , Aged , Female , Humans , Male , Middle Aged , Carcinoma, Papillary/genetics , Carcinoma, Papillary/pathology , Cell Adhesion/genetics , Cell Line, Tumor , CpG Islands/genetics , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Repressor Proteins/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urothelium/pathology , Urothelium/metabolism
14.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829910

ABSTRACT

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Subject(s)
Herpesvirus 1, Human , Immunity, Innate , Humans , Animals , Herpesvirus 1, Human/immunology , Mice , Virus Replication , Herpes Simplex/immunology , Herpes Simplex/virology , Herpes Simplex/metabolism , Signal Transduction , HEK293 Cells , Repressor Proteins
15.
Plant Mol Biol ; 114(3): 67, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836995

ABSTRACT

Sugar beet (Beta vulgaris L.), a biennial sugar crop, contributes about 16% of the world's sugar production. The transition from vegetative growth, during which sugar accumulated in beet, to reproductive growth, during which sugar exhausted in beet, is determined by vernalization and photoperiod. GIGANTEA (GI) is a key photoperiodic flowering gene that is induced by vernalization in sugar beet. To identify the upstream regulatory factors of BvGI, candidate transcription factors (TF) that were co-expressed with BvGI and could bind to the BvGI promoter were screened based on weighted gene co-expression network analysis (WGCNA) and TF binding site prediction. Subsequently, their transcriptional regulatory role on the BvGI was validated through subcellular localization, dual-luciferase assays and yeast transformation tests. A total of 7,586 differentially expressed genes were identified after vernalization and divided into 18 co-expression modules by WGCNA, of which one (MEcyan) and two (MEdarkorange2 and MEmidnightblue) modules were positively and negatively correlated with the expression of BvGI, respectively. TF binding site predictions using PlantTFDB enabled the screening of BvLHY, BvTCP4 and BvCRF4 as candidate TFs that negatively regulated the expression of BvGI by affecting its transcription. Subcellular localization showed that BvLHY, BvTCP4 and BvCRF4 were localized to the nucleus. The results of dual-luciferase assays and yeast transformation tests showed that the relative luciferase activity and expression of HIS3 was reduced in the BvLHY, BvTCP4 and BvCRF4 transformants, which suggested that the three TFs inhibited the BvGI promoter. In addition, real-time quantitative reverse transcription PCR showed that BvLHY and BvTCP4 exhibited rhythmic expression characteristics similar to that of BvGI, while BvCRF4 did not. Our results revealed that vernalization crosstalked with the photoperiod pathway to initiate bolting in sugar beet by inhibiting the transcriptional repressors of BvGI.


Subject(s)
Beta vulgaris , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Beta vulgaris/genetics , Beta vulgaris/growth & development , Beta vulgaris/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Promoter Regions, Genetic/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Photoperiod , Vernalization
16.
Sci Rep ; 14(1): 13596, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866867

ABSTRACT

The RE1 silencing transcription factor (REST) is a driver of sonic hedgehog (SHH) medulloblastoma genesis. Our previous studies showed that REST enhances cell proliferation, metastasis and vascular growth and blocks neuronal differentiation to drive progression of SHH medulloblastoma tumors. Here, we demonstrate that REST promotes autophagy, a pathway that is found to be significantly enriched in human medulloblastoma tumors relative to normal cerebella. In SHH medulloblastoma tumor xenografts, REST elevation is strongly correlated with increased expression of the hypoxia-inducible factor 1-alpha (HIF1α)-a positive regulator of autophagy, and with reduced expression of the von Hippel-Lindau (VHL) tumor suppressor protein - a component of an E3 ligase complex that ubiquitinates HIF1α. Human SHH-medulloblastoma tumors with higher REST expression exhibit nuclear localization of HIF1α, in contrast to its cytoplasmic localization in low-REST tumors. In vitro, REST knockdown promotes an increase in VHL levels and a decrease in cytoplasmic HIF1α protein levels, and autophagy flux. In contrast, REST elevation causes a decline in VHL levels, as well as its interaction with HIF1α, resulting in a reduction in HIF1α ubiquitination and an increase in autophagy flux. These data suggest that REST elevation promotes autophagy in SHH medulloblastoma cells by modulating HIF1α ubiquitination and stability in a VHL-dependent manner. Thus, our study is one of the first to connect VHL to REST-dependent control of autophagy in a subset of medulloblastomas.


Subject(s)
Autophagy , Cerebellar Neoplasms , Hedgehog Proteins , Hypoxia-Inducible Factor 1, alpha Subunit , Medulloblastoma , Von Hippel-Lindau Tumor Suppressor Protein , Medulloblastoma/metabolism , Medulloblastoma/pathology , Medulloblastoma/genetics , Humans , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Autophagy/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Cell Line, Tumor , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/genetics , Mice , Down-Regulation , Gene Expression Regulation, Neoplastic , Ubiquitination , Repressor Proteins
17.
Microbiol Spectr ; 12(7): e0048724, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38860795

ABSTRACT

Iron scavenging is required for full virulence of mycobacterial pathogens. During infection, the host immune response restricts mycobacterial access to iron, which is essential for bacterial respiration and DNA synthesis. The Mycobacterium tuberculosis iron-dependent regulator (IdeR) responds to changes in iron accessibility by repressing iron-uptake genes when iron is available. In contrast, iron-uptake gene transcription is induced when iron is depleted. The ideR gene is essential in M. tuberculosis and is required for bacterial growth. To further study how iron regulates transcription, wee developed an iron responsive reporter system that relies on an IdeR-regulated promoter to drive Cre and loxP mediated recombination in Mycobacterium smegmatis. Recombination leads to the expression of an antibiotic resistance gene so that mutations that activate the IdeR-regulated promoter can be selected. A transposon library in the background of this reporter system was exposed to media containing iron and hemin, and this resulted in the selection of mutants in the antioxidant mycothiol synthesis pathway. We validated that inactivation of the mycothiol synthesis gene mshA results in increased recombination and increased IdeR-regulated promoter activity in the reporter system. Further, we show that vitamin C, which has been shown to oxidize iron through the Fenton reaction, can decrease promoter activity in the mshA mutant. We conclude that the intracellular redox state balanced by mycothiol can alter IdeR activity in the presence of iron.IMPORTANCEMycobacterium smegmatis is a tractable organism to study mycobacterial gene regulation. We used M. smegmatis to construct a novel recombination-based reporter system that allows for the selection of mutations that deregulate a promoter of interest. Transposon mutagenesis and insertion sequencing (TnSeq) in the recombination reporter strain identified genes that impact iron regulated promoter activity in mycobacteria. We found that the mycothiol synthesis gene mshA is required for IdeR mediated transcriptional regulation by maintaining intracellular redox balance. By affecting the oxidative state of the intracellular environment, mycothiol can modulate iron-dependent transcriptional activity. Taken more broadly, this novel reporter system can be used in combination with transposon mutagenesis to identify genes that are required by Mycobacterium tuberculosis to overcome temporary or local changes in iron availability during infection.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Genes, Reporter , Glycopeptides , Inositol , Iron , Mycobacterium smegmatis , Oxidation-Reduction , Iron/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Inositol/metabolism , Glycopeptides/metabolism , Glycopeptides/biosynthesis , Promoter Regions, Genetic , Cysteine/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , DNA Transposable Elements , Repressor Proteins
18.
Sci Rep ; 14(1): 13920, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886213

ABSTRACT

Age-related macular degeneration (AMD) is one of the major causes of blindness in the elderly worldwide. Anti-vascular endothelial growth factor (VEGF) drugs have been widely used to treat the neovascular type of AMD (nAMD). However, VEGF acts not only as a pro-angiogenic factor but also as an anti-apoptotic factor in the eyes. In this study, we found that anti-VEGF drugs, including bevacizumab (Bev), ranibizumab (Ran), and aflibercept (Afl), induced epithelial-mesenchymal transition (EMT) in ARPE-19 cells in vitro, accompanied by the induction of CCN2, a potent pro-fibrotic factor. Similarly, intravitreal injection of Afl into mouse eyes resulted in EMT in the retinal pigmented epithelium (RPE). Co-treatment with CCN5, an anti-fibrotic factor that down-regulates CCN2 expression, significantly attenuated the adverse effects of the anti-VEGF drugs both in vitro and in vivo. Inhibition of the VEGF signaling pathway with antagonists of VEGF receptors, SU5416 and ZM323881, induced EMT and up-regulated CCN2 in ARPE-19 cells. Additionally, knock-down of CCN2 with siRNA abolished the adverse effects of the anti-VEGF drugs in ARPE-19 cells. Collectively, these results suggest that anti-VEGF drugs induce EMT in RPE through the induction of CCN2 and that co-treatment with CCN5 attenuates the adverse effects of anti-VEGF drugs in mouse eyes.


Subject(s)
Epithelial-Mesenchymal Transition , Retinal Pigment Epithelium , Vascular Endothelial Growth Factor A , Epithelial-Mesenchymal Transition/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Animals , Humans , Mice , Vascular Endothelial Growth Factor A/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/drug therapy , Macular Degeneration/chemically induced , Cell Line , Bevacizumab/pharmacology , CCN Intercellular Signaling Proteins/metabolism , CCN Intercellular Signaling Proteins/genetics , Angiogenesis Inhibitors/pharmacology , Ranibizumab/pharmacology , Recombinant Fusion Proteins/pharmacology , Signal Transduction/drug effects , Repressor Proteins , Receptors, Vascular Endothelial Growth Factor
19.
Leukemia ; 38(7): 1477-1487, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844578

ABSTRACT

Recent trials show 5-year survival rates >95% for ETV6::RUNX1 Acute Lymphoblastic Leukemia (ALL). Since treatment has many side effects, an overview of cumulative drug doses and intensities between eight international trials is presented to characterize therapy needed for cure. A meta-analysis was performed as a comprehensive summary of survival outcomes at 5 and 10 years. For drug dose comparison in non-high risk trial arms, risk group distribution was applied to split the trials into two groups: trial group A with ~70% (range: 63.5-75%) of patients in low risk (LR) (CCLSG ALL2004, CoALL 07-03, NOPHO ALL2008, UKALL2003) and trial group B with ~45% (range: 38.7-52.7%) in LR (AIEOP-BFM ALL 2000, ALL-IC BFM ALL 2002, DCOG ALL10, JACLS ALL-02). Meta-analysis did not show evidence of heterogeneity between studies in trial group A LR and medium risk (MR) despite differences in treatment intensity. Statistical heterogeneity was present in trial group B LR and MR. Trials using higher cumulative dose and intensity of asparaginase and pulses of glucocorticoids and vincristine showed better 5-year event-free survival but similar overall survival. Based on similar outcomes between trials despite differences in therapy intensity, future trials should investigate, to what extent de-escalation is feasible for ETV6::RUNX1 ALL.


Subject(s)
Core Binding Factor Alpha 2 Subunit , ETS Translocation Variant 6 Protein , Oncogene Proteins, Fusion , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-ets , Repressor Proteins , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Core Binding Factor Alpha 2 Subunit/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Survival Rate
20.
Bull Exp Biol Med ; 176(6): 801-805, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38896321

ABSTRACT

Whole exome sequencing of peripheral blood samples from Tuvan females diagnosed with breast and ovarian cancers (BC/OC) was performed to search for new genes involved in BC/OC pathogenesis. Considering the high cost of whole exome sequencing and study material requirements, 9 samples were selected from 61 genomic DNA samples. A mutation in the LGR4 gene (rs34804482) involved in the tumor-mediated Wnt signaling pathway and a mutation in the BRWD1 gene (rs147211854) involved in chromatin remodeling were identified in BC patients. A mutation in the CITED2 gene (rs77963348) involved in the pathogenesis of primary ovarian insufficiency was identified in a patient with OC and a history of infertility. A mutation in the PDGFRA gene (rs2291591) was identified in two BC/OC patients. LRG4, BRWD1, PDGFRA, and CITED2 germline pathogenic mutations were discovered in Tuvan women diagnosed with BC/OC for the first time.


Subject(s)
Exome Sequencing , Humans , Female , Pilot Projects , Ovarian Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Breast Neoplasms/genetics , Adult , Middle Aged , Germ-Line Mutation/genetics , Repressor Proteins/genetics , Ethnicity/genetics , Trans-Activators/genetics , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...