Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.518
1.
Biol Direct ; 19(1): 48, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38902802

BACKGROUND: Prior research has highlighted the involvement of a transcriptional complex comprising C-terminal binding protein 2 (CtBP2), histone acetyltransferase p300, and nuclear factor kappa B (NF-κB) in the transactivation of proinflammatory cytokine genes, contributing to inflammation in mice with acute respiratory distress syndrome (ARDS). Nonetheless, it remains uncertain whether the therapeutic targeting of the CtBP2-p300-NF-κB complex holds potential for ARDS suppression. METHODS: An ARDS mouse model was established using lipopolysaccharide (LPS) exposure. RNA-Sequencing (RNA-Seq) was performed on ARDS mice and LPS-treated cells with CtBP2, p300, and p65 knockdown. Small molecules inhibiting the CtBP2-p300 interaction were identified through AlphaScreen. Gene and protein expression levels were quantified using RT-qPCR and immunoblots. Tissue damage was assessed via histological staining. KEY FINDINGS: We elucidated the specific role of the CtBP2-p300-NF-κB complex in proinflammatory gene regulation. RNA-seq analysis in LPS-challenged ARDS mice and LPS-treated CtBP2-knockdown (CtBP2KD), p300KD, and p65KD cells revealed its significant impact on proinflammatory genes with minimal effects on other NF-κB targets. Commercial inhibitors for CtBP2, p300, or NF-κB exhibited moderate cytotoxicity in vitro and in vivo, affecting both proinflammatory genes and other targets. We identified a potent inhibitor, PNSC928, for the CtBP2-p300 interaction using AlphaScreen. PNSC928 treatment hindered the assembly of the CtBP2-p300-NF-κB complex, substantially downregulating proinflammatory cytokine gene expression without observable cytotoxicity in normal cells. In vivo administration of PNSC928 significantly reduced CtBP2-driven proinflammatory gene expression in ARDS mice, alleviating inflammation and lung injury, ultimately improving ARDS prognosis. CONCLUSION: Our results position PNSC928 as a promising therapeutic candidate to specifically target the CtBP2-p300 interaction and mitigate inflammation in ARDS management.


Alcohol Oxidoreductases , E1A-Associated p300 Protein , Inflammation , Respiratory Distress Syndrome , Animals , Mice , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Male , Lipopolysaccharides , Mice, Inbred C57BL , Disease Models, Animal , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , NF-kappa B/metabolism
2.
Int J Nanomedicine ; 19: 5317-5333, 2024.
Article En | MEDLINE | ID: mdl-38859953

Purpose: The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects. Methods: Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs). Results: The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug's circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug's efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions. Conclusion: RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM's poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.


Erythrocytes , Respiratory Distress Syndrome , Simvastatin , Simvastatin/administration & dosage , Simvastatin/pharmacokinetics , Simvastatin/chemistry , Respiratory Distress Syndrome/drug therapy , Erythrocytes/drug effects , Animals , Lung/drug effects , Humans , Male , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacokinetics , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Polyethyleneimine/chemistry , Drug Delivery Systems/methods , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
3.
Phytomedicine ; 130: 155373, 2024 Jul 25.
Article En | MEDLINE | ID: mdl-38850630

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an acute respiratory disease characterized by bilateral chest radiolucency and severe hypoxemia. Quzhou Fructus Aurantii ethyl acetate extract (QFAEE), which is prepared from the traditional Chinese respiratory anti-inflammatory natural herb Quzhou Fructus Arantii, has the potential to alleviate ARDS. In this work, we aimed to investigate the potential and mechanism underlying the action of QFAEE on ARDS and how QFAEE modulates the STING pathway to reduce type I interferon release to alleviate the inflammatory response. METHODS: Lipopolysaccharide (LPS), a potential proinflammatory stimulant capable of causing pulmonary inflammation with edema after nasal drops, was employed to model ARDS in vitro and in vivo. Under QFAEE intervention, the mechanism of action of QFAEE to alleviate ARDS was explored in this study. TREX1-/- mice were sued as a research model for the activation of the congenital STING signaling pathway. The effect of QFAEE on TREX1-/- mice could explain the STING-targeted effect of QFAEE on alleviating the inflammatory response. Our explorations covered several techniques, Western blot, histological assays, immunofluorescence staining, transcriptomic assays and qRT-PCR to determine the potential mechanism of action of QFAEE in antagonizing the inflammatory response in the lungs, as well as the mechanism of action of QFAEE in targeting the STING signaling pathway to regulate the release of type I interferon. RESULTS: QFAEE effectively alleviates ARDS symptoms in LPS-induced ARDS. We revealed that the mechanism underlying LPS-induced ARDS is the STING-TBK1 signaling pathway and further elucidated the molecular mechanism of QFAEE in the prevention and treatment of ARDS. QFAEE reduced the release of type I interferons by inhibiting the STING-TBK1-IRF3 axis, thus alleviating LPS-induced pneumonia and lung cell death in mice. Another key finding is that activation of the STING pathway by activators or targeted knockdown of the TREX1 gene can also induce ARDS. As expected, QFAEE was found to be an effective protective agent in alleviating ARDS and the antagonistic effect of QFAEE on ARDS was achieved by inhibiting the STING signaling pathway. CONCLUSIONS: The main anti-inflammatory effect of QFAEE was achieved by inhibiting the STING signaling pathway and reducing the release of type I interferons. According to this mechanism of effect, QFAEE can effectively alleviate ARDS and can be considered a potential therapeutic agent. In addition, the STING pathway plays an essential role in the development and progression of ARDS, and it is a potential target for ARDS therapy.


Anti-Inflammatory Agents , Interferon Type I , Lipopolysaccharides , Membrane Proteins , Respiratory Distress Syndrome , Animals , Interferon Type I/metabolism , Mice , Anti-Inflammatory Agents/pharmacology , Membrane Proteins/metabolism , Respiratory Distress Syndrome/drug therapy , Signal Transduction/drug effects , Lung/drug effects , Disease Models, Animal , Male , Humans , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology , Pneumonia/drug therapy , Pneumonia/chemically induced
4.
Drug Des Devel Ther ; 18: 2043-2061, 2024.
Article En | MEDLINE | ID: mdl-38863767

Background: Despite its extensive utilization in Chinese hospitals for treating acute pancreatitis (AP) and related acute respiratory distress syndrome (ARDS), the active components and mechanisms underlying the action of Qingyi Granule (QYKL) remain elusive. Methods: This study consists of four parts. First, we used Mendelian randomization (MR) to investigate the causal relationship between AP, cytokine, and ARDS. Next, 321 patients were collected to evaluate the efficacy of QYKL combined with dexamethasone (DEX) in treating AP. In addition, we used UHPLC-QE-MS to determine the chemical constituents of QYKL extract and rat serum after the oral administration of QYKL. The weighted gene coexpression network analysis (WGCNA) method was used to find the main targets of AP-related ARDS using the GSE151572 dataset. At last, a AP model was established by retrograde injection of 5% sodium taurocholate. Results: MR showed that AP may have a causal relationship with ARDS by mediating cytokine storms. Retrospective study results showed early administration of QYKL was associated with a lower incidence of ARDS, mortality, admissions to the intensive care unit, and length of stay in AP patients compared to the Control group. Furthermore, we identified 23 QYKL prototype components absorbed into rat serum. WGCNA and differential expression analysis identified 1558 APALI-related genes. The prototype components exhibited strong binding activity with critical targets. QYKL has a significant protective effect on pancreatic and lung injury in AP rats, and the effect is more effective after combined treatment with DEX, which may be related to the regulation of the IL-6/STAT3 signaling pathway. Conclusion: By integrating MR, retrospective analysis, and systematic pharmacological methodologies, this study systematically elucidated the therapeutic efficacy of QYKL in treating AP-related ARDS, establishing a solid foundation for its medicinal use.


Drugs, Chinese Herbal , Pancreatitis , Respiratory Distress Syndrome , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Respiratory Distress Syndrome/drug therapy , Pancreatitis/drug therapy , Pancreatitis/metabolism , Animals , Rats , Humans , Retrospective Studies , Male , Rats, Sprague-Dawley , Dexamethasone/pharmacology , Dexamethasone/administration & dosage , Acute Disease , Female , Middle Aged
5.
Ann Saudi Med ; 44(3): 167-182, 2024.
Article En | MEDLINE | ID: mdl-38853475

BACKGROUND: Acute respiratory distress syndrome (ARDS), which results in lung injury as a consequence of sepsis and septic shock, is associated with severe systemic inflammation and is responsible for a high worldwide mortality rate. OBJECTIVE: Investigate whether corticosteroids could benefit clinical outcomes in adult with ARDS. METHODS: A comprehensive search of electronic databases Ovid MEDLINE, Ovid EMbase, and Cochrane Library from their inception to 7 May 2023 was conducted to identify studies that met the eligibility criteria, including only randomized controlled trials. The study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the methods of trial sequential analysis. MAIN OUTCOME MEASURES: Mortality rates, including including the 14-, 28-, 45-, and 60-day mortality, hospital mortality, and intensive care unit (ICU) mortality. SAMPLE SIZE: 17 studies with 2508 patients. RESULTS: Data relating to mortality at 14, 28, 45, and 60 days were not significantly different when treatments with corticosteroids and placebo were compared. In terms of hospital and ICU mortality, the mortality of those who had received corticosteroids was significantly lower than that of those who had not. ARDS patients who received assisted ventilation benefited from corticosteroid therapy, as revealed by the significant difference in outcome days between those who received assisted ventilation and those who did not. Corticosteroid had significantly more days free from mechanical ventilation, ICU-free days, and MODS-free days during the first 28 days, but not more organ support-free days up to day 28. CONCLUSION: Although corticosteroid therapy did not reduce mortality rates at different observation periods, it significantly reduced hospital and ICU mortality. Administering corticosteroids to ARDS patients significantly decreased the days of assisted ventilation and time cost consumption. This study confirmed that long-term use of low-dose glucocorticoids may have a positive effect on early ARDS. LIMITATION: Risk of bias due to the differences in patient characteristics.


Adrenal Cortex Hormones , Hospital Mortality , Intensive Care Units , Respiration, Artificial , Respiratory Distress Syndrome , Adult , Humans , Adrenal Cortex Hormones/administration & dosage , Intensive Care Units/statistics & numerical data , Randomized Controlled Trials as Topic , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/etiology , Treatment Outcome
6.
Crit Care ; 28(1): 198, 2024 06 11.
Article En | MEDLINE | ID: mdl-38863072

BACKGROUND: Current continuous kidney replacement therapy (CKRT) protocols ignore physiological renal compensation for hypercapnia. This study aimed to explore feasibility, safety, and clinical benefits of pCO2-adapted CKRT for hypercapnic acute respiratory distress syndrome (ARDS) patients with indication for CKRT. METHODS: We enrolled mechanically ventilated hypercapnic ARDS patients (pCO2 > 7.33 kPa) receiving regional citrate anticoagulation (RCA) based CKRT in a prospective, randomized-controlled pilot-study across five intensive care units at the Charité-Universitätsmedizin Berlin, Germany. Patients were randomly assigned 1:1 to the control group with bicarbonate targeted to 24 mmol/l or pCO2-adapted-CKRT with target bicarbonate corresponding to physiological renal compensation. Study duration was six days. Primary outcome was bicarbonate after 72 h. Secondary endpoints included safety and clinical endpoints. Endpoints were assessed in all patients receiving treatment. RESULTS: From September 2021 to May 2023 40 patients (80% male) were enrolled. 19 patients were randomized to the control group, 21 patients were randomized to pCO2-adapted-CKRT. Five patients were excluded before receiving treatment: three in the control group (consent withdrawal, lack of inclusion criteria fulfillment (n = 2)) and two in the intervention group (lack of inclusion criteria fulfillment, sudden unexpected death) and were therefore not included in the analysis. Median plasma bicarbonate 72 h after randomization was significantly higher in the intervention group (30.70 mmol/l (IQR 29.48; 31.93)) than in the control group (26.40 mmol/l (IQR 25.63; 26.88); p < 0.0001). More patients in the intervention group received lung protective ventilation defined as tidal volume < 8 ml/kg predicted body weight. Thirty-day mortality was 10/16 (63%) in the control group vs. 8/19 (42%) in the intervention group (p = 0.26). CONCLUSION: Tailoring CKRT to physiological renal compensation of respiratory acidosis appears feasible and safe with the potential to improve patient care in hypercapnic ARDS. TRIAL REGISTRATION: The trial was registered in the German Clinical Trials Register (DRKS00026177) on September 9, 2021 and is now closed.


Carbon Dioxide , Hypercapnia , Renal Replacement Therapy , Respiratory Distress Syndrome , Humans , Male , Female , Pilot Projects , Middle Aged , Hypercapnia/therapy , Hypercapnia/drug therapy , Aged , Carbon Dioxide/blood , Carbon Dioxide/analysis , Carbon Dioxide/therapeutic use , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/drug therapy , Prospective Studies , Renal Replacement Therapy/methods , Renal Replacement Therapy/statistics & numerical data , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Continuous Renal Replacement Therapy/methods , Continuous Renal Replacement Therapy/statistics & numerical data
7.
BMC Pulm Med ; 24(1): 283, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38886709

OBJECTIVE: This comparative analysis aimed to investigate the efficacy of Sivelestat Sodium Hydrate (SSH) combined with Ulinastatin (UTI) in the treatment of sepsis with acute respiratory distress syndrome (ARDS). METHODS: A control group and an observation group were formed with eighty-four cases of patients with sepsis with ARDS, with 42 cases in each group. The control group was intravenously injected with UTI based on conventional treatment, and the observation group was injected with SSH based on the control group. Both groups were treated continuously for 7 days, and the treatment outcomes and efficacy of both groups were observed. The Murray Lung Injury Score (MLIS), Sequential Organ Failure Assessment (SOFA), and Acute Physiology and Chronic Health Evaluation II (APACHE II) were compared. Changes in respiratory function, inflammatory factors, and oxidative stress indicators were assessed. The occurrence of adverse drug reactions was recorded. RESULTS: The total effective rate in the observation group (95.24%) was higher than that in the control group (80.95%) (P < 0.05). The mechanical ventilation time, intensive care unit (ICU) hospitalization time, and duration of antimicrobial medication in the observation group were shorter and multiple organ dysfunction syndrome incidence was lower than those in the control group (P < 0.05). The mortality rate of patients in the observation group (35.71%) was lower than that in the control group (52.38%), but there was no statistically significant difference between the two groups (P > 0.05). MLIS, SOFA, and APACHE II scores in the observation group were lower than the control group (P < 0.05). After treatment, respiratory function, inflammation, and oxidative stress were improved in the observation group (P < 0.05). Adverse reactions were not significantly different between the two groups (P > 0.05). CONCLUSION: The combination of SSH plus UTI improves lung injury and pulmonary ventilation function, and reduces inflammation and oxidative stress in patients with sepsis and ARDS.


Drug Therapy, Combination , Glycine , Glycoproteins , Respiratory Distress Syndrome , Sepsis , Sulfonamides , Humans , Male , Sepsis/drug therapy , Sepsis/complications , Respiratory Distress Syndrome/drug therapy , Female , Middle Aged , Glycoproteins/administration & dosage , Glycoproteins/therapeutic use , Aged , Glycine/analogs & derivatives , Glycine/therapeutic use , Glycine/administration & dosage , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Treatment Outcome , Respiration, Artificial , APACHE , Adult , Multiple Organ Failure/etiology , Multiple Organ Failure/drug therapy , Oxidative Stress/drug effects , Organ Dysfunction Scores , Intensive Care Units , Trypsin Inhibitors/administration & dosage , Trypsin Inhibitors/therapeutic use
8.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791439

Lefamulin is a first-in-class systemic pleuromutilin antimicrobial and potent inhibitor of bacterial translation, and the most recent novel antimicrobial approved for the treatment of community-acquired pneumonia (CAP). It exhibits potent antibacterial activity against the most prevalent bacterial pathogens that cause typical and atypical pneumonia and other infectious diseases. Early studies indicate additional anti-inflammatory activity. In this study, we further investigated the immune-modulatory activity of lefamulin in the influenza A/H1N1 acute respiratory distress syndrome (ARDS) model in BALB/c mice. Comparators included azithromycin, an anti-inflammatory antimicrobial, and the antiviral oseltamivir. Lefamulin significantly decreased the total immune cell infiltration, specifically the neutrophils, inflammatory monocytes, CD4+ and CD8+ T-cells, NK cells, and B-cells into the lung by Day 6 at both doses tested compared to the untreated vehicle control group (placebo), whereas azithromycin and oseltamivir did not significantly affect the total immune cell counts at the tested dosing regimens. Bronchioalveolar lavage fluid concentrations of pro-inflammatory cytokines and chemokines including TNF-α, IL-6, IL-12p70, IL-17A, IFN-γ, and GM-CSF were significantly reduced, and MCP-1 concentrations were lowered (not significantly) by lefamulin at the clinically relevant 'low' dose on Day 3 when the viral load peaked. Similar effects were also observed for oseltamivir and azithromycin. Lefamulin also decreased the viral load (TCID50) by half a log10 by Day 6 and showed positive effects on the gross lung pathology and survival. Oseltamivir and lefamulin were efficacious in the suppression of the development of influenza-induced bronchi-interstitial pneumonia, whereas azithromycin did not show reduced pathology at the tested treatment regimen. The observed anti-inflammatory and immune-modulatory activity of lefamulin at the tested treatment regimens highlights a promising secondary pharmacological property of lefamulin. While these results require confirmation in a clinical trial, they indicate that lefamulin may provide an immune-modulatory activity beyond its proven potent antibacterial activity. This additional activity may benefit CAP patients and potentially prevent acute lung injury (ALI) and ARDS.


Disease Models, Animal , Diterpenes , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/drug effects , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Diterpenes/pharmacology , Diterpenes/therapeutic use , Cytokines/metabolism , Azithromycin/pharmacology , Azithromycin/therapeutic use , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Female , Lung/immunology , Lung/virology , Lung/drug effects , Lung/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Tetrahydronaphthalenes/pharmacology , Tetrahydronaphthalenes/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Bronchoalveolar Lavage Fluid/immunology , Polycyclic Compounds , Thioglycolates
9.
Ann Intern Med ; 177(5): JC50, 2024 May.
Article En | MEDLINE | ID: mdl-38710088

SOURCE CITATION: Chaudhuri D, Nei AM, Rochwerg B, et al. 2024 focused update: guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia. Crit Care Med. 2024;52:e219-e233. 38240492.


Adrenal Cortex Hormones , Community-Acquired Infections , Respiratory Distress Syndrome , Sepsis , Humans , Respiratory Distress Syndrome/drug therapy , Sepsis/drug therapy , Adrenal Cortex Hormones/therapeutic use , Community-Acquired Infections/drug therapy , Pneumonia/drug therapy , Adult
10.
Phytomedicine ; 129: 155627, 2024 Jul.
Article En | MEDLINE | ID: mdl-38696924

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by an exaggerated response to infection. In the lungs, one of the most susceptible organs, this can manifest as acute respiratory distress syndrome (ARDS). Shenfu (SF) injection is a prominent traditional Chinese medicine used to treat sepsis. However, the exact mechanism of its action has rarely been reported in the literature. PURPOSE: In the present study, we detected the protective effect of SF injection on sepsis-induced ARDS and explored its underlying mechanism. METHODS: We investigated the potential targets and regulatory mechanisms of SF injections using a combination of network pharmacology and RNA sequencing. This study was conducted both in vivo and in vitro using a mouse model of ARDS and lipopolysaccharide (LPS)-stimulated MLE-12 cells, respectively. RESULTS: The results showed that SF injection could effectively inhibit inflammation, oxidative stress, and apoptosis to alleviate LPS-induced ARDS. SF inhibited the PI3K-AKT pathway, which controls autophagy and apoptosis. Subsequently, MLE-12 cells were treated with 3-methyladenine to assess its effects on autophagy and apoptosis. Additional experiments were conducted by adding rapamycin, an mTOR antagonist, or SC79, an AKT agonist, to investigate the effects of SF injection on autophagy, apoptosis, and the PI3K-AKT pathway. CONCLUSION: Overall, we found that SF administration could enhance autophagic activity, reduce apoptosis, suppress inflammatory responses and oxidative stress, and inhibit the PI3K-AKT pathway, thus ameliorating sepsis-induced ARDS.


Apoptosis , Autophagy , Drugs, Chinese Herbal , Lipopolysaccharides , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Respiratory Distress Syndrome , Sepsis , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Sepsis/complications , Sepsis/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/drug effects , Respiratory Distress Syndrome/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Mice , Male , Signal Transduction/drug effects , Disease Models, Animal , Oxidative Stress/drug effects , Cell Line , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Network Pharmacology
11.
Clin Respir J ; 18(5): e13776, 2024 May.
Article En | MEDLINE | ID: mdl-38778673

This systematic review aimed to summarize the available data on the treatment of pulmonary contusions with exogenous surfactants, determine whether this treatment benefits patients with severe pulmonary contusions, and evaluate the optimal type of surfactant, method of administration, and drug concentration. Three databases (MEDline, Scopus, and Web of Science) were searched using the following keywords: pulmonary surfactant, surface-active agents, exogenous surfactant, pulmonary contusion, and lung contusion for articles published between 1945 and February 2023, with no language restrictions. Four reviewers independently rated the studies for inclusion, and the other four reviewers resolved conflicts. Of the 100 articles screened, six articles were included in the review. Owing to the limited number of papers on this topic, various types of studies were included (two clinical studies, two experiments, and two case reports). In all the studies, surfactant administration improved the selected ventilation parameters. The most frequently used type of surfactant was Curosurf® in the concentration of 25 mg/kg of ideal body weight. In most studies, the administration of a surfactant by bronchoscopy into the segmental bronchi was the preferable way of administration. In both clinical studies, patients who received surfactants required shorter ventilation times. The administration of exogenous surfactants improved ventilatory parameters and, thus, reduced the need for less aggressive artificial lung ventilation and ventilation days. The animal-derived surfactant Curosurf® seems to be the most suitable substance; however, the ideal concentration remains unclear. The ideal route of administration involves a bronchoscope in the segmental bronchi.


Contusions , Lung Injury , Pulmonary Surfactants , Respiratory Distress Syndrome , Humans , Pulmonary Surfactants/administration & dosage , Pulmonary Surfactants/therapeutic use , Contusions/drug therapy , Lung Injury/drug therapy , Lung Injury/etiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Animals , Respiration, Artificial/methods , Treatment Outcome , Bronchoscopy/methods
12.
Int J Pharm ; 657: 124182, 2024 May 25.
Article En | MEDLINE | ID: mdl-38697584

Despite advances in drug delivery technologies, treating acute respiratory distress syndrome (ARDS) is challenging due to pathophysiological barriers such as lung injury, oedema fluid build-up, and lung inflammation. Active pharmaceutical ingredients (API) can be delivered directly to the lung site of action with the use of aerosol-based drug delivery devices, and this circumvents the hepatic first-pass effect and improves the bioavailability of drugs. This review discusses the various challenges and barriers for pulmonary drug delivery, current interventions for delivery, considerations for effective drug delivery, and the use of nanoparticle drug delivery carriers as potential strategies for delivering therapeutics in ARDS. Nanosystems have the added benefit of entrapping drugs, increase pulmonary drug bioavailability, and using biocompatible and biodegradable excipients that can facilitate targeted and/or controlled delivery. These systems provide an alternative to existing conventional systems. An effective way to deliver drugs for the treatment of ARDS can be by using colloidal systems that are aerosolized or inhaled. Drug distribution to the deeper pulmonary tissues is necessary due to the significant endothelial cell destruction that is prevalent in ARDS. The particle size of nanoparticles (<0.5 µm) makes them ideal candidates for treating ARDS as they can reach the alveoli. A look into the various potential benefits and limitations of nanosystems used for other lung disorders is also considered to indicate how they may be useful for the potential treatment of ARDS.


Drug Delivery Systems , Lung , Nanoparticles , Respiratory Distress Syndrome , Respiratory Distress Syndrome/drug therapy , Humans , Drug Delivery Systems/methods , Administration, Inhalation , Animals , Lung/metabolism , Lung/drug effects , Aerosols , Drug Carriers/chemistry
13.
Res Social Adm Pharm ; 20(8): 760-767, 2024 Aug.
Article En | MEDLINE | ID: mdl-38734512

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a lung complication of COVID-19 that requires intensive care and ventilation. Beta-hydroxybutyrate (BHB) is a ketone body that can modulate metabolism and inflammation in immune cells and lung tissues. We hypothesized that oral BHB could alleviate COVID-19 related ARDS by reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines. METHODS: We randomized 75 patients with mild (as per Berlin criteria) ARDS symptoms to receive oral 25 g twice daily or placebo for five days. The primary outcome was the change in pro-inflammatory cytokines (Interleukin-1ß, Interleukin-6, interleukin-18, tumour necrosis factor-alpha) and anti-inflammatory cytokine (interleukin-10) from baseline to day 5. The secondary outcomes were the change in BHB levels from baseline to day 5, the number of hospitalization days, and the occurrence of adverse events. RESULTS: Treatment with formulated BHB resulted in a significant decrease in pro-inflammatory cytokines; Interleukin-1ß (p = 0.0204), Interleukin-6 (p = 0.0309), interleukin-18 (p = 0.0116), tumour necrosis factor-alpha (p = 0.0489) and increase in interleukin-10 (p = 0.0246) compared treatment with placebo. Importantly, higher BHB levels (p = 0.0001) were observed after supplementation; additionally, patients who underwent this approach were hospitalized for fewer days. No serious adverse events were reported. CONCLUSION: Beta-hydroxybutyrate, an oral adjunct therapy, has shown promising results in ameliorating symptoms of ARDS. This includes reduced inflammation, oxidative stress, and decreased patient fatigue levels. Further study with a large sample size is warranted to assess the potential of BHB therapy's effectiveness in reducing the development of severe illness. CLINICAL TRIAL REGISTRATION: (http://ctri.nic.in/CTRI/2021/03/031790).


3-Hydroxybutyric Acid , Cytokines , Respiratory Distress Syndrome , Humans , Male , Female , 3-Hydroxybutyric Acid/administration & dosage , 3-Hydroxybutyric Acid/therapeutic use , Middle Aged , Respiratory Distress Syndrome/drug therapy , Single-Blind Method , Administration, Oral , Adult , COVID-19/complications , COVID-19 Drug Treatment , Aged , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use
14.
Int Immunopharmacol ; 135: 112304, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38776851

Activating angiotensin-converting enzyme 2 (ACE2) is an important player in the pathogenesis of septic-related acute respiratory distress syndrome (ARDS). Rosmarinic acid (RA) as a prominent polyphenolic secondary metabolite derived from Rosmarinus officinalis modulates ACE2 in sepsis remains unclear, although its impact on ACE inhibition and septic-associated lung injury has been explored. The study investigated the ACE2 expression in lipopolysaccharide (LPS)-induced lungs in mice and BEAS2B cells. Additionally, molecular docking, protein-protein interaction (PPI) network analysis, and western blotting were employed to predict and evaluate the molecular mechanism of RA on LPS-induced ferroptosis in vivo and in vitro. LPS-induced glutathione peroxidase 4 (GPX4) downregulation, ACE/ACE2 imbalance, and alteration of frequency of breathing (BPM), minute volume (MV), and the expiratory flow at 50% expired volume (EF50) were reversed by captopril pretreatment in vitro and in vivo. RA notably inhibited the infiltration into the lungs of neutrophils and monocytes with increased amounts of GPX4 and ACE2 proteins, lung function improvement, and decreased inflammatory cytokines levels and ER stress in LPS-induced ARDS in mice. Molecular docking showed RA was able to interact with ACE and ACE2. Moreover, combined with different pharmacological inhibitors to block ACE and ferroptosis, RA still significantly inhibited inflammatory cytokines Interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and C-X-C motif chemokine 2 (CXCL2) levels, as well as improved lung function, and enhanced GPX4 expression. Particularly, the anti-ferroptosis effect of RA in LPS-induced septic ARDS is RAS-dependent.


Angiotensin-Converting Enzyme 2 , Cinnamates , Depsides , Ferroptosis , Lipopolysaccharides , Respiratory Distress Syndrome , Rosmarinic Acid , Sepsis , Animals , Depsides/therapeutic use , Depsides/pharmacology , Ferroptosis/drug effects , Cinnamates/therapeutic use , Cinnamates/pharmacology , Respiratory Distress Syndrome/drug therapy , Humans , Mice , Male , Sepsis/drug therapy , Angiotensin-Converting Enzyme 2/metabolism , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Mice, Inbred C57BL , Bronchi/drug effects , Bronchi/pathology , Cell Line , Captopril/pharmacology , Captopril/therapeutic use , Disease Models, Animal , Cytokines/metabolism
15.
Dtsch Med Wochenschr ; 149(12): 714-718, 2024 Jun.
Article De | MEDLINE | ID: mdl-38781995

In the case of septic shock, recent studies show benefits from a combination of hydrocortisone and fludrocortisone, but clear guideline recommendations are still lacking. For severe community-acquired pneumonia, early corticosteroid therapy is recommended. Corticosteroid therapy should not be used in influenza-associated community-acquired pneumonia. In contrast, a significantly lower 28-day mortality rate was observed for COVID-19 by the use of dexamethasone. Current guidelines also recommend the use of corticosteroids in Acute Respiratory Distress Syndrome. These recommendations are based primarily on studies that started steroid therapy early. However, many questions such as the type of corticosteroid, the timing and duration of therapy, and the dosage still remain unanswered.


Adrenal Cortex Hormones , Critical Care , Humans , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/adverse effects , Shock, Septic/drug therapy , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/mortality , Community-Acquired Infections/drug therapy , COVID-19/mortality , COVID-19 Drug Treatment , Dexamethasone/therapeutic use , Hydrocortisone/therapeutic use , Practice Guidelines as Topic
16.
Respir Res ; 25(1): 151, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561798

INTRODUCTION: EXO-CD24 are exosomes genetically manipulated to over-express Cluster of Differentiation (CD) 24. It consists of two breakthrough technologies: CD24, the drug, as a novel immunomodulator that is smarter than steroids without any side effects, and exosomes as the ideal natural drug carrier. METHODS: A randomized, single blind, dose-finding phase IIb trial in hospitalized patients with mild to moderate Coronavirus disease 2019 (COVID-19) related Acute Respiratory Distress Syndrome (ARDS) was carried out in two medical centers in Athens. Patients received either 109 or 1010 exosome particles of EXO-CD24, daily, for five consecutive days and monitored for 28 days. Efficacy was assessed at day 7 among 91 patients who underwent randomization. The outcome was also compared in a post-hoc analysis with an income control group (n = 202) that fit the inclusion and exclusion criteria. RESULTS: The mean age was 49.4 (± 13.2) years and 74.4% were male. By day 7, 83.7% showed improved respiratory signs and 64% had better oxygen saturation (SpO2) (p < 0.05). There were significant reductions in all inflammatory markers, most notably in C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin, fibrinogen and an array of cytokines. Conversely, levels of the anti-inflammatory cytokine Interleukin-10 (IL-10) were increased (p < 0.05). Of all the documented adverse events, none were considered treatment related. No drug-drug interactions were noted. Two patients succumbed to COVID-19. Post-hoc analysis revealed that EXO-CD24 patients exhibited greater improvements in clinical and laboratory outcomes compared to an observational income control group. CONCLUSIONS: EXO-CD24 presents a promising therapeutic approach for hyper-inflammatory state and in particular ARDS. Its unique combination of exosomes, as a drug carrier, and CD24, as an immunomodulator, coupled with inhalation administration, warrants further investigation in a larger, international, randomized, quadri-blind trial against a placebo.


COVID-19 , Exosomes , Respiratory Distress Syndrome , Humans , Male , Middle Aged , Female , SARS-CoV-2 , Single-Blind Method , Immunologic Factors , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/genetics , Drug Carriers , Treatment Outcome , CD24 Antigen
17.
Ther Adv Respir Dis ; 18: 17534666241244974, 2024.
Article En | MEDLINE | ID: mdl-38616385

Nanoparticles have attracted extensive attention due to their high degree of cell targeting, biocompatibility, controllable biological activity, and outstanding pharmacokinetics. Changing the size, morphology, and surface chemical groups of nanoparticles can increase the biological distribution of agents to achieve precise tissue targeting and optimize therapeutic effects. Examples of their use include nanoparticles designed for increasing antigen-specific immune responses, developing vaccines, and treating inflammatory diseases. Nanoparticles show the potential to become a new generation of therapeutic agents for regulating inflammation. Recently, many nanomaterials with targeted properties have been developed to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS). In this review, we provide a brief explanation of the pathological mechanism underlying ALI/ARDS and a systematic overview of the latest technology and research progress in nanomedicine treatments of ALI, including improved nanocarriers, nanozymes, and nanovaccines for the targeted treatment of lung injury. Ultimately, these nanomedicines will be used for the clinical treatment of ALI/ARDS.


Acute Lung Injury , Respiratory Distress Syndrome , Humans , Nanomedicine , Acute Lung Injury/drug therapy , Cell Movement , Inflammation , Respiratory Distress Syndrome/drug therapy
18.
J Control Release ; 369: 746-764, 2024 May.
Article En | MEDLINE | ID: mdl-38599547

Acute respiratory distress syndrome (ARDS) is a critical illness characterized by severe lung inflammation. Improving the delivery efficiency and achieving the controlled release of anti-inflammatory drugs at the lung inflammatory site are major challenges in ARDS therapy. Taking advantage of the increased pulmonary vascular permeability and a slightly acidic-inflammatory microenvironment, pH-responsive mineralized nanoparticles based on dexamethasone sodium phosphate (DSP) and Ca2+ were constructed. By further biomimetic modification with M2 macrophage membranes, hybrid mineralized nanovesicles (MM@LCaP) were designed to possess immunomodulatory ability from the membranes and preserve the pH-sensitivity from core nanoparticles for responsive drug release under acidic inflammatory conditions. Compared with healthy mice, the lung/liver accumulation of MM@LCaP in inflammatory mice was increased by around 5.5 times at 48 h after intravenous injection. MM@LCaP promoted the polarization of anti-inflammatory macrophages, calmed inflammatory cytokines, and exhibited a comprehensive therapeutic outcome. Moreover, MM@LCaP improved the safety profile of glucocorticoids. Taken together, the hybrid mineralized nanovesicles-based drug delivery strategy may offer promising ideas for enhancing the efficacy and reducing the toxicity of clinical drugs.


Anti-Inflammatory Agents , Dexamethasone , Glucocorticoids , Lung , Nanoparticles , Respiratory Distress Syndrome , Animals , Glucocorticoids/administration & dosage , Glucocorticoids/pharmacokinetics , Glucocorticoids/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/pharmacokinetics , Dexamethasone/therapeutic use , Dexamethasone/analogs & derivatives , Tissue Distribution , Nanoparticles/chemistry , Mice , Respiratory Distress Syndrome/drug therapy , Lung/metabolism , Lung/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Macrophages/drug effects , Macrophages/metabolism , Male , Drug Liberation , Pneumonia/drug therapy , Pneumonia/chemically induced , RAW 264.7 Cells , Drug Delivery Systems , Calcium/metabolism , Cytokines/metabolism
19.
Exp Cell Res ; 438(1): 114030, 2024 May 01.
Article En | MEDLINE | ID: mdl-38583855

Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.


Cell Proliferation , Cell Survival , Respiratory Distress Syndrome , Sevoflurane , Wound Healing , Sevoflurane/pharmacology , Humans , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Wound Healing/drug effects , Cell Survival/drug effects , A549 Cells , Cell Proliferation/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Cell Movement/drug effects , Anesthetics, Inhalation/pharmacology , Cytokines/metabolism , Autophagy/drug effects , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology
20.
Exp Lung Res ; 50(1): 106-117, 2024.
Article En | MEDLINE | ID: mdl-38642025

BACKGROUND: Pulmonary emphysema is a condition that causes damage to the lung tissue over time. GBP5, as part of the guanylate-binding protein family, is dysregulated in mouse pulmonary emphysema. However, the role of GBP5 in lung inflammation in ARDS remains unveiled. METHODS: To investigate whether GBP5 regulates lung inflammation and autophagy regulation, the study employed a mouse ARDS model and MLE-12 cell culture. Vector transfection was performed for the genetic manipulation of GBP5. Then, RT-qPCR, WB and IHC staining were conducted to assess its transcriptional and expression levels. Histological features of the lung tissue were observed through HE staining. Moreover, ELISA was conducted to evaluate the secretion of inflammatory cytokines, autophagy was assessed by immunofluorescent staining, and MPO activity was determined using a commercial kit. RESULTS: Our study revealed that GBP5 expression was altered in mouse ARDS and LPS-induced MLE-12 cell models. Moreover, the suppression of GBP5 reduced lung inflammation induced by LPS in mice. Conversely, overexpression of GBP5 diminished the inhibitory impact of LPS on ARDS during autophagy, leading to increased inflammation. In the cell line of MLE-12, GBP5 exacerbates LPS-induced inflammation by blocking autophagy. CONCLUSION: The study suggests that GBP5 facilitates lung inflammation and autophagy regulation. Thus, GBP5 could be a potential therapeutic approach for improving ARDS treatment outcomes, but further research is required to validate these findings.


Autophagy , GTP-Binding Proteins , Lung Injury , Pneumonia , Respiratory Distress Syndrome , Animals , Mice , Autophagy/drug effects , Inflammation/metabolism , Lipopolysaccharides , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Pneumonia/metabolism , Pulmonary Emphysema , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/metabolism
...