Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.692
1.
Food Res Int ; 188: 114485, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823871

Whey protein isolate (WPI) is mainly composed of ß-lactoglobulin (ß-LG), α-lactalbumin (α-LA) and bovine serum albumin (BSA). The aim of this study was to compare and analyze the influence of WPI and its three main constituent proteins, as well as proportionally reconstituted WPI (R-WPI) on resveratrol. It was found that the storage stability of resveratrol was protected by WPI, not affected by R-WPI, but reduced by individual whey proteins at 45°C for 30 days. The rank of accelerated degradation of resveratrol by individual whey proteins was BSA > α-LA > ß-LG. The antioxidant activity, localization of resveratrol and oxidation of carrier proteins were determined by ABTS, H2O2 assay, synchronous fluorescence, carbonyl and circular dichroism. The non-covalent interactions and disulfide bonds between constituent proteins improved the antioxidant activity of the R-WPI-resveratrol complex, the oxidation stability of the carrier and the solvent shielding effect on resveratrol, which synergistically inhibited the degradation of resveratrol in R-WPI system. The results gave insight into elucidating the interaction mechanism of resveratrol with protein carriers.


Antioxidants , Lactalbumin , Lactoglobulins , Oxidation-Reduction , Resveratrol , Serum Albumin, Bovine , Whey Proteins , Resveratrol/chemistry , Resveratrol/pharmacology , Whey Proteins/chemistry , Lactalbumin/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Lactoglobulins/chemistry , Serum Albumin, Bovine/chemistry , Circular Dichroism
2.
Med Oncol ; 41(7): 167, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38831079

Cancer stem cells (CSCs) are mainly responsible for tumorigenesis, chemoresistance, and cancer recurrence. CSCs growth and progression are regulated by multiple signaling cascades including Wnt/ß-catenin and Hh/GLI-1, which acts independently or via crosstalk. Targeting the crosstalk of signaling pathways would be an effective approach to control the CSC population. Both Wnt/ß-catenin and Hh/GLI-1 signaling cascades are known to be regulated by p53/p21-dependent mechanism. However, it is interesting to delineate whether p21 can induce apoptosis in a p53-independent manner. Therefore, utilizing various subtypes of oral CSCs (SCC9-PEMT p53+/+p21+/+, SCC9-PEMT p53-/-p21+/+, SCC9-PEMT p53+/+p21-/- and SCC9-PEMT p53-/-p21-/-), we have examined the distinct roles of p53 and p21 in Resveratrol nanoparticle (Res-Nano)-mediated apoptosis. It is interesting to see that, besides the p53/p21-mediated mechanism, Res-Nano exposure also significantly induced apoptosis in oral CSCs through a p53-independent activation of p21. Additionally, Res-Nano-induced p21-activation deregulated the ß-catenin-GLI-1 complex and consequently reduced the TCF/LEF and GLI-1 reporter activities. In agreement with in vitro data, similar experimental results were obtained in in vivo mice xenograft model.


Apoptosis , Cyclin-Dependent Kinase Inhibitor p21 , Mouth Neoplasms , Nanoparticles , Neoplastic Stem Cells , Resveratrol , Tumor Suppressor Protein p53 , Zinc Finger Protein GLI1 , beta Catenin , Apoptosis/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Resveratrol/pharmacology , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , beta Catenin/metabolism , Tumor Suppressor Protein p53/metabolism , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays
3.
J Transl Med ; 22(1): 457, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745204

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Arthritis, Rheumatoid , Fibrosis , Inflammation , Lung Diseases, Interstitial , Proto-Oncogene Proteins c-akt , Resveratrol , Signal Transduction , Resveratrol/pharmacology , Resveratrol/therapeutic use , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Humans , Inflammation/pathology , Inflammation/drug therapy , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Membrane Proteins/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Cell Line , Lung/pathology , Lung/drug effects , Male
4.
BMC Cancer ; 24(1): 566, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711004

BACKGROUND: Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS: Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS: The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS: In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.


BRCA1 Protein , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , Resveratrol , Triple Negative Breast Neoplasms , Resveratrol/pharmacology , Resveratrol/therapeutic use , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Receptors, Estrogen/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
5.
Cryo Letters ; 45(4): 240-247, 2024.
Article En | MEDLINE | ID: mdl-38809788

BACKGROUND: Vitrification is a technique of cryopreservation that has been proposed as a promising alternative method for the preservation of oocytes, embryos and gonadal tissue. OBJECTIVE: To determine the effect of different antioxidants on post-thaw viability, morphology of retrieved oocytes and histology of vitrified ovarian tissue. MATERIALS AND METHODS: Four different antioxidants [i.e., resveratrol (20 uM), ZnSO4 (500 uM), curcumin (25 uM) and quercetin (1 uM)] were evaluated after their addition to the vitrification and warming media for their effects on the viability and morphology of retrieved oocytes and the histology of vitrified ovarian tissue. RESULTS: The number of oocytes retrieved from ovarian tissue from the above mentioned antioxidants and vitrified control were 34, 41, 26, 31 and 46 respectively. Among these the number of viable oocytes were found to be 24 (70.6%), 30 (73.1 %), 20 (76.9%), 26 (83.9%) and 33 (71.7%) and the number of oocytes found morphologically normal were 24 (70.6%), 26 (63.4%), 18 (69.2%), 21 (67.7%) and 34 (73.9%) for the above mentioned different antioxidants and vitrified control, respectively. Non-significant (P. > 0.05) differences were found between different treatment groups. Histomorphological evaluation of the ovarian cortical tissue showed that the percentage of intact follicles was significantly (P < 0.05) higher in the fresh control (84.19±3.9) than in other groups. Non-significant differences were found between resveratrol (50.2±5.5), curcumin (48.7±5.7), quercetin (51.6±4.8) and the vitrified control (42.7±6.1) groups; however, the ZnSO4 supplemented group (23.1±8.54) differed significantly (P < 0.05) from other antioxidant groups but was non-significant (P > 0.05) with the vitrified control group (42.7±6.1). CONCLUSION: The addition of antioxidants resveratrol, curcumin and quercetin at these concentrations tended to non-significantly improve the follicular integrity after vitrification. Doi.org/10.54680/fr24410110212.


Antioxidants , Cryopreservation , Cryoprotective Agents , Curcumin , Oocytes , Ovary , Quercetin , Resveratrol , Vitrification , Vitrification/drug effects , Female , Antioxidants/pharmacology , Animals , Cryopreservation/methods , Cryopreservation/veterinary , Quercetin/pharmacology , Ovary/drug effects , Resveratrol/pharmacology , Curcumin/pharmacology , Oocytes/drug effects , Oocytes/cytology , Oocytes/physiology , Cryoprotective Agents/pharmacology , Sheep , Zinc Sulfate/pharmacology , Cell Survival/drug effects
6.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732545

Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.


Curcumin , Neurodegenerative Diseases , Neuroprotective Agents , Resveratrol , Neuroprotective Agents/pharmacology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Curcumin/pharmacology , Resveratrol/pharmacology , Ergothioneine/pharmacology , Biological Products/pharmacology , Biological Products/therapeutic use , Phycocyanin/pharmacology , Animals , Cyanobacteria , Agaricales/chemistry , Microalgae
7.
Mech Ageing Dev ; 219: 111938, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744411

Progressive liver disease and dysfunction cause toxic metabolites including ammonia and unconjugated bilirubin to accumulate in plasma. As the population ages alternatives to liver transplantation become increasingly important. One approach for use as a bridge to transplant or recovery is the use of bioartificial liver systems (BALS) containing primary or immortalised hepatocytes as ex-vivo replacements or supports for endogenous liver function. However, exposure to the hepatotoxic metabolites present in plasma causes the rapid failure of these cells to carry out their primary metabolic functions despite remaining viable. Hypothesizing that this loss of core hepatocyte phenotypes was caused by cell senescence we exposed HepG2 cell populations, grown in both standard two-dimensional tissue culture systems and in three dimensional cultures on novel alginate modified HEMA-MBA cryogels, to physiologically reflective concentrations of hepatotoxic metabolites and cytokines. HepG2 cells are forced into senescence by the toxic metabolites in under six hours (as measured by loss of thymidine analog incorporation or detectable Ki67 staining) which is associated with a ten to twenty-fold reduction in the capacity of the cultures to synthesise albumin or urea. This state of senescence induced by liver toxins (SILT) can be prevented by preincubation with either 2-5 µM resveratrol, its major in vivo metabolite dihydroresveratrol or a series of novel resveralogues with differential capacities to scavenge radicals and activate SIRT1 (including V29 which does not interact with the protein). SILT appears to be a previously unrecognised barrier to the development of BALS which can now be overcome using small molecules that are safe for human use at concentrations readily achievable in vivo.


Cellular Senescence , Resveratrol , Humans , Cellular Senescence/drug effects , Cellular Senescence/physiology , Hep G2 Cells , Resveratrol/pharmacology , Hepatocytes/metabolism , Hepatocytes/drug effects , Stilbenes/pharmacology , Liver, Artificial , Sirtuin 1/metabolism
8.
BMC Genomics ; 25(1): 514, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789922

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Antioxidants , Fishes , Resveratrol , Animals , Resveratrol/pharmacology , Fishes/metabolism , Fishes/growth & development , Fishes/genetics , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Nutrients/metabolism , Animal Feed/analysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Diet/veterinary , Gene Expression Profiling
9.
ACS Nano ; 18(21): 13635-13651, 2024 May 28.
Article En | MEDLINE | ID: mdl-38753978

As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.


Adipose Tissue , Lipoproteins, HDL , Animals , Mice , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Adipose Tissue/metabolism , Recombinant Proteins , Resveratrol/pharmacology , Resveratrol/chemistry , Obesity/drug therapy , Obesity/metabolism , Hydrogels/chemistry , Mice, Inbred C57BL , Humans , Male , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Drug Delivery Systems , Scavenger Receptors, Class B/metabolism
10.
Int J Biol Macromol ; 270(Pt 2): 132388, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754685

Cyclodextrin-based electrospun nanofibers are promising for encapsulating and preserving unstable compounds, but quick dissolution of certain nanofibers hinders their delivery application. In this study, hydroxypropyl-ß-cyclodextrin (HPßCD) was used as an effective carrier of resveratrol (RSV) to obtain the RSV/HPßCD inclusion complex (HPIC), which was then incorporated into pullulan nanofibers. For enhancement of RSV release toward colon target, multilayer structure with a pullulan/HPIC film sandwiched between two layers of hydrophobic Eudragit S100 (ES100) nanofibers was employed. The relationship between the superiority of the ES100-pullulan/HPIC-ES100 film and its multilayer structure was verified. The intimate interactions of hydrogen bonds between two adjacent layers enhanced thermal stability, and the hydrophobic outer layers improved water contact resistance. According to release results, multilayer films also showed excellent colon-targeted delivery property and approximately 78.58 % of RSV was observed to release in colon stage. In terms of release mechanism, complex mechanism best described RSV colonic release. Additionally, ES100-pullulan/HPIC-ES100 multilayer films performed higher encapsulation efficiency when compared to the structures without HPIC, which further increased the antioxidant activity and total release amount of RSV. These results suggest a promising strategy for designing safe colonic delivery systems based on multilayer and HPIC structures with superior preservation for RSV.


2-Hydroxypropyl-beta-cyclodextrin , Colon , Glucans , Nanofibers , Resveratrol , Nanofibers/chemistry , Glucans/chemistry , Resveratrol/chemistry , Resveratrol/pharmacology , Resveratrol/administration & dosage , Resveratrol/pharmacokinetics , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Colon/metabolism , Colon/drug effects , Polymethacrylic Acids/chemistry , Drug Carriers/chemistry , Drug Liberation , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Drug Delivery Systems
11.
Int J Biol Macromol ; 270(Pt 2): 132450, 2024 Jun.
Article En | MEDLINE | ID: mdl-38772462

A comparative transcriptomic and metabolomic analysis of Polygonum cuspidatum leaves treated with MeJA was carried out to investigate the regulatory mechanisms of its active compounds. A total of 692 metabolites and 77,198 unigenes were obtained, including 200 differentially accumulated metabolites and 6819 differentially expressed genes. We screened potential regulatory transcription factors involved in resveratrol and flavonoids biosynthesis, and successfully identified an MYB transcription factor, PcMYB62, which could significantly decrease the resveratrol content in P. cuspidatum leaves when over-expressed. PcMYB62 could directly bind to the MBS motifs in the promoter region of stilbene synthase (PcSTS) gene and repress its expression. Besides, PcMYB62 could also repress PcSTS expression and resveratrol biosynthesis in transgenic Arabidopsis thaliana. Our results provide abundant candidate genes for further investigation, and the new finding of the inhibitory role of PcMYB62 on the resveratrol biosynthesis could also potentially be used in metabolic engineering of resveratrol in P. cuspidatum.


Acetates , Cyclopentanes , Fallopia japonica , Gene Expression Regulation, Plant , Metabolome , Oxylipins , Plant Proteins , Resveratrol , Transcription Factors , Transcriptome , Resveratrol/metabolism , Resveratrol/pharmacology , Fallopia japonica/metabolism , Fallopia japonica/genetics , Acetates/pharmacology , Acetates/metabolism , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Oxylipins/pharmacology , Oxylipins/metabolism , Transcriptome/drug effects , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Acyltransferases/genetics , Acyltransferases/metabolism , Gene Expression Profiling , Plants, Genetically Modified/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/drug effects
12.
Physiol Res ; 73(2): 239-251, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710061

Oxygen therapy provides an important treatment for preterm and low-birth-weight neonates, however, it has been shown that prolonged exposure to high levels of oxygen (hyperoxia) is one of the factors contributing to the development of bronchopulmonary dysplasia (BPD) by inducing lung injury and airway hyperreactivity. There is no effective therapy against the adverse effects of hyperoxia. Therefore, this study was undertaken to test the hypothesis that natural phytoalexin resveratrol will overcome hyperoxia-induced airway hyperreactivity, oxidative stress, and lung inflammation. Newborn rats were exposed to hyperoxia (fraction of inspired oxygen - FiO2>95 % O2) or ambient air (AA) for seven days. Resveratrol was supplemented either in vivo (30 mg·kg-1·day-1) by intraperitoneal administration or in vitro to the tracheal preparations in an organ bath (100 mikroM). Contractile and relaxant responses were studied in tracheal smooth muscle (TSM) using the in vitro organ bath system. To explain the involvement of nitric oxide in the mechanisms of the protective effect of resveratrol against hyperoxia, a nitric oxide synthase inhibitor - Nomega-nitro-L-arginine methyl ester (L-NAME), was administered in some sets of experiments. The superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and the tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels in the lungs were determined. Resveratrol significantly reduced contraction and restored the impaired relaxation of hyperoxia-exposed TSM (p<0.001). L-NAME reduced the inhibitory effect of resveratrol on TSM contractility, as well as its promotion relaxant effect (p<0.01). Resveratrol preserved the SOD and GPx activities and decreased the expression of TNF-alpha and IL-1beta in hyperoxic animals. The findings of this study demonstrate the protective effect of resveratrol against hyperoxia-induced airway hyperreactivity and lung damage and suggest that resveratrol might serve as a therapy to prevent the adverse effects of neonatal hyperoxia. Keywords: Bronchopulmonary dysplasia, Hyperoxia, Airway hyperreactivity, Resveratrol, Pro-inflammatory cytokines.


Animals, Newborn , Bronchopulmonary Dysplasia , Disease Models, Animal , Oxidative Stress , Pneumonia , Resveratrol , Animals , Resveratrol/pharmacology , Oxidative Stress/drug effects , Bronchopulmonary Dysplasia/prevention & control , Bronchopulmonary Dysplasia/metabolism , Pneumonia/prevention & control , Pneumonia/metabolism , Pneumonia/chemically induced , Rats , Hyperoxia/complications , Hyperoxia/metabolism , Stilbenes/pharmacology , Stilbenes/therapeutic use , Antioxidants/pharmacology , Bronchial Hyperreactivity/prevention & control , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/chemically induced , Rats, Sprague-Dawley , Male
13.
Nutrients ; 16(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38794677

Resveratrol and caffeic acid are some of the most consumed antioxidants during the day, so their importance as sources and their benefits need to be evaluated and updated. This survey aimed not only to analyze whether young Romanian consumers are informed about the benefits of antioxidants in general, and resveratrol and caffeic acid in particular, but also to observe the degree of nutritional education of these participants. Young consumers know the concept of antioxidants relatively well; they managed to give examples of antioxidants and indicate their effects. The majority of those chosen drink wine and coffee, but many are unaware of their health advantages and antioxidant properties. Students are less familiar with the antioxidant chemicals resveratrol and caffeic acid. It is advised to have a thorough understanding of these significant antioxidants and their nutritional content as they are present in our regular diets, and further studies on different kinds of antioxidants are required to increase the awareness of people concerning their importance in daily life.


Antioxidants , Caffeic Acids , Coffee , Health Knowledge, Attitudes, Practice , Resveratrol , Humans , Antioxidants/administration & dosage , Antioxidants/pharmacology , Resveratrol/pharmacology , Resveratrol/administration & dosage , Caffeic Acids/pharmacology , Female , Male , Young Adult , Adult , Coffee/chemistry , Romania , Adolescent , Wine/analysis , Surveys and Questionnaires , Nutritive Value
14.
Nutrients ; 16(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38794742

This study aimed to investigate the effects of the Mediterranean diet (MD), combined with curcumin and resveratrol supplementation, on disease activity, serum inflammatory markers, and quality of life in patients with mild-to-moderate active ulcerative colitis (UC). This study was designed as a prospective multicenter three-arm randomized controlled trial. Participants were randomized to the MD, MD + curcumin, and MD + resveratrol groups. All participants were placed on the MD for 8 weeks. The MD + curcumin group also received 1600 mg/day of curcumin supplementation, whereas the MD + resveratrol group received 500 mg/day of resveratrol supplementation for 8 weeks. Anthropometric measurements, Truelove-Witts Index, Short Form-36, Inflammatory Bowel Disease Questionnaire, Mediterranean Diet Adherence Scale (MEDAS), and laboratory tests were performed at baseline and postintervention. Within-group comparisons showed that MD, MD + curcumin, and MD + resveratrol interventions were effective in reducing disease activity and inflammation and improving quality of life in individuals with UC (p < 0.05). Between-group comparisons revealed no significant difference in all parameters except for the pain subparameter of SF-36 and the MEDAS score (p < 0.05). The MD is an effective and safe intervention to be used in clinical practice in individuals with UC.


Colitis, Ulcerative , Curcumin , Diet, Mediterranean , Quality of Life , Resveratrol , Humans , Colitis, Ulcerative/drug therapy , Resveratrol/administration & dosage , Resveratrol/pharmacology , Curcumin/administration & dosage , Female , Male , Adult , Prospective Studies , Middle Aged , Dietary Supplements , Severity of Illness Index , Treatment Outcome , Young Adult
15.
Mol Biol Rep ; 51(1): 692, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796562

BACKGROUND: Resveratrol, a potent antioxidant, is known to induce the up-regulation of the internal antioxidant system. Therefore, it holds promise as a method to mitigate cryopreservation-induced injuries in bovine oocytes and embryos. This study aimed to (i) assess the enhancement in the quality of in vitro produced bovine embryos following resveratrol supplementation and (ii) monitor changes in the expression of genes associated with oxidative stress (GPX4, SOD, CPT2, NFE2L2), mitochondrial function (ATP5ME), endoplasmic reticulum function (ATF6), and embryo quality (OCT4, DNMT1, CASP3, ELOVL5). METHODS AND RESULTS: Three groups of in vitro bovine embryos were cultured with varying concentrations of resveratrol (0.01, 0.001, and 0.0001 µM), with a fourth group serving as a control. Following the vitrification process, embryos were categorized as either good or poor quality. Blastocysts were then preserved at - 80 °C for RNA isolation, followed by qRT-PCR analysis of selected genes. The low concentrations of resveratrol (0.001 µM, P < 0.05 and 0.0001 µM, P < 0.01) significantly improved the blastocyst rate compared to the control group. Moreover, the proportion of good quality vitrified embryos increased significantly (P < 0.05) in the groups treated with 0.001 and 0.0001 µM resveratrol compared to the control group. Analysis of gene expression showed a significant increase in OCT4 and DNMT1 transcripts in both good and poor-quality embryos treated with resveratrol compared to untreated embryos. Additionally, CASP3 expression was decreased in treated good embryos compared to control embryos. Furthermore, ELOVL5 and ATF6 transcripts were down-regulated in treated good embryos compared to the control group. Regarding antioxidant-related genes, GPX4, SOD, and CPT2 transcripts increased in the treated embryos, while NFE2L2 mRNA decreased in treated good embryos compared to the control group. CONCLUSIONS: Resveratrol supplementation at low concentrations effectively mitigated oxidative stress and enhanced the cryotolerance of embryos by modulating the expression of genes involved in oxidative stress response.


Antioxidants , Blastocyst , Cryopreservation , Oxidative Stress , Resveratrol , Vitrification , Animals , Cattle , Resveratrol/pharmacology , Vitrification/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Cryopreservation/methods , Antioxidants/pharmacology , Antioxidants/metabolism , Blastocyst/drug effects , Blastocyst/metabolism , Gene Expression Regulation, Developmental/drug effects , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Embryo Culture Techniques/methods , Embryonic Development/drug effects , Embryonic Development/genetics , Oocytes/drug effects , Oocytes/metabolism , Female
16.
Sci Rep ; 14(1): 12521, 2024 05 31.
Article En | MEDLINE | ID: mdl-38822085

Sirtuin1 (SIRT1) activity decreases the tuberous sclerosis complex 2 (TSC2) lysine acetylation status, inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signalling and concomitantly, activating autophagy. This study analyzes the role of TSC2 acetylation levels in its translocation to the lysosome and the mitochondrial turnover in both mouse embryonic fibroblast (MEF) and in mouse insulinoma cells (MIN6) as a model of pancreatic ß cells. Resveratrol (RESV), an activator of SIRT1 activity, promotes TSC2 deacetylation and its translocation to the lysosome, inhibiting mTORC1 activity. An improvement in mitochondrial turnover was also observed in cells treated with RESV, associated with an increase in the fissioned mitochondria, positive autophagic and mitophagic fluxes and an enhancement of mitochondrial biogenesis. This study proves that TSC2 in its deacetylated form is essential for regulating mTORC1 signalling and the maintenance of the mitochondrial quality control, which is involved in the homeostasis of pancreatic beta cells and prevents from several metabolic disorders such as Type 2 Diabetes Mellitus.


Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Mitochondria , Sirtuin 1 , Tuberous Sclerosis Complex 2 Protein , Tuberous Sclerosis Complex 2 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Animals , Acetylation , Lysosomes/metabolism , Mice , Mitochondria/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirtuin 1/metabolism , Autophagy , Protein Transport , Resveratrol/pharmacology , Signal Transduction , Fibroblasts/metabolism , Insulin-Secreting Cells/metabolism , Cell Line, Tumor
17.
Sci Rep ; 14(1): 9107, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643283

Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.


Extracellular Traps , Humans , Extracellular Traps/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Hydrogen Peroxide/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism
18.
Mol Med Rep ; 29(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38577929

GGAA motifs in the human TP53 and HELB gene promoters play a part in responding to trans­resveratrol (Rsv) in HeLa S3 cells. This sequence is also present in the 5'­upstream region of the human CDC45 gene, which encodes a component of CMG DNA helicase protein complex. The cells were treated with Rsv (20 µM), then transcripts and the translated protein were analyzed by quantitative RT­PCR and western blotting, respectively. The results showed that the CDC45 gene and protein expression levels were induced after the treatment. To examine whether they were due to the activation of transcription, a 5'­upstream 556­bp of the CDC45 gene was cloned and inserted into a multi­cloning site of the Luciferase (Luc) expression vector. In the present study, various deletion/point mutation­introduced Luc expression plasmids were constructed and they were used for the transient transfection assay. The results showed that the GGAA motif, which is included in a putative RELB protein recognizing sequence, plays a part in the promoter activity with response to Rsv in HeLa S3 cells.


Cell Cycle Proteins , Humans , Resveratrol/pharmacology , Promoter Regions, Genetic , Base Sequence , Transfection , HeLa Cells , Cell Cycle Proteins/genetics
19.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621878

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Hippo Signaling Pathway , Ovary , Pregnancy , Mice , Female , Male , Animals , bcl-2-Associated X Protein/metabolism , Resveratrol/pharmacology , Saline Solution/metabolism , Saline Solution/pharmacology , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Mammals/metabolism
20.
Mol Biol Rep ; 51(1): 516, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622329

BACKGROUND: Resveratrol has received much attention due to its beneficial effects including antioxidant activity. The purpose of this study was to investigate the therapeutic effects of resveratrol treatment on oxidative stress and insulin resistance in the skeletal muscle of high-fat diet (HFD)-fed animals. METHODS AND RESULTS: A total of 30 six-week-old C57BL/6J mice were randomly allocated to three groups (10 animals in each group): The control group in which mice were fed a normal chow diet (NCD); the HFD group in which mice were fed an HFD for 26 weeks; and the HFD-resveratrol group in which HFD was replaced by a resveratrol supplemented-HFD (400 mg/kg diet) after 10 weeks of HFD feeding. At the end of this period, gastrocnemius muscle samples were examined to determine insulin resistance and the oxidative status in the presence of HFD and resveratrol. Resveratrol supplementation in HFD-fed mice reduced body and adipose tissue weight, improved insulin sensitivity, and decreased oxidative stress as indicated by lower malonaldehyde (MDA) levels and higher total antioxidant capacity. The supplement also increased the expression and activity of antioxidative enzymes in gastrocnemius muscle and modulated Nrf2 and Keap1 expression levels. CONCLUSIONS: These results suggest that resveratrol is effective in improving the antioxidant defense system of the skeletal muscle in HFD-fed mice, indicating its therapeutic potential to combat diseases associated with insulin resistance and oxidative stress.


Antioxidants , Insulin Resistance , Mice , Animals , Antioxidants/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Signal Transduction , Insulin/metabolism
...