Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.501
Filter
1.
BMC Plant Biol ; 24(1): 681, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020275

ABSTRACT

BACKGROUND: A retrotransposon HORT1 in the promoter of the anthocyanin activator gene PeMYB11, microRNA858 (miR858) that targets PeMYB11, and a repressor PeMYBx have been implicated in pigmentation patterning diversity of harlequin Phalaenopsis orchids. However, the interrelationship among them remains to be elucidated. RESULTS: To understand how these factors interact to generate anthocyanin spots in Phalaenopsis, we successfully developed a mathematical model based on the known reaction-diffusion system to simulate their interplay and refined the conceptual biological model. Intriguingly, the expression of both PeMYBx and PeMYB11 were in phase for purple spot formation, even though they showed adverse effects on anthocyanin accumulations. An increase in the self-activation rate of PeMYB11 resulted in the increased size of purple spots, but no effects on spot fusion. Decreased degradation rate of miR858 in the purple regions, led to disruption of the formation of spotted pigmentation patterning and a full-red pigmentation pattern. Significantly, the reduced miR858 level promotes the fusion of large dark purple dots induced by the solo-LTR of HORT1, eventually generating the purple patches. In addition, the spatially heterogeneous insertion of HORT1 caused by the remnant solo-LTR of HORT1 derived from random homologous unequal recombination of HORT1 in individual cells of floral organs could explain the diverse pigmentation patterning of harlequin Phalaenopsis. CONCLUSIONS: This devised model explains how HORT1 and miR858 regulate the formation of the pigmentation patterning and holds great promise for developing efficient and innovative approaches to breeding harlequin Phalaenopsis orchids.


Subject(s)
Orchidaceae , Pigmentation , Orchidaceae/genetics , Orchidaceae/metabolism , Pigmentation/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Anthocyanins/metabolism , Computer Simulation , Plant Proteins/genetics , Plant Proteins/metabolism , Retroelements/genetics
2.
PLoS Genet ; 20(7): e1011336, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950081

ABSTRACT

Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.


Subject(s)
Genome, Plant , Recombination, Genetic , Solanum lycopersicum , Solanum lycopersicum/genetics , Hybridization, Genetic , Genetic Linkage , Plant Breeding , Retroelements/genetics , Crossing Over, Genetic , Meiosis/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Alleles
3.
BMC Genomics ; 25(1): 687, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997681

ABSTRACT

Transposable elements (TEs) are DNA sequences that can move or replicate within a genome, and their study has become increasingly important in understanding genome evolution and function. The Tridactylidae family, including Xya riparia (pygmy mole cricket), harbors a variety of transposable elements (TEs) that have been insufficiently investigated. Further research is required to fully understand their diversity and evolutionary characteristics. Hence, we conducted a comprehensive repeatome analysis of X. riparia species using the chromosome-level assembled genome. The study aimed to comprehensively analyze the abundance, distribution, and age of transposable elements (TEs) in the genome. The results indicated that the genome was 1.67 Gb, with 731.63 Mb of repetitive sequences, comprising 27% of Class II (443.25 Mb), 16% of Class I (268.45 Mb), and 1% of unknown TEs (19.92 Mb). The study found that DNA transposons dominate the genome, accounting for approximately 60% of the total repeat size, with retrotransposons and unknown elements accounting for 37% and 3% of the genome, respectively. The members of the Gypsy superfamily were the most abundant amongst retrotransposons, accounting for 63% of them. The transposable superfamilies (LTR/Gypsy, DNA/nMITE, DNA/hAT, and DNA/Helitron) collectively constituted almost 70% of the total repeat size of all six chromosomes. The study further unveiled a significant linear correlation (Pearson correlation: r = 0.99, p-value = 0.00003) between the size of the chromosomes and the repetitive sequences. The average age of DNA transposon and retrotransposon insertions ranges from 25 My (million years) to 5 My. The satellitome analysis discovered 13 satellite DNA families that comprise about 0.15% of the entire genome. In addition, the transcriptional analysis of TEs found that DNA transposons were more transcriptionally active than retrotransposons. Overall, the study suggests that the genome of X. riparia is complex, characterized by a substantial portion of repetitive elements. These findings not only enhance our understanding of TE evolution within the Tridactylidae family but also provide a foundation for future investigations into the genomic intricacies of related species.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Genome, Insect , Retroelements , Terminal Repeat Sequences , Animals , DNA Transposable Elements/genetics , Terminal Repeat Sequences/genetics , Gryllidae/genetics , Phylogeny , Genomics
4.
PLoS Biol ; 22(7): e3002704, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954724

ABSTRACT

The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has been produced by transgenic crops to counter pest resistance to the widely used crystalline (Cry) insecticidal proteins from Bt. To proactively manage pest resistance, there is an urgent need to better understand the genetic basis of resistance to Vip3Aa, which has been largely unknown. We discovered that retrotransposon-mediated alternative splicing of a midgut-specific chitin synthase gene was associated with 5,560-fold resistance to Vip3Aa in a laboratory-selected strain of the fall armyworm, a globally important crop pest. The same mutation in this gene was also detected in a field population. Knockout of this gene via CRISPR/Cas9 caused high levels of resistance to Vip3Aa in fall armyworm and 2 other lepidopteran pests. The insights provided by these results could help to advance monitoring and management of pest resistance to Vip3Aa.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Chitin Synthase , Insecticide Resistance , Retroelements , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chitin Synthase/genetics , Chitin Synthase/metabolism , Retroelements/genetics , Bacillus thuringiensis/genetics , Insecticide Resistance/genetics , CRISPR-Cas Systems , Alternative Splicing/genetics , Alternative Splicing/drug effects , Spodoptera/drug effects , Plants, Genetically Modified , Moths/drug effects , Moths/genetics
5.
Sci Rep ; 14(1): 16641, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025990

ABSTRACT

In various eukaryotic kingdoms, long terminal repeat (LTR) retrotransposons repress transcription by infiltrating heterochromatin generated within their elements. In contrast, the budding yeast LTR retrotransposon Ty1 does not itself undergo transcriptional repression, although it is capable of repressing the transcription of the inserted genes within it. In this study, we identified a DNA region within Ty1 that exerts its silencing effect via sequence orientation. We identified a DNA region within the Ty1 group-specific antigen (GAG) gene that causes gene silencing, termed GAG silencing (GAGsi), in which the silent chromatin in the GAGsi region is created by euchromatin-specific histone modifications. A characteristic inverted repeat (IR) sequence is present at the 5' end of this region, forming a chromatin boundary between promoter-specific chromatin upstream of the IR sequence and silent chromatin downstream of the IR sequence. In addition, Esc2 and Rad57, which are involved in DNA repair, were required for GAGsi silencing. Finally, the chromatin boundary was required for the transcription of Ty1 itself. Thus, the GAGsi sequence contributes to the creation of a chromatin environment that promotes Ty1 transcription.


Subject(s)
Chromatin , Gene Silencing , Retroelements , Saccharomyces cerevisiae , Retroelements/genetics , Chromatin/genetics , Chromatin/metabolism , Saccharomyces cerevisiae/genetics , Insulator Elements/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Terminal Repeat Sequences/genetics , Gene Expression Regulation, Fungal , Transcription, Genetic , Gene Products, gag/genetics , Gene Products, gag/metabolism
6.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38946312

ABSTRACT

Recent years have seen a dramatic increase in the number of canine genome assemblies available. Duplications are an important source of evolutionary novelty and are also prone to misassembly. We explored the duplication content of nine canine genome assemblies using both genome self-alignment and read-depth approaches. We find that 8.58% of the genome is duplicated in the canFam4 assembly, derived from the German Shepherd Dog Mischka, including 90.15% of unplaced contigs. Highlighting the continued difficulty in properly assembling duplications, less than half of read-depth and assembly alignment duplications overlap, but the mCanLor1.2 Greenland wolf assembly shows greater concordance. Further study shows the presence of multiple segments that have alignments to four or more duplicate copies. These high-recurrence duplications correspond to gene retrocopies. We identified 3,892 candidate retrocopies from 1,316 parental genes in the canFam4 assembly and find that ∼8.82% of duplicated base pairs involve a retrocopy, confirming this mechanism as a major driver of gene duplication in canines. Similar patterns are found across eight other recent canine genome assemblies, with metrics supporting a greater quality of the PacBio HiFi mCanLor1.2 assembly. Comparison between the wolf and other canine assemblies found that 92% of retrocopy insertions are shared between assemblies. By calculating the number of generations since genome divergence, we estimate that new retrocopy insertions appear, on average, in 1 out of 3,514 births. Our analyses illustrate the impact of retrogene formation on canine genomes and highlight the variable representation of duplicated sequences among recently completed canine assemblies.


Subject(s)
Gene Duplication , Genome , Dogs/genetics , Animals , Genomics , Evolution, Molecular , Retroelements
7.
Genes Dev ; 38(11-12): 554-568, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38960717

ABSTRACT

Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1ß-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.


Subject(s)
Retroelements , Animals , Retroelements/genetics , Mice , Long Interspersed Nucleotide Elements/genetics , Histones/metabolism , Histones/genetics , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Humans , Endogenous Retroviruses/genetics , Gene Expression Regulation/genetics , Chromobox Protein Homolog 5
8.
Mol Biol (Mosk) ; 58(1): 99-120, 2024.
Article in Russian | MEDLINE | ID: mdl-38943583

ABSTRACT

Regulation of retrotransposon activity in somatic tissues is a complex mechanism that has still not been studied in detail. It is strongly believed that siRNA interference is main mechanism of retrotransposon activity regulation outside the gonads, but recently was demonstrated that piRNA interference participates in retrotransposon repression during somatic tissue development. In this work, using RT-PCR, we demonstrated that during ontogenesis piRNA interference determinates retrotransposon expression level on imago stage and retrotransposons demonstrate tissue-specific expression. The major factor of retrotransposon tissue-specific expression is presence of transcription factor binding sites in their regulatory regions.


Subject(s)
Drosophila melanogaster , RNA, Small Interfering , Retroelements , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Retroelements/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Transcription Factors/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Organ Specificity , Binding Sites , RNA Interference
9.
Biomolecules ; 14(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927123

ABSTRACT

Zygotic genome activation (ZGA) is a pivotal event in mammalian embryogenesis, marking the transition from maternal to zygotic control of development. During the ZGA process that is characterized by the intricate cascade of gene expression, who tipped the first domino in a meticulously arranged sequence is a subject of paramount interest. Recently, Dux, Obox and Nr5a2 were identified as pioneer transcription factors that reside at the top of transcriptional hierarchy. Through co-option of retrotransposon elements as hubs for transcriptional activation, these pioneer transcription factors rewire the gene regulatory network, thus initiating ZGA. In this review, we provide a snapshot of the mechanisms underlying the functions of these pioneer transcription factors. We propose that ZGA is the starting point where the embryo's own genome begins to influence development trajectory, therefore in-depth dissecting the functions of pioneer transcription factors during ZGA will form a cornerstone of our understanding for early embryonic development, which will pave the way for advancing our grasp of mammalian developmental biology and optimizing in vitro production (IVP) techniques.


Subject(s)
Genome , Transcription Factors , Zygote , Zygote/metabolism , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Gene Expression Regulation, Developmental , Embryonic Development/genetics , Retroelements/genetics , Transcriptional Activation/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
10.
Viruses ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38932184

ABSTRACT

Endogenous retroviruses (ERVs) are related to long terminal repeat (LTR) retrotransposons, comprising gene sequences of exogenous retroviruses integrated into the host genome and inherited according to Mendelian law. They are considered to have contributed greatly to the evolution of host genome structure and function. We previously characterized HERV-K HML-9 in the human genome. However, the biological function of this type of element in the genome of the chimpanzee, which is the closest living relative of humans, largely remains elusive. Therefore, the current study aims to characterize HML-9 in the chimpanzee genome and to compare the results with those in the human genome. Firstly, we report the distribution and genetic structural characterization of the 26 proviral elements and 38 solo LTR elements of HML-9 in the chimpanzee genome. The results showed that the distribution of these elements displayed a non-random integration pattern, and only six elements maintained a relatively complete structure. Then, we analyze their phylogeny and reveal that the identified elements all cluster together with HML-9 references and with those identified in the human genome. The HML-9 integration time was estimated based on the 2-LTR approach, and the results showed that HML-9 elements were integrated into the chimpanzee genome between 14 and 36 million years ago and into the human genome between 18 and 49 mya. In addition, conserved motifs, cis-regulatory regions, and enriched PBS sequence features in the chimpanzee genome were predicted based on bioinformatics. The results show that pathways significantly enriched for ERV LTR-regulated genes found in the chimpanzee genome are closely associated with disease development, including neurological and neurodevelopmental psychiatric disorders. In summary, the identification, characterization, and genomics of HML-9 presented here not only contribute to our understanding of the role of ERVs in primate evolution but also to our understanding of their biofunctional significance.


Subject(s)
Endogenous Retroviruses , Evolution, Molecular , Genome , Pan troglodytes , Phylogeny , Terminal Repeat Sequences , Animals , Endogenous Retroviruses/genetics , Humans , Genome, Human , Proviruses/genetics , Virus Integration , Retroelements
11.
Nat Commun ; 15(1): 4946, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862540

ABSTRACT

Genomic aberrations are a critical impediment for the safe medical use of iPSCs and their origin and developmental mechanisms remain unknown. Here we find through WGS analysis of human and mouse iPSC lines that genomic mutations are de novo events and that, in addition to unmodified cytosine base prone to deamination, the DNA methylation sequence CpG represents a significant mutation-prone site. CGI and TSS regions show increased mutations in iPSCs and elevated mutations are observed in retrotransposons, especially in the AluY subfamily. Furthermore, increased cytosine to thymine mutations are observed in differentially methylated regions. These results indicate that in addition to deamination of cytosine, demethylation of methylated cytosine, which plays a central role in genome reprogramming, may act mutagenically during iPSC generation.


Subject(s)
CpG Islands , Cytosine , DNA Methylation , Induced Pluripotent Stem Cells , Point Mutation , Induced Pluripotent Stem Cells/metabolism , Cytosine/metabolism , Animals , Humans , Mice , Cellular Reprogramming/genetics , Retroelements/genetics , Cell Line
12.
Nat Commun ; 15(1): 4772, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858384

ABSTRACT

The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.


Subject(s)
Atherosclerosis , Inflammation , Interferon Type I , Macrophages , Retroelements , Werner Syndrome , Interferon Type I/metabolism , Werner Syndrome/genetics , Werner Syndrome/metabolism , Humans , Atherosclerosis/metabolism , Atherosclerosis/immunology , Atherosclerosis/genetics , Atherosclerosis/pathology , Macrophages/metabolism , Macrophages/immunology , Retroelements/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Induced Pluripotent Stem Cells/metabolism , Signal Transduction , Coculture Techniques , Myocytes, Smooth Muscle/metabolism , Endothelial Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Cellular Senescence , Cell Proliferation
13.
Theor Appl Genet ; 137(7): 149, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836874

ABSTRACT

KEY MESSAGE: Analyze the evolutionary pattern of DNAJ protein genes in the Panicoideae, including pearl millet, to identify and characterize the biological function of PgDNAJ genes in pearl millet. Global warming has become a major factor threatening food security and human development. It is urgent to analyze the heat-tolerant mechanism of plants and cultivate crops that are adapted to high temperature conditions. The Panicoideae are the second largest subfamily of the Poaceae, widely distributed in warm temperate and tropical regions. Many of these species have been reported to have strong adaptability to high temperature stress, such as pearl millet, foxtail millet and sorghum. The evolutionary differences in DNAJ protein genes among 12 Panicoideae species and 10 other species were identified and analyzed. Among them, 79% of Panicoideae DNAJ protein genes were associated with retrotransposon insertion. Analysis of the DNAJ protein pan-gene family in six pearl millet accessions revealed that the non-core genes contained significantly more TEs than the core genes. By identifying and analyzing the distribution and types of TEs near the DNAJ protein genes, it was found that the insertion of Copia and Gypsy retrotransposons provided the source of expansion for the DNAJ protein genes in the Panicoideae. Based on the analysis of the evolutionary pattern of DNAJ protein genes in Panicoideae, the PgDNAJ was obtained from pearl millet through identification. PgDNAJ reduces the accumulation of reactive oxygen species caused by high temperature by activating ascorbate peroxidase (APX), thereby improving the heat resistance of plants. In summary, these data provide new ideas for mining potential heat-tolerant genes in Panicoideae, and help to improve the heat tolerance of other crops.


Subject(s)
Pennisetum , Plant Proteins , Pennisetum/genetics , Pennisetum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , HSP40 Heat-Shock Proteins/genetics , Gene Expression Regulation, Plant , Retroelements/genetics , Poaceae/genetics , Evolution, Molecular , Genes, Plant
14.
BMC Ecol Evol ; 24(1): 72, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816840

ABSTRACT

Ctenoluciidae is a Neotropical freshwater fish family composed of two genera, Ctenolucius (C. beani and C. hujeta) and Boulengerella (B. cuvieri, B. lateristriga, B. lucius, B. maculata, and B. xyrekes), which present diploid number conservation of 36 chromosomes and a strong association of telomeric sequences with ribosomal DNAs. In the present study, we performed chromosomal mapping of microsatellites and transposable elements (TEs) in Boulengerella species and Ctenolucius hujeta. We aim to understand how those sequences are distributed in these organisms' genomes and their influence on the chromosomal evolution of the group. Our results indicate that repetitive sequences may had an active role in the karyotypic diversification of this family, especially in the formation of chromosomal hotspots that are traceable in the diversification processes of Ctenoluciidae karyotypes. We demonstrate that (GATA)n sequences also accumulate in the secondary constriction formed by the 18 S rDNA site, which shows consistent size heteromorphism between males and females in all Boulengerella species, suggesting an initial process of sex chromosome differentiation.


Subject(s)
Characiformes , Chromosome Mapping , Repetitive Sequences, Nucleic Acid , Retroelements , Animals , Characiformes/genetics , Male , Female , Retroelements/genetics , Repetitive Sequences, Nucleic Acid/genetics , Evolution, Molecular , Microsatellite Repeats/genetics , Karyotype , Chromosomes/genetics
15.
BMC Genomics ; 25(1): 511, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783171

ABSTRACT

BACKGROUND: Transposable elements (TEs) are mobile DNA sequences that propagate within genomes, occupying a significant portion of eukaryotic genomes and serving as a source of genetic variation and innovation. TEs can impact genome dynamics through their repetitive nature and mobility. Nematodes are incredibly versatile organisms, capable of thriving in a wide range of environments. The plant-parasitic nematodes are able to infect nearly all vascular plants, leading to significant crop losses and management expenses worldwide. It is worth noting that plant parasitism has evolved independently at least three times within this nematode group. Furthermore, the genome size of plant-parasitic nematodes can vary substantially, spanning from 41.5 Mbp to 235 Mbp. To investigate genome size variation and evolution in plant-parasitic nematodes, TE composition, diversity, and evolution were analysed in 26 plant-parasitic nematodes from 9 distinct genera in Clade IV. RESULTS: Interestingly, despite certain species lacking specific types of DNA transposons or retrotransposon superfamilies, they still exhibit a diverse range of TE content. Identification of species-specific TE repertoire in nematode genomes provides a deeper understanding of genome evolution in plant-parasitic nematodes. An intriguing observation is that plant-parasitic nematodes possess extensive DNA transposons and retrotransposon insertions, including recent sightings of LTR/Gypsy and LTR/Pao superfamilies. Among them, the Gypsy superfamilies were found to encode Aspartic proteases in the plant-parasitic nematodes. CONCLUSIONS: The study of the transposable element (TE) composition in plant-parasitic nematodes has yielded insightful discoveries. The findings revealed that certain species exhibit lineage-specific variations in their TE makeup. Discovering the species-specific TE repertoire in nematode genomes is a crucial element in understanding the evolution of genomes in plant-parasitic nematodes. It allows us to gain a deeper insight into the intricate workings of these organisms and their genetic makeup. With this knowledge, we are gaining a fundamental piece in the puzzle of understanding the evolution of these parasites. Moreover, recent transpositions have led to the acquisition of new TE superfamilies, especially Gypsy and Pao retrotransposons, further expanding the diversity of TEs in these nematodes. Significantly, the widely distributed Gypsy superfamily possesses proteases that are exclusively associated with parasitism during nematode-host interactions. These discoveries provide a deeper understanding of the TE landscape within plant-parasitic nematodes.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Genetic Variation , Nematoda , Phylogeny , Plants , Animals , DNA Transposable Elements/genetics , Nematoda/genetics , Plants/parasitology , Plants/genetics , Retroelements/genetics , Genome Size
16.
Commun Biol ; 7(1): 582, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755427

ABSTRACT

The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Retroelements , Animals , Retroelements/genetics , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , CpG Islands , Male
17.
Sci Rep ; 14(1): 10932, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740892

ABSTRACT

SINE-VNTR-Alu (SVA) retrotransposons are transposable elements which represent a source of genetic variation. We previously demonstrated that the presence/absence of a human-specific SVA, termed SVA_67, correlated with the progression of Parkinson's disease (PD). In the present study, we demonstrate that SVA_67 acts as expression quantitative trait loci, thereby exhibiting a strong regulatory effect across the genome using whole genome and transcriptomic data from the Parkinson's progression markers initiative cohort. We further show that SVA_67 is polymorphic for its variable number tandem repeat domain which correlates with both regulatory properties in a luciferase reporter gene assay in vitro and differential expression of multiple genes in vivo. Additionally, this variation's utility as a biomarker is reflected in a correlation with a number of PD progression markers. These experiments highlight the plethora of transcriptomic and phenotypic changes associated with SVA_67 polymorphism which should be considered when investigating the missing heritability of neurodegenerative diseases.


Subject(s)
Alu Elements , Disease Progression , Minisatellite Repeats , Parkinson Disease , Polymorphism, Genetic , Retroelements , Parkinson Disease/genetics , Humans , Minisatellite Repeats/genetics , Retroelements/genetics , Alu Elements/genetics , Quantitative Trait Loci , Biomarkers , Short Interspersed Nucleotide Elements/genetics
18.
Nat Commun ; 15(1): 4295, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769327

ABSTRACT

Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.


Subject(s)
Capsaicin , Capsicum , Evolution, Molecular , Genome, Plant , Phylogeny , Telomere , Capsicum/genetics , Capsicum/metabolism , Capsaicin/metabolism , Telomere/genetics , Telomere/metabolism , Fruit/genetics , Fruit/metabolism , Retroelements/genetics , Gene Expression Regulation, Plant
19.
Cell Rep ; 43(5): 114239, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753487

ABSTRACT

R2 non-long terminal repeat (non-LTR) retrotransposons are among the most extensively distributed mobile genetic elements in multicellular eukaryotes and show promise for applications in transgene supplementation of the human genome. They insert new gene copies into a conserved site in 28S ribosomal DNA with exquisite specificity. R2 clades are defined by the number of zinc fingers (ZFs) at the N terminus of the retrotransposon-encoded protein, postulated to additively confer DNA site specificity. Here, we illuminate general principles of DNA recognition by R2 N-terminal domains across and between clades, with extensive, specific recognition requiring only one or two compact domains. DNA-binding and protection assays demonstrate broadly shared as well as clade-specific DNA interactions. Gene insertion assays in cells identify the N-terminal domains sufficient for target-site insertion and reveal roles in second-strand cleavage or synthesis for clade-specific ZFs. Our results have implications for understanding evolutionary diversification of non-LTR retrotransposon insertion mechanisms and the design of retrotransposon-based gene therapies.


Subject(s)
Retroelements , Retroelements/genetics , Humans , DNA/metabolism , DNA/genetics , Zinc Fingers , Protein Domains , Protein Binding
20.
Nat Neurosci ; 27(7): 1274-1284, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38773348

ABSTRACT

Retrotransposons are mobile DNA sequences duplicated via transcription and reverse transcription of an RNA intermediate. Cis-regulatory elements encoded by retrotransposons can also promote the transcription of adjacent genes. Somatic LINE-1 (L1) retrotransposon insertions have been detected in mammalian neurons. It is, however, unclear whether L1 sequences are mobile in only some neuronal lineages or therein promote neurodevelopmental gene expression. Here we report programmed L1 activation by SOX6, a transcription factor critical for parvalbumin (PV) interneuron development. Mouse PV interneurons permit L1 mobilization in vitro and in vivo, harbor unmethylated L1 promoters and express full-length L1 mRNAs and proteins. Using nanopore long-read sequencing, we identify unmethylated L1s proximal to PV interneuron genes, including a novel L1 promoter-driven Caps2 transcript isoform that enhances neuron morphological complexity in vitro. These data highlight the contribution made by L1 cis-regulatory elements to PV interneuron development and transcriptome diversity, uncovered due to L1 mobility in this milieu.


Subject(s)
Interneurons , Long Interspersed Nucleotide Elements , Parvalbumins , Animals , Interneurons/metabolism , Interneurons/physiology , Mice , Long Interspersed Nucleotide Elements/genetics , Parvalbumins/metabolism , Retroelements/genetics , Male , Neurogenesis/physiology , Neurogenesis/genetics , Mice, Inbred C57BL , Gene Expression Regulation, Developmental/genetics
SELECTION OF CITATIONS
SEARCH DETAIL