Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.963
Filter
1.
Viruses ; 16(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39066160

ABSTRACT

The evolutionary pressures exerted by viral infections have led to the development of various cellular proteins with potent antiviral activities, some of which are known as antiviral restriction factors. TRIpartite Motif-containing protein 5 alpha (TRIM5α) is a well-studied restriction factor of retroviruses that exhibits virus- and host-species-specific functions in protecting against cross-primate transmission of specific lentiviruses. This specificity is achieved at the level of the host gene through positive selection predominantly within its C-terminal B30.2/PRYSPRY domain, which is responsible for the highly specific recognition of retroviral capsids. However, more recent work has challenged this paradigm, demonstrating TRIM5α as a restriction factor for retroelements as well as phylogenetically distinct viral families, acting similarly through the recognition of viral gene products via B30.2/PRYSPRY. This spectrum of antiviral activity raises questions regarding the genetic and structural plasticity of this protein as a mediator of the recognition of a potentially diverse array of viral molecular patterns. This review highlights the dynamic evolutionary footprint of the B30.2/PRYSPRY domain in response to retroviruses while exploring the guided 'specificity' conferred by the totality of TRIM5α's additional domains that may account for its recently identified promiscuity.


Subject(s)
Antiviral Restriction Factors , Immunity, Innate , Retroviridae , Tripartite Motif Proteins , Humans , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/immunology , Tripartite Motif Proteins/metabolism , Animals , Retroviridae/immunology , Retroviridae/genetics , Retroviridae/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/immunology , Evolution, Molecular , Host-Pathogen Interactions/immunology
2.
Curr Opin Virol ; 67: 101427, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39047314

ABSTRACT

The koala retrovirus, KoRV, is one of the few models for understanding the health consequences of retroviral colonization of the germline. Such colonization events transition exogenous infectious retroviruses to Mendelian traits or endogenous retroviruses (ERVs). KoRV is currently in a transitional state from exogenous retrovirus to ERV, which in koalas (Phascolarctos cinereus) has been associated with strongly elevated levels of neoplasia. In this review, we describe what is currently known about the associations and underlying mechanisms of KoRV-induced neoplasia.


Subject(s)
Endogenous Retroviruses , Neoplasms , Phascolarctidae , Retroviridae Infections , Animals , Neoplasms/virology , Phascolarctidae/virology , Endogenous Retroviruses/genetics , Endogenous Retroviruses/physiology , Endogenous Retroviruses/pathogenicity , Retroviridae Infections/virology , Retroviridae Infections/veterinary , Humans , Retroviridae/physiology , Retroviridae/pathogenicity , Retroviridae/genetics
3.
Retrovirology ; 21(1): 12, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886829

ABSTRACT

An essential regulatory hub for retroviral replication events, the 5' untranslated region (UTR) encodes an ensemble of cis-acting replication elements that overlap in a logical manner to carry out divergent RNA activities in cells and in virions. The primer binding site (PBS) and primer activation sequence initiate the reverse transcription process in virions, yet overlap with structural elements that regulate expression of the complex viral proteome. PBS-segment also encompasses the attachment site for Integrase to cut and paste the 3' long terminal repeat into the host chromosome to form the provirus and purine residues necessary to execute the precise stoichiometry of genome-length transcripts and spliced viral RNAs. Recent genetic mapping, cofactor affinity experiments, NMR and SAXS have elucidated that the HIV-1 PBS-segment folds into a three-way junction structure. The three-way junction structure is recognized by the host's nuclear RNA helicase A/DHX9 (RHA). RHA tethers host trimethyl guanosine synthase 1 to the Rev/Rev responsive element (RRE)-containing RNAs for m7-guanosine Cap hyper methylation that bolsters virion infectivity significantly. The HIV-1 trimethylated (TMG) Cap licenses specialized translation of virion proteins under conditions that repress translation of the regulatory proteins. Clearly host-adaption and RNA shapeshifting comprise the fundamental basis for PBS-segment orchestrating both reverse transcription of virion RNA and the nuclear modification of m7G-Cap for biphasic translation of the complex viral proteome. These recent observations, which have exposed even greater complexity of retroviral RNA biology than previously established, are the impetus for this article. Basic research to fully comprehend the marriage of PBS-segment structures and host RNA binding proteins that carry out retroviral early and late replication events is likely to expose an immutable virus-specific therapeutic target to attenuate retrovirus proliferation.


Subject(s)
5' Untranslated Regions , HIV-1 , RNA, Viral , Virus Replication , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , HIV-1/physiology , HIV-1/genetics , Binding Sites , Gene Expression Regulation, Viral , Reverse Transcription , Retroviridae/physiology , Retroviridae/genetics
4.
Viruses ; 16(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38932225

ABSTRACT

The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.


Subject(s)
Interferons , Protein Biosynthesis , Retroviridae , Humans , Interferons/immunology , Interferons/metabolism , Interferons/genetics , Retroviridae/genetics , Retroviridae/physiology , Immunity, Innate , Animals , Signal Transduction , Retroviridae Infections/virology , Retroviridae Infections/immunology , Retroviridae Infections/genetics
5.
Blood Cancer Discov ; 5(4): 267-275, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38747501

ABSTRACT

Somatic variants in DNA damage response genes such as ATM are widespread in hematologic malignancies. ATM protein is essential for double-strand DNA break repair. Germline ATM deficiencies underlie ataxia-telangiectasia (A-T), a disease manifested by radiosensitivity, immunodeficiency, and predisposition to lymphoid malignancies. Patients with A-T diagnosed with malignancies have poor tolerance to chemotherapy or radiation. In this study, we investigated chimeric antigen receptor (CAR) T cells using primary T cells from patients with A-T (ATM-/-), heterozygote donors (ATM+/-), and healthy donors. ATM-/- T cells proliferate and can be successfully transduced with CARs, though functional impairment of ATM-/- CAR T-cells was observed. Retroviral transduction of the CAR in ATM-/- T cells resulted in high rates of chromosomal lesions at CAR insertion sites, as confirmed by next-generation long-read sequencing. This work suggests that ATM is essential to preserve genome integrity of CAR T-cells during retroviral manufacturing, and its lack poses a risk of chromosomal translocations and potential leukemogenicity. Significance: CAR T-cells are clinically approved genetically modified cells, but the control of genome integrity remains largely uncharacterized. This study demonstrates that ATM deficiency marginally impairs CAR T-cell function and results in high rates of chromosomal aberrations after retroviral transduction, which may be of concern in patients with DNA repair deficiencies.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Receptors, Chimeric Antigen , Retroviridae , T-Lymphocytes , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Humans , T-Lymphocytes/immunology , Retroviridae/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/immunology , Transduction, Genetic , DNA Damage , Immunotherapy, Adoptive/methods
6.
Methods Mol Biol ; 2807: 163-171, 2024.
Article in English | MEDLINE | ID: mdl-38743228

ABSTRACT

Mammalian cells have developed and optimized defense mechanisms to prevent or hamper viral infection. The early transcriptional silencing of incoming viral DNAs is one such antiviral strategy and seems to be of fundamental importance, since most cell types silence unintegrated retroviral DNAs. In this chapter, a method for chromatin immunoprecipitation of unintegrated DNA is described. This technique allows investigators to examine histone and co-factor interactions with unintegrated viral DNAs as well as to analyze histone modifications in general or in a kinetic fashion at various time points during viral infection.


Subject(s)
Chromatin Immunoprecipitation , Genome, Viral , Histones , Retroviridae , Histones/metabolism , Humans , Chromatin Immunoprecipitation/methods , Retroviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology , Animals , DNA, Viral/genetics , Antibodies/immunology
7.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688902

ABSTRACT

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Subject(s)
Adenosine Deaminase , Agammaglobulinemia , Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Mas , Severe Combined Immunodeficiency , Humans , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Genetic Therapy/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/genetics , Genetic Vectors/genetics , Agammaglobulinemia/therapy , Agammaglobulinemia/genetics , Male , Retroviridae/genetics
8.
Microbiol Spectr ; 12(6): e0432323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687078

ABSTRACT

An investigation into retrovirus was conducted in six species of bats (Myotis aurascens, Myotis petax, Myotis macrodactylus, Miniopterus fuliginosus, Rhinolophus ferrumequinum, and Pipistrellus abramus) inhabiting South Korea. Exogenous retroviruses (XRVs) were detected in the tissue samples of R. ferrumequinum individuals by PCR assay. Proviruses were identified in all tissue samples through viral quantification using a digital PCR assay per organ (lung, intestine, heart, brain, wing, kidney, and liver), with viral loads varying greatly between each organ. In phylogenetic analysis based on the whole genome, the Korean bat retroviruses and the R. ferrumequinum retrovirus (RfRV) strain formed a new clade distinct from the Gammaretrovirus clade. The phylogenetic results determined these viruses to be RfRV-like viruses. In the Simplot comparison, Korean RfRV-like viruses exhibited relatively strong fluctuated patterns in the latter part of the envelope gene area compared to other gene areas. Several point mutations within this region (6,878-7,774 bp) of these viruses were observed compared to the RfRV sequence. One Korean RfRV-like virus (named Y4b strain) was successfully recovered in the Raw 264.7 cell line, and virus particles replicated in the cells were confirmed by transmission electron microscopy. RfRVs (or RfRV-like viruses) have been spreading since their first discovery in 2012, and the Korean RfRV-like viruses were assumed to be XRVs that evolved from RfRV.IMPORTANCER. ferrumequinum retrovirus (RfRV)-like viruses were identified in greater horseshoe bats in South Korea. These RfRV-like viruses were considered exogenous retroviruses (XRVs) that emerged from RfRV. Varying amounts of provirus detected in different organs suggest ongoing viral activity, replication, and de novo integration in certain organs. Additionally, the successful recovery of the virus in the Raw 264.7 cell line provides strong evidence supporting their status as XRVs. These viruses have now been identified in South Korea and, more recently, in Kenya since RfRV was discovered in China in 2012, indicating that RfRVs (or RfRV-like viruses) have spread worldwide.


Subject(s)
Chiroptera , Phylogeny , Animals , Chiroptera/virology , Republic of Korea , Mice , Proviruses/genetics , Proviruses/isolation & purification , Retroviridae Infections/virology , Retroviridae Infections/veterinary , Retroviridae/isolation & purification , Retroviridae/classification , Retroviridae/genetics , Genome, Viral , Viral Load
9.
Viruses ; 16(4)2024 04 13.
Article in English | MEDLINE | ID: mdl-38675945

ABSTRACT

The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.


Subject(s)
Congresses as Topic , Retroviridae , Virus Integration , Humans , Virus Integration/drug effects , Retroviridae/physiology , Retroviridae/drug effects , Retroviridae/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , HIV-1/genetics , History, 21st Century , History, 20th Century
10.
Rev Med Virol ; 34(2): e2530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517354

ABSTRACT

A significant portion of human cancers are caused by oncoviruses (12%-25%). Oncoviruses employ various strategies to promote their replication and induce tumourigenesis in host cells, one of which involves modifying the gene expression patterns of the host cells, leading to the rewiring of genes and resulting in significant changes in cellular processes and signalling pathways. In recent studies, a specific mode of gene regulation known as circular RNA (circRNA)-mediated competing endogenous RNA (ceRNA) networks has emerged as a key player in this context. CircRNAs, a class of non-coding RNA molecules, can interact with other RNA molecules, such as mRNAs and microRNAs (miRNAs), through a process known as ceRNA crosstalk. This interaction occurs when circRNAs, acting as sponges, sequester miRNAs, thereby preventing them from binding to their target mRNAs and modulating their expression. By rewiring the host cell genome, oncoviruses have the ability to manipulate the expression and activity of circRNAs, thereby influencing the ceRNA networks that can profoundly impact cellular processes such as cell proliferation, differentiation, apoptosis, and immune responses. This review focuses on a comprehensive evaluation of the latest findings on the involvement of virus-induced reprogramming of host circRNA-mediated ceRNA networks in the development and pathophysiology of human viral cancers, including cervical cancer, gastric cancer, nasopharyngeal carcinoma, Kaposi's sarcoma, hepatocellular carcinoma, and diffuse large B cell lymphoma. Understanding these mechanisms can improve our knowledge of how oncoviruses contribute to human tumourigenesis and identify potential targets for developing optimised therapies and diagnostic tools for viral cancers.


Subject(s)
Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Messenger/metabolism , RNA, Competitive Endogenous , Retroviridae/genetics , Retroviridae/metabolism , Gene Expression Profiling/methods , Carcinogenesis/genetics
11.
Methods Mol Biol ; 2849: 55-72, 2024.
Article in English | MEDLINE | ID: mdl-38411888

ABSTRACT

Short hairpin RNA (shRNA) is a technique used to silence gene expression stably in various cells. There are however several reported problems. First, the cloning of oligos can lead to ligation of multiple copies; second, premature termination of sequencing reaction during confirmation of hairpin template; third, microdeletions/substitutions in hairpin during cloning; and fourth, off target effects. In this chapter, we have described a retrovirus transduction-based protocol that can be used on cells in culture without encountering any of the reported issues. We have used this protocol to clone shRNA templates for at least 10 different genes and confirmed them by dideoxy sequencing. The knockdown of 75-90% for two mRNA expressing genes, CDH5 and keratin KRT80, and a long non-coding RNA, XIST, is presented here.


Subject(s)
Gene Knockdown Techniques , RNA, Small Interfering , Retroviridae , RNA, Small Interfering/genetics , Gene Knockdown Techniques/methods , Humans , Retroviridae/genetics , RNA, Long Noncoding/genetics , Animals , Transduction, Genetic , RNA Interference , Genetic Vectors/genetics , Cloning, Molecular/methods , Mice
12.
Nat Biomed Eng ; 8(4): 415-426, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374224

ABSTRACT

The blood-brain barrier (BBB) restricts the systemic delivery of messenger RNAs (mRNAs) into diseased neurons. Although leucocyte-derived extracellular vesicles (EVs) can cross the BBB at inflammatory sites, it is difficult to efficiently load long mRNAs into the EVs and to enhance their neuronal uptake. Here we show that the packaging of mRNA into leucocyte-derived EVs and the endocytosis of the EVs by neurons can be enhanced by engineering leucocytes to produce EVs that incorporate retrovirus-like mRNA-packaging capsids. We transfected immortalized and primary bone-marrow-derived leucocytes with DNA or RNA encoding the capsid-forming activity-regulated cytoskeleton-associated (Arc) protein as well as capsid-stabilizing Arc 5'-untranslated-region RNA elements. These engineered EVs inherit endothelial adhesion molecules from donor leukocytes, recruit endogenous enveloping proteins to their surface, cross the BBB, and enter the neurons in neuro-inflammatory sites. Produced from self-derived donor leukocytes, the EVs are immunologically inert, and enhanced the neuronal uptake of the packaged mRNA in a mouse model of low-grade chronic neuro-inflammation.


Subject(s)
Blood-Brain Barrier , Extracellular Vesicles , Neurons , RNA, Messenger , Animals , Neurons/metabolism , Extracellular Vesicles/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice , Blood-Brain Barrier/metabolism , Retroviridae/genetics , Capsid/metabolism , Leukocytes/metabolism , Humans , Mice, Inbred C57BL
13.
Arch Microbiol ; 206(3): 130, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416180

ABSTRACT

The human immunodeficiency virus (HIV) is a type of lentivirus that targets the human immune system and leads to acquired immunodeficiency syndrome (AIDS) at a later stage. Up to 2021, there are millions still living with HIV and many have lost their lives. To date, many anti-HIV compounds have been discovered in living organisms, especially plants and marine sponges. However, no treatment can offer a complete cure, but only suppressing it with a life-long medication, known as combined antiretroviral therapy (cART) or highly active antiretroviral therapy (HAART) which are often associated with various adverse effects. Also, it takes many years for a discovered compound to be approved for clinical use. Thus, by employing advanced technologies such as automation, conducting systematic screening and testing protocols may boost the discovery and development of potent and curative therapeutics for HIV infection/AIDS. In this review, we aim to summarize the antiretroviral therapies/compounds and their associated drawbacks since the discovery of azidothymidine. Additionally, we aim to provide an updated analysis of the most recent discoveries of promising antiretroviral candidates, along with an exploration of the current limitations within antiretroviral research. Finally, we intend to glean insightful perspectives and propose future research directions in this crucial area of study.


Subject(s)
HIV Infections , Porifera , Humans , Animals , Retroviridae/genetics , HIV Infections/drug therapy , Data Collection , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
14.
Viruses ; 16(2)2024 01 23.
Article in English | MEDLINE | ID: mdl-38399943

ABSTRACT

Understanding the local epidemiology of feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) in Hong Kong will inform retrovirus prevention strategies. Domestic cat hepadnavirus (DCH), a novel hepatitis-B-like virus, is commonly detected among client-owned cats in Hong Kong, but community cats have not been studied. The aims of this study were to investigate the frequency and potential risk factors for (i) FeLV and FIV among community and client-owned cats and (ii) perform molecular detection of DCH among community cats in Hong Kong. Blood samples from 713 cats were obtained from client-owned (n = 415, residual diagnostic) and community cats (n = 298, at trap-neuter-return). Point-of-care (POC) testing for FeLV antigen and feline immunodeficiency virus (FIV) anti-p15 and p24 antibodies was performed. FeLV-positive samples were progressed to p27 sandwich enzyme-linked immunosorbent assay. Whole blood DNA was tested with qPCRs for FeLV U3 and gag, and nested PCRs where additional information was required. DCH qPCR was performed on a subset of community cats (n = 193). A single, regressive, FeLV infection was detected in a client-owned cat (1/415 FeLV U3 qPCR positive, 0.2%, 95% CI 0.0-1.3%). Five/415 client-owned cats tested presumably false FeLV-antigen positive (qPCR negative). No markers of FeLV infection were detected in community cats (0/298; 0%). FIV seroprevalence was much higher in community cats (46/298, 15.4%) than in client-owned cats (13/415, 3.1%) (p < 0.001). Mixed breed was a risk factor for FIV infection in client-owned cats. Neither sex nor age were associated with FIV infection. DCH DNA was detected in 34/193 (17.6%) community cats (median viral load 6.32 × 103 copies/reaction). FeLV infection is rare in Hong Kong, negatively impacting the positive predictive value of diagnostic tests. FeLV-antigen testing remains the screening test of choice, but confirmation of a positive result using FeLV qPCR is essential. FIV infection is common in community cats and the absence of a sex predisposition, seen previously in cats managed similarly, raises questions about virus-transmission dynamics in these groups. DCH infection is very common in Hong Kong, both in client-owned and community cats, highlighting the importance of understanding the pathogenic potential of this virus for cats.


Subject(s)
Cat Diseases , Feline Acquired Immunodeficiency Syndrome , Hepadnaviridae , Immunodeficiency Virus, Feline , Leukemia, Feline , Humans , Animals , Cats , Retroviridae/genetics , Hepadnaviridae/genetics , Seroepidemiologic Studies , Hong Kong/epidemiology , Immunodeficiency Virus, Feline/genetics , Leukemia Virus, Feline/genetics , Antibodies, Viral , DNA , Cat Diseases/diagnosis , Cat Diseases/epidemiology
15.
Nat Med ; 30(2): 488-497, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355973

ABSTRACT

Adenosine deaminase (ADA) deficiency leads to severe combined immunodeficiency (SCID). Previous clinical trials showed that autologous CD34+ cell gene therapy (GT) following busulfan reduced-intensity conditioning is a promising therapeutic approach for ADA-SCID, but long-term data are warranted. Here we report an analysis on long-term safety and efficacy data of 43 patients with ADA-SCID who received retroviral ex vivo bone marrow-derived hematopoietic stem cell GT. Twenty-two individuals (median follow-up 15.4 years) were treated in the context of clinical development or named patient program. Nineteen patients were treated post-marketing authorization (median follow-up 3.2 years), and two additional patients received mobilized peripheral blood CD34+ cell GT. At data cutoff, all 43 patients were alive, with a median follow-up of 5.0 years (interquartile range 2.4-15.4) and 2 years intervention-free survival (no need for long-term enzyme replacement therapy or allogeneic hematopoietic stem cell transplantation) of 88% (95% confidence interval 78.7-98.4%). Most adverse events/reactions were related to disease background, busulfan conditioning or immune reconstitution; the safety profile of the real world experience was in line with premarketing cohort. One patient from the named patient program developed a T cell leukemia related to treatment 4.7 years after GT and is currently in remission. Long-term persistence of multilineage gene-corrected cells, metabolic detoxification, immune reconstitution and decreased infection rates were observed. Estimated mixed-effects models showed that higher dose of CD34+ cells infused and younger age at GT affected positively the plateau of CD3+ transduced cells, lymphocytes and CD4+ CD45RA+ naive T cells, whereas the cell dose positively influenced the final plateau of CD15+ transduced cells. These long-term data suggest that the risk-benefit of GT in ADA remains favorable and warrant for continuing long-term safety monitoring. Clinical trial registration: NCT00598481 , NCT03478670 .


Subject(s)
Agammaglobulinemia , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Humans , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Adenosine Deaminase/genetics , Adenosine Deaminase/therapeutic use , Busulfan/adverse effects , Genetic Therapy , Retroviridae/genetics
16.
Retrovirology ; 21(1): 5, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424561

ABSTRACT

Human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV) have replicative and latent stages of infection. The status of the viruses is dependent on the cells that harbour them and on different events that change the transcriptional and post-transcriptional events. Non-coding (nc)RNAs are key factors in the regulation of retrovirus replication cycles. Notably, micro (mi)RNAs and long non-coding (lnc)RNAs are important regulators that can induce switches between active transcription-replication and latency of retroviruses and have important impacts on their pathogenesis. Here, we review the functions of miRNAs and lncRNAs in the context of HIV and HTLV. We describe how specific miRNAs and lncRNAs are involved in the regulation of the viruses' transcription, post-transcriptional regulation and latency. We further discuss treatment strategies using ncRNAs for HIV and HTLV long remission, reactivation or possible cure.


Subject(s)
HIV Infections , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , HIV , Gene Expression Regulation , RNA, Untranslated/genetics , Deltaretrovirus , Retroviridae/genetics
17.
Nucleic Acids Res ; 52(5): 2625-2647, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38165048

ABSTRACT

Translation initiation of the human immunodeficiency virus-type 1 (HIV-1) genomic mRNA (vRNA) is cap-dependent or mediated by an internal ribosome entry site (IRES). The HIV-1 IRES requires IRES-transacting factors (ITAFs) for function. In this study, we evaluated the role of the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a potential ITAF for the HIV-1 IRES. In HIV-1-expressing cells, the depletion of hnRNPK reduced HIV-1 vRNA translation. Furthermore, both the depletion and overexpression of hnRNPK modulated HIV-1 IRES activity. Phosphorylations and protein arginine methyltransferase 1 (PRMT1)-induced asymmetrical dimethylation (aDMA) of hnRNPK strongly impacted the protein's ability to promote the activity of the HIV-1 IRES. We also show that hnRNPK acts as an ITAF for the human T cell lymphotropic virus-type 1 (HTLV-1) IRES, present in the 5'UTR of the viral sense mRNA, but not for the IRES present in the antisense spliced transcript encoding the HTLV-1 basic leucine zipper protein (sHBZ). This study provides evidence for a novel role of the host hnRNPK as an ITAF that stimulates IRES-mediated translation initiation for the retroviruses HIV-1 and HTLV-1.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein K , Retroviridae , Humans , 5' Untranslated Regions , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Internal Ribosome Entry Sites/genetics , Phosphorylation , Protein Biosynthesis , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Retroviridae/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Genes Genet Syst ; 98(6): 321-336, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38220159

ABSTRACT

In the course of evolution, the most highly developed organ is likely the brain, which has become more complex over time and acquired diverse forms and functions in different species. In particular, mammals have developed complex and high-functioning brains, and it has been reported that several genes derived from retroviruses were involved in mammalian brain evolution, that is, generating the complexity of the nervous system. Especially, the sushi-ichi-related retrotransposon homolog (SIRH)/retrotransposon gag-like (RTL) genes have been suggested to play a role in the evolutionary processes shaping brain morphology and function in mammals. Genetic mutation and altered expression of genes are linked to neurological disorders, highlighting how the acquisition of virus-derived genes in mammals has both driven brain evolution and imposed a susceptibility to diseases. This review provides an overview of the functions, diversity, evolution and diseases associated with SIRH/RTL genes in the nervous system. The contribution of retroviruses to brain evolution is an important research topic in evolutionary biology and neuroscience, and further insights are expected to be gained through future studies.


Subject(s)
Retroelements , Retroviridae , Animals , Retroviridae/genetics , Retroelements/genetics , Mammals/genetics , Nervous System , Evolution, Molecular
19.
Nat Commun ; 15(1): 299, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182622

ABSTRACT

Viruses that carry a positive-sense, single-stranded (+ssRNA) RNA translate their genomes soon after entering the host cell to produce viral proteins, with the exception of retroviruses. A distinguishing feature of retroviruses is reverse transcription, where the +ssRNA genome serves as a template to synthesize a double-stranded DNA copy that subsequently integrates into the host genome. As retroviral RNAs are produced by the host cell transcriptional machinery and are largely indistinguishable from cellular mRNAs, we investigated the potential of incoming retroviral genomes to directly express proteins. Here we show through multiple, complementary methods that retroviral genomes are translated after entry. Our findings challenge the notion that retroviruses require reverse transcription to produce viral proteins. Synthesis of retroviral proteins in the absence of productive infection has significant implications for basic retrovirology, immune responses and gene therapy applications.


Subject(s)
RNA , Retroviridae , Retroviridae/genetics , Genetic Therapy , RNA, Messenger/genetics , Viral Proteins
20.
Dev Biol ; 508: 1-7, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218394

ABSTRACT

Retroviral-mediated misexpression in chicken embryos has been a powerful research tool for developmental biologists in the last two decades. In the RCASBP retroviral vectors that are widely used for in vivo somatic transgenesis, a coding sequence of interest is under the transcriptional control of a strong viral promoter in the long terminal repeat. While this has proven to be effective for studying secreted signalling proteins, interpretation of the mechanisms of action of nuclear factors is more difficult using this system since it is not clear whether phenotypic effects are cell-autonomous or not, and therefore whether they represent a function of the endogenous protein. Here, we report the consequences of retroviral expression using the RCANBP backbone, in which the transcription factor Dlx5 is expressed under the control of chondrocyte-specific regulatory sequences from the Col2a1 gene. To our knowledge, this is the first demonstration of a tissue-specific phenotype in the chicken embryo.


Subject(s)
Chickens , Transcription Factors , Animals , Chick Embryo , Chickens/genetics , Transcription Factors/genetics , Gene Transfer Techniques , Retroviridae/genetics , Gene Expression Regulation , Genetic Vectors
SELECTION OF CITATIONS
SEARCH DETAIL