Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.389
Filter
1.
Int J Biol Macromol ; 269(Pt 2): 132104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719016

ABSTRACT

Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.


Subject(s)
Carps , Fish Proteins , Immunity, Innate , Membrane Proteins , Rhabdoviridae , Animals , Carps/immunology , Carps/genetics , Carps/virology , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Rhabdoviridae/physiology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Rhabdoviridae Infections/immunology , Signal Transduction
2.
J Virol ; 98(6): e0015824, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38695539

ABSTRACT

Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.


Subject(s)
Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Tripartite Motif Proteins , Viral Proteins , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/virology , Rhabdoviridae/genetics , Rhabdoviridae Infections/virology , Rhabdoviridae Infections/metabolism , Fish Diseases/virology , Fish Diseases/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Signal Transduction , Carps/virology , Immunity, Innate , Fish Proteins/metabolism , Fish Proteins/genetics , Proteolysis
3.
Viruses ; 16(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38675918

ABSTRACT

Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing , Rhabdoviridae , Rhabdoviridae/genetics , Rhabdoviridae/isolation & purification , Rhabdoviridae/classification , Animals , Cell Line , Phylogeny , Virus Replication , RNA, Viral/genetics , Virome/genetics , Rhabdoviridae Infections/virology , Rhabdoviridae Infections/veterinary
4.
Fish Shellfish Immunol ; 149: 109553, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615704

ABSTRACT

Viral diseases have caused great economic losses to the aquaculture industry. However, there are currently no specific drugs to treat these diseases. Herein, we utilized Siniperca chuatsi as an experimental model, and successfully extracted two tissue factor pathway inhibitors (TFPIs) that were highly distributed in different tissues. We then designed four novel peptides based on the TFPIs, named TS20, TS25, TS16, and TS30. Among them, TS25 and TS30 showed good biosafety and high antiviral activity. Further studies showed that TS25 and TS30 exerted their antiviral functions by preventing viruses from invading Chinese perch brain (CPB) cells and disrupting Siniperca chuatsi rhabdovirus (SCRV)/Siniperca chuatsi ranairidovirus (SCRIV) viral structures. Additionally, compared with the control group, TS25 and TS30 could significantly reduce the mortality of Siniperca chuatsi, the relative protection rates of TS25 against SCRV and SCRIV were 71.25 % and 53.85 % respectively, and the relative protection rate of TS30 against SCRIV was 69.23 %, indicating that they also had significant antiviral activity in vivo. This study provided an approach for designing peptides with biosafety and antiviral activity based on host proteins, which had potential applications in the prevention and treatment of viral diseases.


Subject(s)
Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Fish Diseases/virology , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/prevention & control , Rhabdoviridae/physiology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Perches , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Peptides/pharmacology , Peptides/chemistry , RNA Virus Infections/veterinary , RNA Virus Infections/immunology , RNA Virus Infections/prevention & control
5.
Fish Shellfish Immunol ; 149: 109559, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636737

ABSTRACT

USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.


Subject(s)
Carps , Fish Diseases , Fish Proteins , Immunity, Innate , Interferons , Protein Serine-Threonine Kinases , Rhabdoviridae Infections , Rhabdoviridae , Signal Transduction , Ubiquitination , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Rhabdoviridae/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/immunology , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Immunity, Innate/genetics , Ubiquitin Thiolesterase/genetics , Gene Expression Regulation/immunology , Amino Acid Sequence , Sequence Alignment/veterinary , Phylogeny , Gene Expression Profiling/veterinary
6.
Fish Shellfish Immunol ; 149: 109563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642725

ABSTRACT

HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.


Subject(s)
Fish Diseases , Fish Proteins , Protein Serine-Threonine Kinases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Rhabdoviridae/physiology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/immunology , Immunity, Innate/genetics , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/immunology , Carps/immunology , Carps/genetics , Herpesviridae/physiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Interferon Type I/immunology , Interferon Type I/genetics , Interferon Type I/metabolism , Zebrafish Proteins
7.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636698

ABSTRACT

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Subject(s)
Autophagy , Interferon Regulatory Factor-7 , Interferon Regulatory Factors , Lysosomes , Rhabdoviridae , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/immunology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Autophagy/immunology , Lysosomes/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Rhabdoviridae/physiology , Rhabdoviridae/immunology , Interferons/metabolism , Poly I-C/immunology , Rhabdoviridae Infections/immunology , Proteolysis , Fish Diseases/immunology , Fish Diseases/virology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Humans , Immunity, Innate
8.
Viruses ; 16(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38675847

ABSTRACT

Ticks are the main arthropod vector of pathogens to humans and livestock in the British Isles. Despite their role as a vector of disease, many aspects of tick biology, ecology, and microbial association are poorly understood. To address this, we investigated the composition of the microbiome of adult and nymphal Ixodes ricinus ticks. The ticks were collected on a dairy farm in Southwest England and RNA extracted for whole genome sequencing. Sequences were detected from a range of microorganisms, particularly tick-associated viruses, bacteria, and nematodes. A majority of the viruses were attributed to phlebo-like and nairo-like virus groups, demonstrating a high degree of homology with the sequences present in I. ricinus from mainland Europe. A virus sharing a high sequence identity with Chimay rhabdovirus, previously identified in ticks from Belgium, was detected. Further investigations of I. ricinus ticks collected from additional sites in England and Wales also identified Chimay rhabdovirus viral RNA with varying prevalence in all tick populations. This suggests that Chimay rhabdovirus has a wide distribution and highlights the need for an extended exploration of the tick microbiome in the United Kingdom (UK).


Subject(s)
Ixodes , Phylogeny , Rhabdoviridae , Animals , Ixodes/virology , Ixodes/microbiology , England , Wales , Rhabdoviridae/genetics , Rhabdoviridae/classification , Rhabdoviridae/isolation & purification , Genome, Viral , RNA, Viral/genetics , Microbiota , Whole Genome Sequencing , Nymph/virology , Nymph/microbiology
9.
Antiviral Res ; 226: 105881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604448

ABSTRACT

Spring viremia of carp virus (SVCV), as a high pathogenicity pathogen, has seriously restricts the healthy and sustainable development of cyprinid farming industry. In this study, we selected 5-Fluorouracil (5-Fu) as the drug model based on zeolitic imidazolate framework-8 (ZIF-8) to construct a drug delivery system (5-Fu@ZIF-8), and the anti-SVCV activity was detected in vitro and in vivo. The results showed 5-Fu@ZIF-8 was uniform cubic particle with truncated angle and smooth surface, and the particle size was 90 nm. The anti-SVCV activity in vitro results showed that the highest inhibition rate of 5-Fu was 77.93% at 40 mg/L and the inhibitory concentration at half-maximal activity (IC50) was 20.86 mg/L. For 5-Fu@ZIF-8, the highest inhibition rate was 91.36% at 16 mg/L, and the IC50 value was 5.85 mg/L. In addition, the cell viability was increased by 18.1% after 5-Fu treatment. Similarly, after 5-Fu@ZIF-8 treatment, the cell viability increased by 27.3%. Correspondingly, in vivo experimental results showed the viral loads reduced by 18.1% on the days 7 and the survival rate increased to 19.4% at 80 mg/L after 5-Fu treatment. For 5-Fu@ZIF-8, the viral loads reduced by 41.2% and the survival rate increased to 54.8%. Mechanistically, 5-Fu inhibits viral replication by regulating p53 expression and promoting early apoptosis in infected cells. All results indicated that 5-Fu@ZIF-8 improved the anti-SVCV activity; it may be a potential strategy to construct a drug-loaded system with ZIF-8 as a carrier for the prevention and treatment of aquatic diseases.


Subject(s)
Antiviral Agents , Drug Delivery Systems , Fish Diseases , Fluorouracil , Metal-Organic Frameworks , Rhabdoviridae Infections , Rhabdoviridae , Fluorouracil/pharmacology , Animals , Rhabdoviridae/drug effects , Antiviral Agents/pharmacology , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Fish Diseases/drug therapy , Fish Diseases/virology , Rhabdoviridae Infections/drug therapy , Rhabdoviridae Infections/virology , Carps , Cell Survival/drug effects , Zeolites/pharmacology , Zeolites/chemistry , Imidazoles
10.
Fish Shellfish Immunol ; 149: 109577, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643957

ABSTRACT

A new virus known as snakehead rhabdovirus (SHRV-In) was discovered in South India in striped snakehead (Channa striata) that had hemorrhagic patches and cutaneous ulcerations. The virus is the most potentially harmful pathogen of snakehead because it could cause 100% mortality within 5 days. The goal of the current investigation was to evaluate the infectivity of rhabdovirus in freshwater fishes and to analyze the immune response in snakehead fish after challenge with SHRV-In. The infectivity study of SHRV-In against three freshwater fish such as tilapia, grass carp and loach showed that the virus could not induce mortality in any of them. Snakehead fish challenged with SHRV-In showed significant (p < 0.05) changes in haematological parameters such as red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), white blood cell (WBC), total platelet (PLT) counts, mean platelet volume (MPV) and immunological markers such as respiratory burst, superoxide dismutase, catalase activity and myeloperoxidase activity at 6, 12, 24 and 48 hpi. Real time PCR was executed to examine the expression profile of innate immune genes such as IRF-7, IL-8 and IL-12 in Snakehead fish at 6, 12, 24 and 48 h post SHRV-In infection. Immune gene expression of IRF-7, IL-8 and IL-12 were up-regulated in the spleen when compared to kidney at 6 and 12 hpi. However, the expression level of all the genes was down-regulated at 24 and 48 hpi. The down regulation of innate immune genes after 24 hpi in these tissues may be the result of increased multiplication of SHRV-In by interfering with the immune signaling pathway.


Subject(s)
Fish Diseases , Immunity, Innate , Rhabdoviridae Infections , Animals , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/virology , Fish Diseases/immunology , Fish Diseases/virology , Rhabdoviridae/physiology , India , Perciformes/immunology , Perciformes/virology
11.
Article in English | MEDLINE | ID: mdl-38621626

ABSTRACT

Hybrid snakehead (male Channa argus × female Channa maculata) is an emerging fish breed with increasing production levels. However, infection with hybrid snakehead rhabdovirus (HSHRV) critically affects hybrid snakehead farming. In this study, a fish cell line called CAMK, derived from the kidneys of hybrid snakehead, was established and characterized. CAMK cells exhibited the maximum growth rate at 28 °C in Leibovitz's-15 medium supplemented with 10% fetal bovine serum(FBS). Karyotyping revealed diploid chromosomes in 54% of the cells at the 50th passage (2n = 66), and 16S rRNA sequencing validated that CAMK cells originated fromhybrid snakehead, and the detection of kidney-specific antibodies suggested that it originated from kidney. .The culture was free from mycoplasma contamination, and the green fluorescent protein gene was effectively transfected into CAMK cells, indicating their potential use for in vitro gene expression investigations. Furthermore, qRT-PCR and immunofluorescence analysis revealed that HSHRV could replicate in CAMK cells, indicating that the cells were susceptible to the virus. Transmission electron microscopy revealed that the viral particles had bullet-like morphology. The replication efficiency of HSHRV was 107.33 TCID50/mL. Altogether, we successfully established and characterized a kidney cell line susceptible to the virus. These findings provide a valuable reference for further genetic and virological studies.


Subject(s)
Fishes , Kidney , Rhabdoviridae , Animals , Kidney/virology , Kidney/cytology , Cell Line , Female , Male , Fishes/virology , Rhabdoviridae/physiology , Fish Diseases/virology , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/virology
12.
Viruses ; 16(3)2024 02 21.
Article in English | MEDLINE | ID: mdl-38543688

ABSTRACT

Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3'-N-P-P3-M-G-L-5' observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an additional short orphan ORF encoding a transmembrane helix was detected between P3 and M. The AaCV genome and inferred encoded proteins share the highest identity values, consistently < 60%, with their counterparts of the yerba mate chlorosis-associated virus (Cytorhabdovirus flaviyerbamate). The second virus, false jalap virus (FaJV), was detected in the herbaceous plant false jalap (Mirabilis jalapa L.) and represents together with tomato betanucleorhabdovirus 2, originally found in tomato plants in Slovenia, a tentative new species of the genus Betanucleorhabdovirus. FaJV particles accumulate in the perinuclear space, and electron-lucent viroplasms were observed in the nuclei of the infected cells. Notably, distinct from typical rhabdoviruses, most virions of AaCV were observed to be non-enclosed within membrane-bounded cavities. Instead, they were frequently seen in close association with surfaces of mitochondria or peroxisomes. Unlike FaJV, AaCV was successfully graft-transmitted to healthy plants of three species of the genus Aristolochia, while mechanical and seed transmission proved unsuccessful for both viruses. Data suggest that these viruses belong to two new tentative species within the subfamily Betarhabdovirinae.


Subject(s)
Aristolochia , Mirabilis , Rhabdoviridae , Aristolochia/genetics , Mirabilis/genetics , Genome, Viral , Plants/genetics , Phylogeny , Plant Diseases
13.
Viruses ; 16(3)2024 03 02.
Article in English | MEDLINE | ID: mdl-38543761

ABSTRACT

Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2, we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World. These EVEs are shared by different sandfly populations in South America while none of the Old World species studied presented the insertions.


Subject(s)
Leishmaniasis , Psychodidae , Rhabdoviridae , Humans , Animals , South America , RNA , DNA , Brazil
14.
Arch Virol ; 169(4): 85, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546898

ABSTRACT

The fishing and aquaculture industry is vital for global food security, yet viral diseases can result in mass fish die-off events. Determining the viromes of traditionally understudied species, such as fish, enhances our understanding of the global virosphere and the factors that influence virome composition and disease emergence. Very little is known about the viruses present in New Zealand's native fish species, including the shortfin eel (Anguilla australis) and the longfin eel (Anguilla dieffenbachii), both of which are fished culturally by Maori (the indigenous population of New Zealand) and commercially. Through a total RNA metatranscriptomic analysis of longfin and shortfin eels across three different geographic locations in the South Island of New Zealand, we aimed to determine whether viruses had jumped between the two eel species and whether eel virome composition was impacted by life stage, species, and geographic location. We identified nine viral species spanning eight different families, thereby enhancing our understanding of eel virus diversity in New Zealand and the host range of these viral families. Viruses of the family Flaviviridae (genus Hepacivirus) were widespread and found in both longfin and shortfin eels, indicative of cross-species transmission or virus-host co-divergence. Notably, both host specificity and geographic location appeared to influence eel virome composition, highlighting the complex interaction between viruses, hosts, and their ecosystems. This study broadens our understanding of viromes in aquatic hosts and highlights the importance of gaining baseline knowledge of fish viral abundance and diversity, particularly in aquatic species that are facing population declines.


Subject(s)
Anguilla , Rhabdoviridae , Animals , Anguilla/virology , Ecosystem , Geography , New Zealand
15.
Fish Shellfish Immunol ; 148: 109483, 2024 May.
Article in English | MEDLINE | ID: mdl-38458501

ABSTRACT

The precise control of interferon (IFN) production is indispensable for the host to eliminate invading viruses and maintain a homeostatic state. In mammals, stimulator of interferon genes (STING) is a prominent adaptor involved in antiviral immune signaling pathways. However, the regulatory mechanism of piscine STING has not been thoroughly investigated. Here, we report that autophagy related 16 like 1 (bcATG16L1) of black carp (Mylopharyngodon piceus) is a negative regulator in black carp STING (bcSTING)-mediated signaling pathway. Initially, we substantiated that knockdown of bcATG16L1 increased the transcription of IFN and ISGs and enhanced the antiviral activity of the host cells. Subsequently, we identified that bcATG16L1 inhibited the bcSTING-mediated IFN promoter activation and proved that bcATG16L1 suppressed bcSTING-mediated antiviral ability. Furthermore, we revealed that bcATG16L1 interacted with bcSTING and the two proteins shared a similar subcellular distribution. Mechanically, we found that bcATG16L1 attenuated the oligomerization of bcSTING, which was a key step for bcSTING activation. Taken together, our results indicate that bcATG16L1 interacts with bcSTING, dampens the oligomerization of bcSTING, and negatively regulates bcSTING-mediated antiviral activity.


Subject(s)
Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Rhabdoviridae Infections , Rhabdoviridae , Animals , Rhabdoviridae/physiology , Reoviridae/physiology , Rhabdoviridae Infections/veterinary , Carps/genetics , Carps/metabolism , Fish Proteins , Immunity, Innate/genetics , Interferons , Mammals/metabolism
16.
Virology ; 594: 110038, 2024 06.
Article in English | MEDLINE | ID: mdl-38471199

ABSTRACT

Our laboratory previously discovered a novel rhabdovirus in the Spodoptera frugiperda Sf9 insect cell line that was designated as Sf-rhabdovirus. Using limiting dilution, this cell line was found to be a mixed population of cells infected by Sf-rhabdovirus variants containing either the full length X accessory gene with a 3.7 kb internal duplication (designated as Sf-rhabdovirus X+3.7) or lacking the duplication and part of the X gene (designated as Sf-rhabdovirus X-), and cells that were negative for Sf-rhabdovirus. In this paper, we found that the Sf-rhabdovirus negative cell clones had sub-populations with different susceptibilities to the replication of Sf-rhabdovirus X+3.7 and X- variants: cell clone Sf9-13F12 was more sensitive to replication by both virus variants compared to Sf9-3003; moreover, Sf9-3003 showed more resistance to X+3.7 replication than to X- replication. RNA-Seq analysis indicated significant differentially expressed genes in the Sf9-13F12 and Sf9-3003 cell clones further supporting that distinct sub-populations of virus-negative cells co-exist in the parent Sf9 cell line.


Subject(s)
Rhabdoviridae , Viruses , Animals , Sf9 Cells , Rhabdoviridae/genetics , Rhabdoviridae/metabolism , Clone Cells , Cell Line , Spodoptera
17.
Dev Comp Immunol ; 154: 105145, 2024 May.
Article in English | MEDLINE | ID: mdl-38316233

ABSTRACT

Spring viremia of carp virus (SVCV) is a globally distributed virus that causes severe clinical symptoms and high mortality in fish belonging to the families Cyprinidae and Siluridae. To protect the host against viral infection, understanding the relatedness between viral susceptibility and antiviral mechanisms must be crucial. Thus, we evaluated the viral suppression efficacy of ribavirin by measuring the transcription levels of viral and immune genes in vitro. The results showed that following ribavirin treatment after SVCV infection (MOI 0.1), ribavirin inhibited SVCV replication in epithelioma papulosum cyprini (EPC) cells and completely inhibited viral gene (G and N) expression at concentrations above 10 µg/mL at 48 h post-infection. Ribavirin does not directly damage SVCV particles but inhibits early viral replication. In the absence of SVCV infection, the immunological dynamics triggered by ribavirin resulted in upregulated pattern recognition receptors and proinflammatory cytokine-related genes (i.e., PI3K, MYD88, IRAK1, RIG-І, MAVS, Mx1, TNF-α, and NF-κB). Furthermore, EPC cells treated with ribavirin following SVCV infection showed upregulation of PI3K, MYD88, IRAK1, RIG-І, TNF-α, and NF-κB genes within 24 h post-SVCV infection, suggesting that ribavirin positively inhibits the SVCV infection in vitro.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Humans , Animals , Ribavirin/therapeutic use , Ribavirin/pharmacology , Viremia/drug therapy , NF-kappa B , Tumor Necrosis Factor-alpha , Myeloid Differentiation Factor 88/genetics , Rhabdoviridae/physiology , Adaptor Proteins, Signal Transducing , Phosphatidylinositol 3-Kinases
18.
J Gen Virol ; 105(2)2024 02.
Article in English | MEDLINE | ID: mdl-38305775

ABSTRACT

Filoviridae is a family of negative-sense RNA viruses with genomes of about 13.1-20.9 kb that infect fish, mammals and reptiles. The filovirid genome is a linear, non-segmented RNA with five canonical open reading frames (ORFs) that encode a nucleoprotein (NP), a polymerase cofactor (VP35), a glycoprotein (GP1,2), a transcriptional activator (VP30) and a large protein (L) containing an RNA-directed RNA polymerase (RdRP) domain. All filovirid genomes encode additional proteins that vary among genera. Several filovirids (e.g., Ebola virus, Marburg virus) are pathogenic for humans and highly virulent. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Filoviridae, which is available at www.ictv.global/report/filoviridae.


Subject(s)
Ebolavirus , Marburgvirus , Rhabdoviridae , Animals , Humans , Ebolavirus/genetics , Rhabdoviridae/genetics , Phylogeny , Genome, Viral , Virus Replication , Mammals/genetics
19.
Arch Virol ; 169(3): 46, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366035

ABSTRACT

Ixeris denticulata is a perennial herbal plant with important medical and economic value. In this study, a novel rhabdovirus from I. denticulata with leaf curling and mottle symptoms was identified through next-generation sequencing and molecular cloning approaches. Based on the host species and properties of this virus, it was tentatively named "Ixeris denticulata-associated rhabdovirus" (IdaRV). IdaRV has a negative-sense RNA genome that is 12,705 nucleotides in length and has five open reading frames (ORFs) in the order 3'-nucleoprotein -phosphoprotein -movement protein -matrix protein -large RNA-dependent RNA polymerase-5'. Pairwise sequence comparisons showed that IdaRV had 42.2-53.0% sequence identity to members of the genera Cytorhabdovirus, Varicosavirus, Betanucleorhabdovirus, Gammanucleorhabdovirus, Dichorhavirus, and Alphanucleorhabdovirus in the subfamily Betarhabdovirinae. BLASTp searches indicated that putative products of ORF1, ORF2, ORF3, ORF4, and ORF5 of IdaRV are most closely related to those of rudbeckia virus 1 (RudV1, GenBank accession number ON185810), with 32.1%, 21.3%, 52.4%, 37.6%, and 57.1% amino acid sequence identity, respectively, at the protein level. Phylogenetic analysis showed that IdaRV forms a smaller branch with RudV1, which belongs to the genus Cytorhabdovirus. These results establish IdaRV as a novel rhabdovirus in the genus Cytorhabdovirus of the family Rhabdoviridae.


Subject(s)
Asteraceae , Rhabdoviridae , Genome, Viral , Phylogeny , Genomics , Open Reading Frames , RNA, Viral/genetics , RNA, Viral/metabolism
20.
Fish Shellfish Immunol ; 146: 109426, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316349

ABSTRACT

Glutathione S-transferase P1 (GSTP1), the most ubiquitous member of the GST superfamily, plays vital roles in the detoxification, antioxidant defense, and modulation of inflammatory responses. However, limited studies have been conducted on the function of GSTP1 in antiviral innate immunity. In this study, we have cloned the homolog of GSTP1 in triploid hybrid crucian carp (3nGSTP1) and investigated its regulatory role in the interferon signaling pathway. The open reading frame of 3nGSTP1 is composed of 627 nucleotides, encoding 209 amino acids. In response to spring viremia of carp virus (SVCV) infection, the mRNA level of 3nGSTP1 was up-regulated in the liver, kidney, and caudal fin cell lines (3 nF C) of triploid fish. The knockdown of 3nGSTP1 in 3 nF C improved host cell's antiviral capacity and attenuated SVCV replication. Additionally, overexpression of 3nGSTP1 inhibited the activation of IFN promoters induced by SVCV infection, poly (I:C) stimulation, or the RLR signaling factors. The co-immunoprecipitation assays further revealed that 3nGSTP1 interacts with 3nMAVS. In addition, 3nGSTP1 dose-dependently inhibited 3nMAVS-mediated antiviral activity and reduced 3nMAVS protein level. Mechanistically, 3nGSTP1 promoted ubiquitin-proteasome degradation of MAVS by promoting its K48-linked polyubiquitination. To conclude, our results indicate that GSTP1 acts as a novel inhibitor of MAVS, which negatively regulates the IFN signaling.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Triploidy , Signal Transduction , Rhabdoviridae/physiology , Rhabdoviridae Infections/veterinary , Immunity, Innate/genetics , Poly I-C/pharmacology , Antiviral Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...