Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 278
1.
Plant Physiol Biochem ; 211: 108723, 2024 Jun.
Article En | MEDLINE | ID: mdl-38749376

Legume-rhizobia symbiosis requires high phosphorus (P) in the form of ATP to convert atmospheric nitrogen (N) into ammonia. The fixed ammonia is converted to NH4+ by H+-ATPase via protonation. To the best of our knowledge, most of these research works resort to using only inorganic P (Pi) to the neglect of the organic P (Po) counterpart. As it stands, the potential regulating roles of plasma membrane (PM) H+-ATPases during legume-rhizobia symbiosis in response to phytic acid supply and how it alters and modulates the regulation of PM H+-ATPases remain obscure. To contribute to the above hypothesis, we investigate the mechanisms that coordinately facilitate the growth, uptake, and transcript expression of PM H+-ATPase gene isoforms in response to different P sources when hydroponically grown Vicia faba plants were exposed to three P treatments, viz., low- and high-Pi (2.0 and 200 µM KH2PO4; LPi and HPi), and phytic acid (200 µM; Po) and inoculated with Rhizobium leguminosarum bv. viciae 384 for 30 days. The results consistently reveal that the supply of Po improved not only the growth and biomass, but also enhanced photosynthetic parameters, P uptake and phosphatase activities in symbiotically grown Vicia faba relative to Pi. The supply of Po induced higher transcriptional expression of all PM H+-ATPase gene isoforms, with possible interactions between phosphatases and H+-ATPase genes in Vicia faba plants when exclusively reliant on N derived from nodule symbiosis. Overall, preliminary results suggest that Po could be used as an alternative nutrition in symbiotic crops to improve plant growth.


Phytic Acid , Symbiosis , Vicia faba , Phytic Acid/metabolism , Vicia faba/metabolism , Vicia faba/genetics , Gene Expression Regulation, Plant , Rhizobium leguminosarum/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/genetics , Phosphorus/metabolism
2.
Can J Microbiol ; 70(5): 150-162, 2024 May 01.
Article En | MEDLINE | ID: mdl-38427979

This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.


Azospirillum brasilense , Cucumis sativus , Pisum sativum , Rhizobium leguminosarum , Seedlings , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Cucumis sativus/microbiology , Cucumis sativus/growth & development , Seedlings/growth & development , Seedlings/microbiology , Rhizobium leguminosarum/growth & development , Rhizobium leguminosarum/metabolism , Azospirillum brasilense/growth & development , Azospirillum brasilense/metabolism , Pisum sativum/microbiology , Pisum sativum/growth & development , Plant Roots/microbiology , Plant Roots/growth & development , Chemotaxis , Plant Exudates/chemistry , Plant Exudates/metabolism
3.
Environ Microbiol ; 26(2): e16570, 2024 Feb.
Article En | MEDLINE | ID: mdl-38216524

Motility and chemotaxis are crucial processes for soil bacteria and plant-microbe interactions. This applies to the symbiotic bacterium Rhizobium leguminosarum, where motility is driven by flagella rotation controlled by two chemotaxis systems, Che1 and Che2. The Che1 cluster is particularly important in free-living motility prior to the establishment of the symbiosis, with a che1 mutant delayed in nodulation and reduced in nodulation competitiveness. The Che2 system alters bacteroid development and nodule maturation. In this work, we also identified 27 putative chemoreceptors encoded in the R. leguminosarum bv. viciae 3841 genome and characterized its motility in different growth conditions. We describe a metabolism-based taxis system in rhizobia that acts at high concentrations of dicarboxylates to halt motility independent of chemotaxis. Finally, we show how PTSNtr influences cell motility, with PTSNtr mutants exhibiting reduced swimming in different media. Motility is restored by the active forms of the PTSNtr output regulatory proteins, unphosphorylated ManX and phosphorylated PtsN. Overall, this work shows how rhizobia typify soil bacteria by having a high number of chemoreceptors and highlights the importance of the motility and chemotaxis mechanisms in a free-living cell in the rhizosphere, and at different stages of the symbiosis.


Rhizobium leguminosarum , Rhizobium , Symbiosis , Bacterial Proteins/metabolism , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/metabolism , Soil
4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article En | MEDLINE | ID: mdl-36674551

The biosynthesis of subunits of rhizobial exopolysaccharides is dependent on glycosyltransferases, which are usually encoded by large gene clusters. PssA is a member of a large family of phosphoglycosyl transferases catalyzing the transfer of a phosphosugar moiety to polyprenol phosphate; thus, it can be considered as priming glycosyltransferase commencing synthesis of the EPS repeating units in Rhizobium leguminosarum. The comprehensive analysis of PssA protein features performed in this work confirmed its specificity for UDP-glucose and provided evidence that PssA is a monotopic inner membrane protein with a reentrant membrane helix rather than a transmembrane segment. The bacterial two-hybrid system screening revealed interactions of PssA with some GTs involved in the EPS octasaccharide synthesis. The distribution of differentially expressed genes in the transcriptome of the ΔpssA mutant into various functional categories indicated complexity of cell response to the deletion, which can mostly be attributed to the lack of exopolysaccharide and downstream effects caused by such deficiency. The block in the EPS biosynthesis at the pssA step, potentially leading to an increased pool of UDP-glucose, is likely to be filtered through to other pathways, and thus the absence of EPS may indirectly affect the expression of proteins involved in these pathways.


Rhizobium leguminosarum , Transferases , Transferases/metabolism , Rhizobium leguminosarum/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Phenotype , Glucose/metabolism , Uridine Diphosphate/metabolism , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/metabolism
5.
J Comput Biol ; 29(7): 752-768, 2022 07.
Article En | MEDLINE | ID: mdl-35588362

Nitrogen uptake in legumes is facilitated by bacteria such as Rhizobium leguminosarum. For this bacterium, gene expression data are available, but functional gene annotation is less well developed than for other model organisms. More annotations could lead to a better understanding of the pathways for growth, plant colonization, and nitrogen fixation in R. leguminosarum. In this study, we present a pipeline that combines novel scores from gene coexpression network analysis in a principled way to identify the genes that are associated with certain growth conditions or highly coexpressed with a predefined set of genes of interest. This association may lead to putative functional annotation or to a prioritized list of genes for further study.


Rhizobium leguminosarum , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nitrogen Fixation/genetics , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/metabolism
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34884793

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


Nitrogen Fixation/physiology , Pisum sativum/metabolism , Rhizobium leguminosarum/metabolism , Root Nodules, Plant/metabolism , Fertilizers/microbiology , Leghemoglobin/metabolism , Pisum sativum/growth & development , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
7.
Pak J Biol Sci ; 24(6): 672-679, 2021 Jan.
Article En | MEDLINE | ID: mdl-34486343

<b>Background and Objective:</b> Rhizobia are bacteria including genes codes for enzymes involved in the fixing of the atmospheric nitrogen. A set of twenty rhizobial isolates were studied to determine their morphological, biochemical, molecular characteristics using the 16S rRNA gene in addition to assess their growth and symbiotic performance. <b>Materials and Methods:</b> Rhizobial isolates were isolated from root nodules of <i>Vicia faba </i>L. plants. The isolates were morphologically characterized by determining cell shapes, size, Gram stain reaction, motility, sporulation, bacterial growth performance was determined by IAA production and biomass density. Symbiotic performance was measured by evaluation of nodulation status and shoot/root dry weight. Sequencing of 16S rRNA and phylogenetic analysis were done for the five promising isolates. Statistical analysis was performed using a one-sample Student t-test. <b>Results:</b> Only five rhizobial isolates (Rh 32, Rh 6-A, Rh 3-4, Rh RL3 and Rh 8-A) were selected according to their growth and symbiotic performance and subjected to further molecular characterizations. All isolates were found to have remarkable nodulation status, IAA production, nitrogenase activity and increasing the root and shoot dry weight. The five selected rhizobial isolates were identified by partial sequencing of 16S rRNA genes and registered in the GenBank database. The alignment and phylogenetic analyses of 16S rRNA sequences closely related in the GenBank revealed that all isolates belonging to <i>Rhizobium leguminosarum</i> bv. viciae. <b>Conclusion:</b> The results confirmed that the five Rhizobial strains will be promising as a source of genes for nitrogen fixation and plant growth promotion.


Plant Roots/microbiology , Rhizobium leguminosarum , Vicia faba/microbiology , Egypt , Nitrogen Fixation , Phylogeny , Plant Root Nodulation , Plant Roots/growth & development , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/growth & development , Rhizobium leguminosarum/metabolism , Ribotyping , Symbiosis , Vicia faba/growth & development , Vicia faba/metabolism
8.
Mol Plant Microbe Interact ; 34(10): 1167-1180, 2021 Oct.
Article En | MEDLINE | ID: mdl-34110256

Symbiosis between Rhizobium leguminosarum and Pisum sativum requires tight control of redox balance in order to maintain respiration under the microaerobic conditions required for nitrogenase while still producing the eight electrons and sixteen molecules of ATP needed for nitrogen fixation. FixABCX, a cluster of electron transfer flavoproteins essential for nitrogen fixation, is encoded on the Sym plasmid (pRL10), immediately upstream of nifA, which encodes the general transcriptional regulator of nitrogen fixation. There is a symbiotically regulated NifA-dependent promoter upstream of fixA (PnifA1), as well as an additional basal constitutive promoter driving background expression of nifA (PnifA2). These were confirmed by 5'-end mapping of transcription start sites using differential RNA-seq. Complementation of polar fixAB and fixX mutants (Fix- strains) confirmed expression of nifA from PnifA1 in symbiosis. Electron microscopy combined with single-cell Raman microspectroscopy characterization of fixAB mutants revealed previously unknown heterogeneity in bacteroid morphology within a single nodule. Two morphotypes of mutant fixAB bacteroids were observed. One was larger than wild-type bacteroids and contained high levels of polyhydroxy-3-butyrate, a complex energy/reductant storage product. A second bacteroid phenotype was morphologically and compositionally different and resembled wild-type infection thread cells. From these two characteristic fixAB mutant bacteroid morphotypes, inferences can be drawn on the metabolism of wild-type nitrogen-fixing bacteroids.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Rhizobium leguminosarum , Rhizobium , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nitrogen Fixation , Nitrogenase/metabolism , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/metabolism , Symbiosis
9.
PLoS Genet ; 17(2): e1009099, 2021 02.
Article En | MEDLINE | ID: mdl-33539353

Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizobium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL signals via FxkR to induce expression of the FixK transcription factor, which activates transcription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK pathway was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We confirmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of pea nodules. Quantification of fixNOQP expression in nodules showed this was driven primarily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK pathway effectively primes the O2 response by increasing fnrN expression in early differentiation (zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity. Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effectiveness of the symbioses.


Bacterial Proteins/metabolism , Histidine Kinase/metabolism , Oxygen/metabolism , Rhizobium leguminosarum/metabolism , Symbiosis/genetics , Transcription Factors/metabolism , Bacterial Proteins/genetics , Fabaceae/genetics , Fabaceae/metabolism , Gene Expression Regulation, Bacterial/genetics , Histidine Kinase/genetics , Mutation , Nitrogen Fixation/genetics , Operon/genetics , Rhizobium leguminosarum/genetics , Transcription Factors/genetics
10.
Mol Cell Proteomics ; 20: 100009, 2021.
Article En | MEDLINE | ID: mdl-33214187

The Rhizobium-legume symbiosis is a beneficial interaction in which the bacterium converts atmospheric nitrogen into ammonia and delivers it to the plant in exchange for carbon compounds. This symbiosis implies the adaptation of bacteria to live inside host plant cells. In this work, we apply RP-LC-MS/MS and isobaric tags as relative and absolute quantitation techniques to study the proteomic profile of endosymbiotic cells (bacteroids) induced by Rhizobium leguminosarum bv viciae strain UPM791 in legume nodules. Nitrogenase subunits, tricarboxylic acid cycle enzymes, and stress-response proteins are among the most abundant from over 1000 rhizobial proteins identified in pea (Pisum sativum) bacteroids. Comparative analysis of bacteroids induced in pea and in lentil (Lens culinaris) nodules revealed the existence of a significant host-specific differential response affecting dozens of bacterial proteins, including stress-related proteins, transcriptional regulators, and proteins involved in the carbon and nitrogen metabolisms. A mutant affected in one of these proteins, homologous to a GntR-like transcriptional regulator, showed a symbiotic performance significantly impaired in symbiosis with pea but not with lentil plants. Analysis of the proteomes of bacteroids isolated from both hosts also revealed the presence of different sets of plant-derived nodule-specific cysteine-rich peptides, indicating that the endosymbiotic bacteria find a host-specific cocktail of chemical stressors inside the nodule. By studying variations of the bacterial response to different plant cell environments, we will be able to identify specific limitations imposed by the host that might give us clues for the improvement of rhizobial performance.


Bacterial Proteins/metabolism , Lens Plant/microbiology , Pisum sativum/microbiology , Rhizobium leguminosarum/metabolism , Lens Plant/genetics , Nitrogen Fixation , Pisum sativum/genetics , Plant Proteins/metabolism , Proteome , Rhizobium leguminosarum/genetics , Symbiosis
11.
Int Microbiol ; 23(4): 607-618, 2020 Nov.
Article En | MEDLINE | ID: mdl-32495247

Grass pea (Lathyrus sativus L.) is widely cultivated for food and feed in some developing countries including Ethiopia. However, due to its overexaggerated neuro-lathyrism alkaloid causing paralysis of limbs, it failed to attract attention of the research community and is one of the most neglected orphan crops in the world. But, the crop is considered an insurance crop by resource-poor farmers due to its strong abiotic stress tolerance and ability to produce high yields when all other crops fail due to unfavorable environmental conditions. This study was aimed at screening rhizobial isolates of grass pea and evaluating their symbiotic nitrogen fixation efficiency and tolerance to abiotic stresses. Fifty rhizobial isolates collected from grass pea nodules were isolated, screened, and characterized based on standard microbiological methods. The rhizobial isolates showed diversity in nodulation, symbiotic nitrogen fixation, and nutrient utilization. The 16S rRNA gene sequencing of 14 rhizobial isolates showed that two of them were identified as Rhizobium leguminosarum and the remaining twelve as Rhizobium species. Based on their overall performance, strains AAUGR-9, AAUGR-11, and AAUGR-14 that performed top and identified as Rhizobium species were recommended for field trials. This study screened and identified effective and competitive rhizobial isolates enriched with high nitrogen-fixing and abiotic stress tolerant traits, which contributes much to the application of microbial inoculants as alternative to chemical fertilizers.


Lathyrus/microbiology , Nitrogen Fixation/physiology , Rhizobium leguminosarum/classification , Rhizobium leguminosarum/metabolism , Root Nodules, Plant/microbiology , Drug Resistance, Bacterial/genetics , Lathyrus/growth & development , Lathyrus/metabolism , Metals, Heavy/toxicity , RNA, Ribosomal, 16S/genetics , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/isolation & purification , Stress, Physiological/physiology
12.
Appl Environ Microbiol ; 86(15)2020 07 20.
Article En | MEDLINE | ID: mdl-32444469

Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil.IMPORTANCE Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.


Bacterial Proteins/metabolism , Glycerol/metabolism , Methylglucosides/metabolism , Proteome/metabolism , Rhizobium leguminosarum/metabolism , Proteomics
13.
Proc Natl Acad Sci U S A ; 117(18): 9822-9831, 2020 05 05.
Article En | MEDLINE | ID: mdl-32317381

Legumes tend to be nodulated by competitive rhizobia that do not maximize nitrogen (N2) fixation, resulting in suboptimal yields. Rhizobial nodulation competitiveness and effectiveness at N2 fixation are independent traits, making their measurement extremely time-consuming with low experimental throughput. To transform the experimental assessment of rhizobial competitiveness and effectiveness, we have used synthetic biology to develop reporter plasmids that allow simultaneous high-throughput measurement of N2 fixation in individual nodules using green fluorescent protein (GFP) and barcode strain identification (Plasmid ID) through next generation sequencing (NGS). In a proof-of-concept experiment using this technology in an agricultural soil, we simultaneously monitored 84 different Rhizobium leguminosarum strains, identifying a supercompetitive and highly effective rhizobial symbiont for peas. We also observed a remarkable frequency of nodule coinfection by rhizobia, with mixed occupancy identified in ∼20% of nodules, containing up to six different strains. Critically, this process can be adapted to multiple Rhizobium-legume symbioses, soil types, and environmental conditions to permit easy identification of optimal rhizobial inoculants for field testing to maximize agricultural yield.


Fabaceae/genetics , Nitrogen Fixation/genetics , Rhizobium leguminosarum/genetics , Symbiosis/genetics , Fabaceae/metabolism , Fabaceae/microbiology , Green Fluorescent Proteins/genetics , High-Throughput Nucleotide Sequencing , Nitrogen/metabolism , Pisum sativum/genetics , Pisum sativum/metabolism , Plasmids/genetics , Rhizobium leguminosarum/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Soil Microbiology , Synthetic Biology
14.
Proc Natl Acad Sci U S A ; 117(19): 10234-10245, 2020 05 12.
Article En | MEDLINE | ID: mdl-32341157

The nitrogen-related phosphotransferase system (PTSNtr) of Rhizobium leguminosarum bv. viciae 3841 transfers phosphate from PEP via PtsP and NPr to two output regulators, ManX and PtsN. ManX controls central carbon metabolism via the tricarboxylic acid (TCA) cycle, while PtsN controls nitrogen uptake, exopolysaccharide production, and potassium homeostasis, each of which is critical for cellular adaptation and survival. Cellular nitrogen status modulates phosphorylation when glutamine, an abundant amino acid when nitrogen is available, binds to the GAF sensory domain of PtsP, preventing PtsP phosphorylation and subsequent modification of ManX and PtsN. Under nitrogen-rich, carbon-limiting conditions, unphosphorylated ManX stimulates the TCA cycle and carbon oxidation, while unphosphorylated PtsN stimulates potassium uptake. The effects are reversed with the phosphorylation of ManX and PtsN, occurring under nitrogen-limiting, carbon-rich conditions; phosphorylated PtsN triggers uptake and nitrogen metabolism, the TCA cycle and carbon oxidation are decreased, while carbon-storage polymers such as surface polysaccharide are increased. Deleting the GAF domain from PtsP makes cells "blind" to the cellular nitrogen status. PTSNtr constitutes a switch through which carbon and nitrogen metabolism are rapidly, and reversibly, regulated by protein:protein interactions. PTSNtr is widely conserved in proteobacteria, highlighting its global importance.


Bacterial Proteins/metabolism , Carbon/metabolism , Gene Expression Regulation, Bacterial , Nitrogen/metabolism , Phosphates/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Rhizobium leguminosarum/metabolism , Bacterial Proteins/genetics , Citric Acid Cycle , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphorylation , Promoter Regions, Genetic , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/growth & development
15.
J Hazard Mater ; 388: 121783, 2020 04 15.
Article En | MEDLINE | ID: mdl-31836364

Volatile organic compounds (VOCs) are produced by plants, fungi, bacteria and animals. These compounds are metabolites originated mainly in catabolic reactions and can be involved in biological processes. In this study, the airborne effects of five monoterpenes (α-pinene, limonene, eucalyptol, linalool, and menthol) on the growth and oxidative status of the rhizobial strain Rhizobium leguminosarum E20-8 were studied, testing the hypothesis that these VOCs could influence Rhizobium growth and tolerance to cadmium. The tested monoterpenes were reported to have diverse effects, such as antibacterial activity (linalool, limonene, α-pinene, eucalyptol), modulation of antioxidant response or antioxidant properties (α-pinene and menthol). Our results showed that non-stressed cells of Rhizobium E20-8 have different responses (growth, cell damage and biochemistry) to monoterpenes, with α-pinene and eucalyptol increasing colonies growth. In stressed cells the majority of monoterpenes failed to minimize the detrimental effects of Cd and increased damage, decreased growth and altered cell biochemistry were observed. However, limonene (1 and 100 mM) and eucalyptol (100 nM) were able to increase the growth of Cd-stressed cells. Our study evidences the influence at-a-distance that organisms able to produce monoterpenes may have on the growth and tolerance of bacterial cells challenged by different environmental conditions.


Antioxidants/pharmacology , Cadmium/toxicity , Monoterpenes/pharmacology , Rhizobium leguminosarum/drug effects , Volatile Organic Compounds/pharmacology , Oxidative Stress/drug effects , Rhizobium leguminosarum/growth & development , Rhizobium leguminosarum/metabolism
16.
Biomolecules ; 9(11)2019 11 04.
Article En | MEDLINE | ID: mdl-31690032

Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis and infectious diseases is well known, there is a lack of information concerning the amyloids of symbiotic bacteria. In this study, using the previously developed proteomic method for screening and identification of amyloids (PSIA), we identified amyloidogenic proteins in the proteome of the root nodule bacterium Rhizobium leguminosarum. Among 54 proteins identified, we selected two proteins, RopA and RopB, which are predicted to have ß-barrel structure and are likely to be involved in the control of plant-microbial symbiosis. We demonstrated that the full-length RopA and RopB form bona fide amyloid fibrils in vitro. In particular, these fibrils are ß-sheet-rich, bind Thioflavin T (ThT), exhibit green birefringence upon staining with Congo Red (CR), and resist treatment with ionic detergents and proteases. The heterologously expressed RopA and RopB intracellularly aggregate in yeast and assemble into amyloid fibrils at the surface of Escherichia coli. The capsules of the R. leguminosarum cells bind CR, exhibit green birefringence, and contain fibrils of RopA and RopB in vivo.


Amyloidogenic Proteins/metabolism , Bacterial Proteins/metabolism , Rhizobium leguminosarum/metabolism , Root Nodules, Plant/microbiology , Amyloidogenic Proteins/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Plants/microbiology , Rhizobium leguminosarum/genetics
17.
Sci Rep ; 9(1): 13907, 2019 09 25.
Article En | MEDLINE | ID: mdl-31554862

Primary infection of legumes by rhizobia involves the controlled localized enzymatic breakdown of cell walls at root hair tips. Previous studies determined the role of rhizobial CelC2 cellulase in different steps of the symbiotic interaction Rhizobium leguminosarum-Trifolium repens. Recent findings also showed that CelC2 influences early signalling events in the Ensifer meliloti-Medicago truncatula interaction. Here, we have monitored the root hair phenotypes of two legume plants, T. repens and M. sativa, upon inoculation with strains of their cognate and non-cognate rhizobial species, R. leguminosarum bv trifolii and E. meliloti, (over)expressing the CelC2 coding gene, celC. Regardless of the host, CelC2 specifically elicited 'hole-on-the-tip' events (Hot phenotype) in the root hair apex, consistent with the role of this endoglucanase in eroding the noncrystalline cellulose found in polarly growing cell walls. Overproduction of CelC2 also increased root hair tip redirections (RaT phenotype) events in both cognate and non-cognate hosts. Interestingly, heterologous celC expression also induced non-canonical alterations in ROS (Reactive Oxygen Species) homeostasis at root hair tips of Trifolium and Medicago. These results suggest the concurrence of shared unspecific and host-related plant responses to CelC2 during early steps of symbiotic rhizobial infection. Our data thus identify CelC2 cellulase as an important determinant of events underlying early infection of the legume host by rhizobia.


Cellulase/metabolism , Fabaceae/metabolism , Fabaceae/microbiology , Host-Pathogen Interactions/physiology , Rhizobium leguminosarum/metabolism , Symbiosis/physiology , Cell Wall/metabolism , Cell Wall/microbiology , Gram-Negative Bacterial Infections/microbiology , Medicago truncatula/metabolism , Medicago truncatula/microbiology , Phenotype , Plant Roots/metabolism , Plant Roots/microbiology , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Trifolium/metabolism , Trifolium/microbiology
18.
Int J Mol Sci ; 20(12)2019 Jun 14.
Article En | MEDLINE | ID: mdl-31197117

Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing symbiotic associations with clover plants (Trifolium spp.). Surface polysaccharides, transport systems, and extracellular components synthesized by this bacterium are required for both the adaptation to changing environmental conditions and successful infection of host plant roots. The pssZ gene located in the Pss-I region, which is involved in the synthesis of extracellular polysaccharide, encodes a protein belonging to the group of serine/threonine protein phosphatases. In this study, a comparative transcriptomic analysis of R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt297 carrying a pssZ mutation was performed. RNA-Seq data identified a large number of genes differentially expressed in these two backgrounds. Transcriptome profiling of the pssZ mutant revealed a role of the PssZ protein in several cellular processes, including cell signalling, transcription regulation, synthesis of cell-surface polysaccharides and components, and bacterial metabolism. In addition, we show that inactivation of pssZ affects the rhizobial ability to grow in the presence of different sugars and at various temperatures, as well as the production of different surface polysaccharides. In conclusion, our results identified a set of genes whose expression was affected by PssZ and confirmed the important role of this protein in the rhizobial regulatory network.


Bacterial Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Rhizobium leguminosarum/genetics , Transcriptome , Bacterial Proteins/genetics , Polysaccharides/metabolism , Protein Serine-Threonine Kinases/genetics , Rhizobium leguminosarum/enzymology , Rhizobium leguminosarum/metabolism
19.
J Biotechnol ; 302: 32-41, 2019 Aug 20.
Article En | MEDLINE | ID: mdl-31201836

Rhizobium leguminosarum bv trifolii strains TA1 and CC275e have been widely used as effective nitrogen fixing strains for white clover in New Zealand, but rhizobia survival on seeds is usually poor due to different stress conditions. The aim of this study was to select one of those commercial strains grown in a solid carrier (core) and study the influence of the core:polymer ratio in a microencapsulation process by spray drying using guar gum as coating material. First, strains TA1 and CC275e grown on peat and diatomaceous earth were exposed to temperature and desiccation stress. Both strains were stable at 40 °C and completely died after five minutes at 80 °C, while CC275e was more stable than TA1 at 60 °C. TA1 and CC275e slightly decreased viability after six hours drying with either carriers, with no differences between strains. A central composite design was used to develop the microencapsulation process. Independent variables were: inlet temperature (130 °C) and feed flow rate (5 mL/min). Microparticles presented rhizobia loading in 107 CFU/g and mean particle size between 10 and 30 µm. Optimized process reached 50% yield and 107 CFU/g loading. Rhizobia viability dropped two logarithmic units during the microencapsulation/drying process, possibly due to the negative effects of dehydration and high outlet temperature (≈70 °C), suggesting the need to continue optimizing the process by improving the thermal profile in the drying chamber.


Galactans , Mannans , Plant Gums , Rhizobium leguminosarum/metabolism , Desiccation , Temperature
20.
Phytochemistry ; 161: 75-85, 2019 May.
Article En | MEDLINE | ID: mdl-30822623

Root exudation is considered to regulate the abundance of the microbial community. It may vary both qualitatively and quantitatively in response to the environment in which the plant is growing. A part of exuded N derives from amino acids (AAs). This, in turn, may help plants to cope with abiotic stresses by favouring positive interactions with the rhizosphere environment, thus playing a potential role in maintaining healthy plants. In this respect, an under-investigated area is the effect of stress due to water deficit (WD). It is proposed that the AA profile in the rhizosphere may be altered by WD, reflecting a modulation of root AA exudation linked to a physiological response of the plant to water stress. To investigate this, Pisum sativum L. plants, grown in unsterilised Rhizobium leguminosarum-enriched soil, were stem-labelled with 15N-urea for 96 h, and then subjected/not subjected to 72 h of WD. The concentrations and abundance of 15N-labelling in individual AAs were determined in both roots and the associated rhizosphere at 24, 48 and 72 h after stress application. It was found that both AAs metabolism in the pea root and AAs exudation were strongly modified in WD conditions. After 24 h of WD, the concentrations of all measured AAs increased in the roots, accompanied by a dramatic stress-related increase in the 15N-labelling of some AAs. Furthermore, after 48-72 h of WD, the concentrations of Pro, Ala and Glu increased significantly within the rhizosphere, notably with a concomitant increase in 15N-enrichment in Pro, Ser, Asn, Asp, Thr and Ile. These results support the concept that, in response to WD, substantial amounts of recently assimilated N are rapidly translocated from the shoots to the roots, a portion of which is exuded as AAs. This leads to the rhizosphere being relatively augmented by specific AAs (notably HSer, Pro and Ala) in WD conditions, with a potential impact on soil water retention.


Amino Acids/metabolism , Pisum sativum/chemistry , Plant Roots/chemistry , Rhizobium leguminosarum/metabolism , Rhizosphere , Water/metabolism , Amino Acids/chemistry , Pisum sativum/metabolism , Pisum sativum/microbiology , Plant Roots/metabolism , Water/chemistry
...