Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.858
Filter
1.
Parasite ; 31: 34, 2024.
Article in English | MEDLINE | ID: mdl-38949636

ABSTRACT

Wild rodents serve as reservoirs for Cryptosporidium and are overpopulated globally. However, genetic data regarding Cryptosporidium in these animals from China are limited. Here, we have determined the prevalence and genetic characteristics of Cryptosporidium among 370 wild rodents captured from three distinct locations in the southern region of Zhejiang Province, China. Fresh feces were collected from the rectum of each rodent, and DNA was extracted from them. The rodent species was identified by PCR amplifying the vertebrate cytochrome b gene. Cryptosporidium was detected by PCR amplification and amplicon sequencing the small subunit of ribosomal RNA gene. Positive samples of C. viatorum and C. parvum were further subtyped by analyzing the 60-kDa glycoprotein gene. A positive Cryptosporidium result was found in 7% (26/370) of samples, involving five rodent species: Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155), and R. tanezumi (86). Their respective Cryptosporidium positive rates were 8.3%, 5.3%, 11.1%, 7.1%, and 7.0%. Sequence analysis confirmed the presence of three Cryptosporidium species: C. parvum (4), C. viatorum (1), and C. muris (1), and two genotypes: Cryptosporidium rat genotype IV (16) and C. mortiferum-like (4). Additionally, two subtypes of C. parvum (IIdA15G1 and IIpA19) and one subtype of C. viatorum (XVdA3) were detected. These results demonstrate that various wild rodent species in Zhejiang were concurrently infected with rodent-adapted and zoonotic species/genotypes of Cryptosporidium, indicating that these rodents can play a role in maintaining and dispersing this parasite into the environment and other hosts, including humans.


Title: Transmission interspécifique de Cryptosporidium chez les rongeurs sauvages de la région sud de la province chinoise du Zhejiang et son impact possible sur la santé publique. Abstract: Les rongeurs sauvages servent de réservoirs à Cryptosporidium et ont des grandes populations à l'échelle mondiale. Cependant, les données génétiques concernant Cryptosporidium chez ces animaux en Chine sont limitées. Ici, nous avons déterminé la prévalence et les caractéristiques génétiques de Cryptosporidium parmi 370 rongeurs sauvages capturés dans trois endroits distincts de la région sud de la province du Zhejiang, en Chine. Des excréments frais ont été collectés dans le rectum de chaque rongeur et l'ADN en a été extrait. L'espèce de rongeur a été identifiée par amplification par PCR du gène du cytochrome b des vertébrés. Cryptosporidium a été détecté par amplification PCR et séquençage d'amplicons de la petite sous-unité du gène de l'ARN ribosomal. Les échantillons positifs de C. viatorum et C. parvum ont ensuite été sous-typés en analysant le gène de la glycoprotéine de 60 kDa. Un résultat positif pour Cryptosporidium a été trouvé dans 7 % (26/370) des échantillons, impliquant cinq espèces de rongeurs : Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155) et R. tanezumi (86). Leurs taux respectifs de positivité pour Cryptosporidium étaient de 8,3 %, 5,3 %, 11,1 %, 7,1 % et 7,0 %. L'analyse des séquences a confirmé la présence de trois espèces de Cryptosporidium : C. parvum (4), C. viatorum (1) et C. muris (1), et de deux génotypes : Cryptosporidium génotype IV de rat (16) et C. mortiferum-like (4). De plus, deux sous-types de C. parvum (IIdA15G1 et IIpA19) et un sous-type de C. viatorum (XVdA3) ont été détectés. Ces résultats démontrent que diverses espèces de rongeurs sauvages du Zhejiang sont simultanément infectées par des espèces/génotypes de Cryptosporidium zoonotiques et adaptés aux rongeurs, ce qui indique que ces rongeurs peuvent jouer un rôle dans le maintien et la dispersion de ce parasite dans l'environnement et d'autres hôtes, y compris les humains.


Subject(s)
Animals, Wild , Cryptosporidiosis , Cryptosporidium , Feces , Rodent Diseases , Rodentia , Animals , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/transmission , China/epidemiology , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Feces/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Rodent Diseases/transmission , Animals, Wild/parasitology , Rats/parasitology , Rodentia/parasitology , Prevalence , Public Health , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Phylogeny , Humans , DNA, Protozoan/isolation & purification , Murinae/parasitology , Polymerase Chain Reaction , Zoonoses/parasitology , Zoonoses/transmission , Zoonoses/epidemiology , Genotype
2.
Front Cell Infect Microbiol ; 14: 1409685, 2024.
Article in English | MEDLINE | ID: mdl-38957795

ABSTRACT

Introduction: Wild rodents can serve as reservoirs or carriers of E. bieneusi, thereby enabling parasite transmission to domestic animals and humans. This study aimed to investigate the prevalence of E. bieneusi in wild rodents from the Inner Mongolian Autonomous Region and Liaoning Province of China. Moreover, to evaluate the potential for zoonotic transmission at the genotype level, a genetic analysis of the isolates was performed. Methods: A total of 486 wild rodents were captured from two provinces in China. Polymerase chain reaction (PCR) was performed to amplify the vertebrate cytochrome b (cytb) gene in the fecal DNA of the rodents to detect their species. The genotype of E. bieneusi was determined via PCR amplification of the internal transcribed spacer (ITS) region of rDNA. The examination of genetic characteristics and zoonotic potential requires the application of similarity and phylogenetic analysis. Results: The infection rates of E. bieneusi in the four identified rodent species were 5.2% for Apodemus agrarius (n = 89), 4.5% for Cricetulus barabensis (n = 96), 11.3% for Mus musculus (n = 106), and 38.5% for Rattus norvegicus (n = 195). Infection was detected at an average rate of 17.4% among 486 rodents. Of the 11 identified genotypes, nine were known: SHR1 (detected in 32 samples), D (30 samples), EbpA (9 samples), PigEbITS7 (8 samples), HNR-IV (6 samples), Type IV (5 samples), HNR-VII (2 samples), HNH7 (1 sample), and HNPL-V (1 sample). Two novel genotypes were also discovered, NMR-I and NMR-II, each comprising one sample. The genotypes were classified into group 1 and group 13 via phylogenetic analysis. Discussion: Based on the initial report, E. bieneusi is highly prevalent and genetically diverse in wild rodents residing in the respective province and region. This indicates that these animals are crucial for the dissemination of E. bieneusi. Zoonotic E. bieneusi-carrying animals present a significant hazard to local inhabitants. Therefore, it is necessary to increase awareness regarding the dangers presented by these rodents and reduce their population to prevent environmental contamination.


Subject(s)
Animals, Wild , Enterocytozoon , Feces , Genotype , Host Specificity , Microsporidiosis , Phylogeny , Rodentia , Zoonoses , Animals , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Zoonoses/microbiology , Zoonoses/transmission , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/microbiology , Rodentia/microbiology , Feces/microbiology , Animals, Wild/microbiology , Prevalence , Cytochromes b/genetics , Disease Reservoirs/microbiology , Mice , DNA, Ribosomal Spacer/genetics , Humans , Rodent Diseases/microbiology , Rodent Diseases/epidemiology , Polymerase Chain Reaction , DNA, Fungal/genetics , Rats
3.
Parasite ; 31: 37, 2024.
Article in English | MEDLINE | ID: mdl-38963405

ABSTRACT

Enterocytozoon bieneusi is an obligate intracellular microsporidian parasite with a worldwide distribution. As a zoonotic pathogen, E. bieneusi can infect a wide range of wildlife hosts through the fecal-oral route. Although the feces of flying squirrels (Trogopterus xanthipes) are considered a traditional Chinese medicine (as "faeces trogopterori"), no literature is available on E. bieneusi infection in flying squirrels to date. In this study, a total of 340 fresh flying squirrel fecal specimens from two captive populations were collected in Pingdingshan city, China, to detect the prevalence of E. bieneusi and assess their zoonotic potential. By nested PCR amplification of the ITS gene, six specimens tested positive, with positive samples from each farm, with an overall low infection rate of 1.8%. The ITS sequences revealed three genotypes, including known genotype D and two novel genotypes, HNFS01 and HNFS02. Genotype HNFS01 was the most prevalent (4/6, 66.7%). Phylogenetic analysis showed that all genotypes clustered into zoonotic Group 1, with the novel genotypes clustering into different subgroups. To our knowledge, this is the first report of E. bieneusi infection in flying squirrels, suggesting that flying squirrels could act as a potential reservoir and zoonotic threat for E. bieneusi transmission to humans in China.


Title: Occurrence et génotypage d'Enterocytozoon bieneusi chez les écureuils volants (Trogopterus xanthipes) de Chine. Abstract: Enterocytozoon bieneusi est un parasite microsporidien intracellulaire obligatoire présent dans le monde entier. En tant qu'agent pathogène zoonotique, E. bieneusi peut infecter un large éventail d'hôtes sauvages par la voie fécale-orale. Bien que les excréments d'écureuils volants (Trogopterus xanthipes) soient considérés comme un ingrédient de médecine traditionnelle chinoise (comme « faeces trogopterori ¼), aucune littérature n'est disponible à ce jour sur l'infection par E. bieneusi chez les écureuils volants. Dans cette étude, un total de 340 spécimens fécaux frais d'écureuils volants provenant de deux populations captives ont été collectés dans la ville de Pingdingshan, en Chine, pour détecter la prévalence d'E. bieneusi et évaluer leur potentiel zoonotique. Par amplification PCR nichée du gène ITS, six échantillons se sont révélés positifs, avec des échantillons positifs dans chaque ferme, et un taux d'infection global faible, à 1,8 %. Les séquences ITS ont révélé trois génotypes, dont le génotype D connu et deux nouveaux génotypes, HNFS01 et HNFS02. Le génotype HNFS01 était le plus répandu (4/6, 66,7 %). L'analyse phylogénétique a montré que tous les génotypes se regroupaient dans le groupe zoonotique 1, les nouveaux génotypes se regroupant en différents sous-groupes. À notre connaissance, il s'agit du premier rapport d'infection par E. bieneusi chez des écureuils volants, ce qui suggère que les écureuils volants pourraient agir comme un réservoir potentiel et une menace zoonotique pour la transmission d'E. bieneusi aux humains en Chine.


Subject(s)
Enterocytozoon , Feces , Genotype , Microsporidiosis , Phylogeny , Sciuridae , Animals , Sciuridae/microbiology , Sciuridae/parasitology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Feces/microbiology , Feces/parasitology , Prevalence , Zoonoses , Polymerase Chain Reaction/veterinary , DNA, Fungal/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , DNA, Ribosomal Spacer/genetics , Animals, Wild/microbiology
4.
PLoS One ; 19(7): e0306181, 2024.
Article in English | MEDLINE | ID: mdl-38959227

ABSTRACT

Babesia is a tick-transmitted parasite that infects wild and domestic animals, causes babesiosis in humans, and is an increasing public health concern. Here, we investigated the prevalence and molecular characteristics of Babesia infections in the rodents in Southeastern Shanxi, China. Small rodents were captured, and the liver and spleen tissues were used for Babesia detection using traditional PCR and sequencing of the partial 18S rRNA gene. The analysis revealed that 27 of 252 small rodents were positive for Babesia, with an infection rate of 10.71%. The infection rates in different sexes and rodent tissues were not statistically different, but those in different rodent species, habitats, and sampling sites were statistically different. The highest risk of Babesia infection was observed in Niviventer confucianus captured from the forests in Huguan County. Forty-three sequences from 27 small rodents positive for Babesia infection were identified as Babesia microti, including 42 sequences from 26 N. confucianus, and one sequence from Apodemus agrarius. Phylogenetic analysis showed that all sequences were clustered together and had the closest genetic relationship with Babesia microti strains isolated from Rattus losea and N. confucianus in China, and belonged to the Kobe-type, which is pathogenic to humans. Compared to other Kobe-type strains based on the nearly complete 18S rRNA gene, the sequences obtained in this study showed the difference by 1-3 bp. Overall, a high prevalence of Babesia microti infection was observed in small rodents in Southeastern Shanxi, China, which could benefit us to take the implementation of relevant prevention and control measures in this area.


Subject(s)
Babesia microti , Babesiosis , Phylogeny , RNA, Ribosomal, 18S , Rodentia , Animals , Babesia microti/genetics , Babesia microti/isolation & purification , China/epidemiology , Babesiosis/epidemiology , Babesiosis/parasitology , Prevalence , Rodentia/parasitology , RNA, Ribosomal, 18S/genetics , Female , Male , Rodent Diseases/epidemiology , Rodent Diseases/parasitology
5.
Parasitol Res ; 123(6): 250, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910209

ABSTRACT

Hepatozoon spp. are tick-borne apicomplexan parasites of terrestrial vertebrates that occur worldwide. Tissue samples from small rodents and their parasitizing fleas were sampled for molecular detection and phylogenetic analysis of Hepatozoon-specific 18S rRNA gene region. After alignment and tree inference the Hepatozoon-sequences retrieved from a yellow-necked mouse (Apodemus flavicollis) placed into a strongly supported single clade demonstrating the presence of a novel species, designated Hepatozoon sp. SK3. The mode of transmission of Hepatozoon sp. SK3 is yet unknown. It is important to note that this isolate may be identical with the previously morphologically described Hepatozoon sylvatici infecting Apodemus spp.; however, no sequences are available for comparison. Furthermore, the previously reported variants Hepatozoon sp. BV1/SK1 and BV2/SK2 were detected in bank voles (Clethrionomys glareolus). It has been suggested that these variants should be identified as Hepatozoon erhardovae leading to the assumption that BV1 and BV2 are paralogous 18S rRNA gene loci of this species. Evidence has also been presented that fleas are vectors of H. erhardovae. In this study, we show with high significance that only the Hepatozoon sp. BV1 variant, but not BV2, infects the studied flea species Ctenophthalmus agyrtes, Ctenophthalmus assimilis, and Megabothris turbidus (p < 0.001). This finding suggests that Hepatozoon sp. BV2 represents an additional species besides H. erhardovae (= Hepatozoon sp. BV1), for which alternative arthropod vectors or non-vectorial modes of transmission remain to be identified. Future studies using alternative molecular markers or genome sequencing are required to demonstrate that BV1/SK1 and BV2/SK2 are different Hepatozoon species.


Subject(s)
Coccidiosis , Eucoccidiida , Phylogeny , RNA, Ribosomal, 18S , Animals , RNA, Ribosomal, 18S/genetics , Coccidiosis/parasitology , Coccidiosis/veterinary , Coccidiosis/epidemiology , Eucoccidiida/genetics , Eucoccidiida/classification , Eucoccidiida/isolation & purification , Europe , DNA, Protozoan/genetics , Rodentia/parasitology , Siphonaptera/classification , Sequence Analysis, DNA , DNA, Ribosomal/genetics , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Murinae/parasitology
6.
Vet Parasitol Reg Stud Reports ; 52: 101038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880563

ABSTRACT

Toxoplasmosis is a foodborne disease caused by the protozoan Toxoplasma gondii, and transmitted to humans by eating raw or undercooked meat, mainly. Poultry, beef, and pork are the main meats consumed in Peru; despite this, guinea pig meat is also widely consumed. For this reason, the objective of this study was to molecularly detect T. gondii in domestic and wild guinea pigs from the Marangani district in Cuzco, Peru, and identify some risk factors associated with this pathogen. DNA was extracted from the brain tissue samples of guinea pigs (30 domestic and 30 wild), and PCR protocols were used to amplify the internal transcribed spacer (ITS-1) region and a 529 bp fragment from the T. gondii genome. T. gondii DNA was detected in 14 (23.3%) guinea pigs. T. gondii frequency was 33.3% in domestic guinea pigs and 13.3% in wild guinea pigs. Our results demonstrated that guinea pigs represent an important source for T. gondii infection in human populations in this locality.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Animals , Guinea Pigs , Toxoplasma/isolation & purification , Toxoplasma/genetics , Peru/epidemiology , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/epidemiology , DNA, Protozoan/genetics , DNA, Protozoan/analysis , Animals, Wild/parasitology , Female , Male , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Polymerase Chain Reaction/veterinary , Animals, Domestic/parasitology , Risk Factors , Prevalence , Brain/parasitology
7.
Parasit Vectors ; 17(1): 264, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890667

ABSTRACT

BACKGROUND: Fleas, considered to be the main transmission vectors of Bartonella, are highly prevalent and show great diversity. To date, no investigations have focused on Bartonella vectors in Southeast China. The aim of this study was to investigate the epidemiological and molecular characteristics of Bartonella in fleas in Southeast China. METHODS: From 2016 to 2022, flea samples (n = 1119) were collected from 863 rodent individuals in seven inland and coastal cities in Southeast China. Flea species, region, gender, host species and habitat were recorded. The DNA samples from each individual flea were screened by real-time PCR for the Bartonella ssrA gene. All positive samples were confirmed by PCR based on the presence of the gltA gene and sequenced. The factors associated with Bartonella infection were analyzed by the Chi-square test and Fisher's exact test. ANOVA and the t-test were used to compare Bartonella DNA load. RESULTS: Bartonella DNA was detected in 26.2% (293/1119) of the flea samples, including in 27.1% (284/1047) of Xenopsylla cheopis samples, 13.2% (5/38) of Monopsyllus anisus samples, 8.3% (2/24) of Leptopsylla segnis samples and 20.0% (2/10) of other fleas (Nosopsyllus nicanus, Ctenocephalides felis, Stivalius klossi bispiniformis and Neopsylla dispar fukienensis). There was a significant difference in the prevalence of Bartonella among flea species, sex, hosts, regions and habitats. Five species of Bartonella fleas were identified based on sequencing and phylogenetic analyses targeting the gltA gene: B. tribocorum, B. queenslandensis, B. elizabethae, B. rochalimae and B. coopersplainsensis. CONCLUSIONS: There is a high prevalence and diversity of Bartonella infection in the seven species of fleas collected in Southeast China. The detection of zoonotic Bartonella species in this study, including B. tribocorum, B. elizabethae and B. rochalimae, raises public health concerns.


Subject(s)
Bartonella Infections , Bartonella , Flea Infestations , Genetic Variation , Insect Vectors , Rodentia , Siphonaptera , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , China/epidemiology , Siphonaptera/microbiology , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Bartonella Infections/transmission , Rodentia/microbiology , Female , Flea Infestations/epidemiology , Flea Infestations/veterinary , Flea Infestations/parasitology , Insect Vectors/microbiology , Male , Phylogeny , DNA, Bacterial/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , Prevalence
8.
Emerg Infect Dis ; 30(7): 1454-1458, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916725

ABSTRACT

Few cases of hantavirus pulmonary syndrome have been reported in northeastern Argentina. However, neighboring areas show a higher incidence, suggesting underreporting. We evaluated the presence of antibodies against orthohantavirus in small rodents throughout Misiones province. Infected Akodon affinis montensis and Oligoryzomys nigripes native rodents were found in protected areas of Misiones.


Subject(s)
Antibodies, Viral , Orthohantavirus , Animals , Argentina/epidemiology , Orthohantavirus/immunology , Orthohantavirus/classification , Orthohantavirus/isolation & purification , Antibodies, Viral/blood , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary , Hantavirus Infections/virology , Rodentia/virology , Rodent Diseases/epidemiology , Rodent Diseases/virology , Humans , Hantavirus Pulmonary Syndrome/epidemiology , Disease Reservoirs/virology
9.
Parasite ; 31: 33, 2024.
Article in English | MEDLINE | ID: mdl-38912917

ABSTRACT

Wild rodents are key carriers of various human pathogens, including Blastocystis spp. Our study aimed to assess the prevalence and genetic characteristics of Blastocystis among wild rodents in the Inner Mongolian Autonomous Region and Liaoning Province of China. From November 2023 to February 2024, 486 rodents were captured in these regions. Fresh feces were collected from the intestines of each rodent for the isolation of DNA and PCR amplification of the vertebrate cytochrome b (cytb) gene to identify rodent species. Subsequently, PCR analysis and sequencing of the partial small subunit of the ribosomal RNA (rRNA) gene were utilized to detect Blastocystis in all fecal samples. Of the total samples, 27.4% (133/486) were found to be Blastocystis positive. The results revealed the presence of four species of rodents infected with Blastocystis, 32.3% (63/195) in Rattus norvegicus, 15.1% (16/106) in Mus musculus, 20.2% (18/89) in Apodemus agrarius, and 37.5% (36/96) in Cricetulus barabensis. Sequence analysis confirmed the existence of five Blastocystis subtypes: ST1 (n = 4), ST2 (n = 2), the ST4 (n = 125, the dominant subtype), ST10 (n = 1), and a novel ST (n = 1). The identified zoonotic subtypes (ST1, ST2, ST4, and ST10) highlight the possible role played by wild rodents in the transmission of Blastocystis to humans, thereby elevating the chances of human infection. Meanwhile, the discovery of novel sequences also provides new insights into the genetic diversity of this parasite.


Title: Enquête moléculaire sur les infections à Blastocystis chez des rongeurs sauvages de la région autonome de Mongolie intérieure et de la province du Liaoning, Chine : forte prévalence et dominance du sous-type ST4. Abstract: Les rongeurs sauvages sont des vecteurs clés de divers agents pathogènes humains, dont Blastocystis spp. Notre étude visait à évaluer la prévalence et les caractéristiques génétiques de Blastocystis chez les rongeurs sauvages de la région autonome de Mongolie intérieure et de la province chinoise du Liaoning. De novembre 2023 à février 2024, 486 rongeurs ont été capturés dans ces régions. Des matières fécales fraîches ont été collectées dans les intestins de chaque rongeur pour l'isolement de l'ADN et l'amplification par PCR du gène du cytochrome b des vertébrés (cytb) afin d'identifier les espèces de rongeurs. Par la suite, l'analyse PCR et le séquençage de la petite sous-unité partielle du gène de l'ARN ribosomal (ARNr) ont été utilisés pour détecter les Blastocystis dans tous les échantillons fécaux. Sur le total des échantillons, 27.4% (133/486) présentaient un résultat positif à Blastocystis. Les résultats ont révélé la présence de quatre espèces de rongeurs infectées par Blastocystis, 32.3% (63/195) chez Rattus norvegicus, 15.1% (16/106) chez Mus musculus, 20.2% (18/89) chez Apodemus agrarius et 37.5% (36/96) chez Cricetulus barabensis. L'analyse de séquence a confirmé l'existence de cinq sous-types de Blastocystis : ST1 (n = 4), ST2 (n = 2), ST4 (n = 125, le sous-type dominant), ST10 (n = 1) et un nouveau ST (n = 1). Les sous-types zoonotiques identifiés (ST1, ST2, ST4 et ST10) mettent en évidence le rôle possible joué par les rongeurs sauvages dans la transmission de Blastocystis à l'Homme, augmentant ainsi les risques d'infection humaine. Parallèlement, la découverte de nouvelles séquences fournit également de nouvelles informations sur la diversité génétique de ce parasite.


Subject(s)
Blastocystis Infections , Blastocystis , Rodent Diseases , China/epidemiology , Rodentia/parasitology , Blastocystis/classification , Blastocystis/genetics , Blastocystis Infections/epidemiology , Blastocystis Infections/parasitology , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Cytochromes b/genetics , Feces/parasitology , RNA, Ribosomal, 18S/genetics , Prevalence , Genotype , Genetic Variation , Phylogeny
10.
Exp Appl Acarol ; 93(1): 35-48, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695989

ABSTRACT

Parasites are typically concentrated on a few host individuals, and identifying the mechanisms underlying aggregated distribution can facilitate a more targeted control of parasites. We investigated the infestation patterns of hard ticks and chigger mites on two rodent species, the striped field mouse, Apodemus agrarius, and the lesser ricefield rat, Rattus losea, in Taiwan. We also explored abiotic and biotic factors that were important in explaining variation in the abundance of ticks and chiggers on rodent hosts. Ticks were more aggregated than chiggers on both rodent species. Factors important for the variation in parasitic loads, especially biotic factors, largely differed between ticks and chiggers. Variation partitioning analyses revealed that a larger proportion of variation in chiggers than in ticks can be explained, especially by abiotic factors. If, as proposed, the higher number of parasites in males is due to a larger range area or immunity being suppressed by testosterone, when A. agrarius males host more ticks, they are expected to also host more chiggers, given that chiggers adopt a similar host finding approach to that of ticks. Instead, the similar abundance of chiggers in male and female A. agrarius implies that a large home range or suppressed immunity does not predispose males to inevitably host more parasites. More variations were explained by abiotic than biotic factors, suggesting that controlling practices are more likely to be successful by focusing on factors related to the environment instead of host traits. Our study indicated that the extent of parasitism is rarely determined by a sole factor, but is an outcome of complex interactions among animal physiology, animal behavior, characteristics of parasites, and the environments.


Subject(s)
Murinae , Rodent Diseases , Tick Infestations , Trombiculidae , Animals , Taiwan , Male , Rats , Female , Murinae/parasitology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Trombiculidae/physiology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Mite Infestations/veterinary , Mite Infestations/parasitology , Mite Infestations/epidemiology , Host-Parasite Interactions , Ixodidae/physiology
11.
PLoS Negl Trop Dis ; 18(5): e0012142, 2024 May.
Article in English | MEDLINE | ID: mdl-38739651

ABSTRACT

BACKGROUND: Seoul virus (SEOV) is an orthohantavirus primarily carried by rats. In humans, it may cause hemorrhagic fever with renal syndrome (HFRS). Its incidence is likely underestimated and given the expansion of urban areas, a better knowledge of SEOV circulation in rat populations is called for. Beyond the need to improve human case detection, we need to deepen our comprehension of the ecological, epidemiological, and evolutionary processes involved in the transmission of SEOV. METHODOLOGY / PRINCIPAL FINDINGS: We performed a comprehensive serological and molecular characterization of SEOV in Rattus norvegicus in a popular urban park within a large city (Lyon, France) to provide essential information to design surveillance strategies regarding SEOV. We sampled rats within the urban park of 'La Tête d'Or' in Lyon city from 2020 to 2022. We combined rat population genetics, immunofluorescence assays, SEOV high-throughput sequencing (S, M, and L segments), and phylogenetic analyses. We found low structuring of wild rat populations within Lyon city. Only one sampling site within the park (building created in 2021) showed high genetic differentiation and deserves further attention. We confirmed the circulation of SEOV in rats from the park with high seroprevalence (17.2%) and high genetic similarity with the strain previously described in 2011 in Lyon city. CONCLUSION/SIGNIFICANCE: This study confirms the continuous circulation of SEOV in a popular urban park where the risk for SEOV transmission to humans is present. Implementing a surveillance of this virus could provide an efficient early warning system and help prepare risk-based interventions. As we reveal high gene flow between rat populations from the park and the rest of the city, we advocate for SEOV surveillance to be conducted at the scale of the entire city.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Parks, Recreational , Phylogeny , Seoul virus , Animals , Seoul virus/genetics , Seoul virus/isolation & purification , Seoul virus/classification , Rats/virology , France/epidemiology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/veterinary , Hemorrhagic Fever with Renal Syndrome/transmission , Animals, Wild/virology , Humans , Cities/epidemiology , Rodent Diseases/virology , Rodent Diseases/epidemiology
12.
J Anim Ecol ; 93(6): 650-653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706185

ABSTRACT

Research Highlight: Mistrick, J., Veitch, J. S. M., Kitchen, S. M., Clague, S., Newman, B. C., Hall, R. J., Budischak, S. A., Forbes, K. M., & Craft, M. E. (2024). Effects of food supplementation and helminth removal on space use and spatial overlap in wild rodent populations. Journal of Animal Ecology. http://doi.org/10.1111/1365-2656.14067. The spread of pathogens has been of long-standing interest, even before dramatic outbreaks of avian influenza and the coronavirus pandemic spiked broad public interest. However, the dynamics of pathogen spread in wild populations are complex, with multiple effects shaping where animals go (their space use), population density and, more fundamentally, the resultant patterns of contacts (direct or indirect) among individuals. Thus, experimental studies exploring the dynamics of contact under different sets of conditions are needed. In the current field study, Mistrick et al. (2024) used a multifactorial experimental design, manipulating food availability and individual pathogen infection state in wild bank voles (Clethrionomys glareolus). They found that while food availability, individual traits and seasonality can affect how far individual voles moved, the degree of overlap between individual voles remained largely the same despite a high variation in population density-which itself was affected by food availability. These results highlight how biotic and abiotic factors can shape patterns of space use and balance the level of spatial overlap through multiple pathways.


Subject(s)
Arvicolinae , Animals , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Rodent Diseases/virology , Prevalence , Animals, Wild , Male , Female
13.
Ecohealth ; 21(1): 1-8, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38748281

ABSTRACT

From July 2020 to June 2021, 248 wild house mice (Mus musculus), deer mice (Peromyscus maniculatus), brown rats (Rattus norvegicus), and black rats (Rattus rattus) from Texas and Washington, USA, and British Columbia, Canada, were tested for SARS-CoV-2 exposure and infection. Two brown rats and 11 house mice were positive for neutralizing antibodies using a surrogate virus neutralization test, but negative or indeterminate with the Multiplexed Fluorometric ImmunoAssay COVID-Plex, which targets full-length spike and nuclear proteins. Oro-nasopharyngeal swabs and fecal samples tested negative by RT-qPCR, with an indeterminate fecal sample in one house mouse. Continued surveillance of SARS-CoV-2 in wild rodents is warranted.


Subject(s)
Animals, Wild , COVID-19 , Cities , Animals , Mice , Rats/virology , COVID-19/epidemiology , Animals, Wild/virology , SARS-CoV-2 , Peromyscus/virology , Feces/virology , Rodent Diseases/virology , Rodent Diseases/epidemiology , Antibodies, Neutralizing/blood
14.
Int J Parasitol ; 54(8-9): 429-439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604547

ABSTRACT

We searched for common patterns in parasite ecology by investigating species and host contributions to the beta-diversity of infracommunities (=assemblages of parasites harboured by a host individual) in helminths of three species of South African ungulates and fleas of 11 species of South American rodents, assuming that a comparison of patterns in distinctly different parasites and hosts would allow us to judge the generality or, at least, commonness of these patterns. We used data on species' composition and numbers of parasites and asked whether (i) parasite species' attributes (life cycle, transmission mode, and host specificity in helminths; possession of sclerotized combs, microhabitat preference, and host specificity in fleas) or their population structure (mean abundance and/or prevalence) and (ii) host characteristics (sex and age) affect parasite and host species' contributions to parasite beta-diversity (SCBD and HCBD, respectively). We found that parasite species' morphological and ecological attributes were mostly not associated with their SCBD. In contrast, parasite SCBD, in both ungulates and rodents, significantly increased with either parasite mean abundance or prevalence or both. The effect of host characteristics on HCBD was detected in a few hosts only. In general, parasite infracommunities' beta-diversity appeared to be driven by variation in parasite species rather than the uniqueness of the assemblages harboured by individual hosts. We conclude that some ecological patterns (such as the relationships between SCBD and parasite abundance/prevalence) appear to be common and do not differ between different host-parasite associations in different geographic regions, whereas other patterns (the relationships between SCBD and parasite species' attributes) are contingent and depend on parasite and host identities.


Subject(s)
Helminthiasis, Animal , Helminths , Rodentia , Siphonaptera , Animals , Siphonaptera/physiology , Siphonaptera/classification , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Helminths/classification , Helminths/physiology , Helminths/isolation & purification , Rodentia/parasitology , South Africa , Male , Female , Biodiversity , Host-Parasite Interactions , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , South America , Host Specificity , Flea Infestations/parasitology , Flea Infestations/veterinary , Flea Infestations/epidemiology , Prevalence
15.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678025

ABSTRACT

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Subject(s)
Disease Reservoirs , Introduced Species , Lassa Fever , Lassa virus , Murinae , Zoonoses , Animals , Lassa virus/pathogenicity , Lassa virus/physiology , Lassa Fever/transmission , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa Fever/veterinary , Disease Reservoirs/virology , Humans , Rats , Murinae/virology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , Sierra Leone/epidemiology , Guinea/epidemiology , Ecosystem , Rodent Diseases/virology , Rodent Diseases/epidemiology , Rodent Diseases/transmission
16.
Ticks Tick Borne Dis ; 15(4): 102341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593668

ABSTRACT

The nidicolous tick Ixodes laguri is a nest-dwelling parasite of small mammals that mainly infest rodents of the families Cricetidae, Gliridae, Muridae and Sciuridae. There is no proven vectorial role for I. laguri, although it is suggested that it is a vector of Francisella tularensis. In this study, a first map depicting the entire geographical distribution of I. laguri based on georeferenced locations is presented. For this purpose, a digital data set of 142 georeferenced locations from 16 countries was compiled. Particular attention is paid to the description of the westernmost record of I. laguri in the city of Vienna, Austria. There, I. laguri is specifically associated with its main hosts, the critically endangered European hamster (Cricetus cricetus) and the European ground squirrel (Spermophilus citellus). These two host species have also been mapped in the present paper to estimate the potential distribution of I. laguri in the Vienna metropolitan region. The range of I. laguri extends between 16-108∘ E and 38-54∘ N, i.e. from Vienna in the east of Austria to Ulaanbaatar, the capital of Mongolia. In contrast to tick species that are expanding their range and are also becoming more abundant as a result of global warming, I. laguri has become increasingly rare throughout its range. However, I. laguri is not threatened by climate change, but by anthropogenic influences on its hosts and their habitats, which are typically open grasslands and steppes. Rural habitats are threatened by the intensification of agriculture and semi-urban habitats are increasingly being destroyed by urban development.


Subject(s)
Animal Distribution , Ixodes , Tick Infestations , Animals , Austria , Ixodes/growth & development , Ixodes/physiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Endangered Species , Sciuridae/parasitology , Cricetinae , Rodent Diseases/parasitology , Rodent Diseases/epidemiology
17.
J Vector Borne Dis ; 61(1): 43-50, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648405

ABSTRACT

BACKGROUND OBJECTIVES: Leptospirosis is an important zoonotic infection that has caused significant mortality and morbidity worldwide. This disease is endemic in Malaysia and as a developing tropical country, leptospirosis is concerning as it threatens Malaysian public health and the country's economic sectors. However, there is limited information on leptospirosis in Malaysia, especially regarding leptospiral seroepidemiology among carriers in Malaysia. Therefore, more epidemiological information on the source of the disease and reservoir are needed for better disease control and source intervention. The objectives of this study are to gather information on Leptospira infection and the carrier status of rats captured from selected wet markets of Kuala Lumpur metropolitan city in Malaysia. METHODS: Live rat trappings were performed in four major wet markets in Kuala Lumpur, namely, Pudu, Chow Kit, Datuk Keramat, and Petaling Street. Animal samplings were performed for 12 months in 2017, where blood and kidney samples were collected and tested for anti-leptospiral antibodies via Microscopic Agglutination Test (MAT) and pathogenic Leptospira screening via Polymerase Chain Reaction (PCR) amplification offlaB gene. RESULTS: MAT showed that 34.7% (n = 50/144) of the captured rats were positive for anti-leptospiral antibody of which the most prominent serovar was Malaya followed by a local strain, IMR LEP 175. In parallel, 50 rats were also positive for pathogenic Leptospira DNA. INTERPRETATION CONCLUSION: This study showed that there are persistent Leptospira infections among rats in Kuala Lumpur wet markets and these rats are important reservoir hosts for the bacteria.


Subject(s)
Antibodies, Bacterial , Leptospira , Leptospirosis , Animals , Malaysia/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Leptospirosis/microbiology , Rats , Leptospira/genetics , Leptospira/isolation & purification , Antibodies, Bacterial/blood , Carrier State/microbiology , Carrier State/epidemiology , Seroepidemiologic Studies , Male , Disease Reservoirs/microbiology , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Female , Polymerase Chain Reaction , Agglutination Tests
18.
Vet Parasitol Reg Stud Reports ; 50: 101014, 2024 05.
Article in English | MEDLINE | ID: mdl-38644045

ABSTRACT

The present pilot research was focused on the detection of intestinal parasites in the ground squirrel populations in various regions of Slovakia. Only a very little information is currently available on the parasitic species composition of the European ground squirrel in Slovakia and across Europe. In the Slovak Republic, there are 70 locations where the ground squirrel populations are present. A total of 600 faecal samples of the European ground squirrels, collected from 36 locations all over Slovakia, were examined by applying the coprological method. The presence of the protozoan coccidian parasite of the Eimeria genus was confirmed in all of the analysed locations. The presence of eggs of four helminths were confirmed: Capillaria spp. (66.6% of locations); the Trichostrongylidae family (42.8% of locations); Hymenolepis spp. (11.9% of locations); and Citellina spp. (7.14% of locations). Dead individuals that were found in the analysed localities were subjected to necropsy and the tissues scraped off their small intestines were stained in order to confirm the presence of parasites. The post-mortem examination of the intestines and the sedimentation of the intestinal contents in a saline solution did not result in the confirmation of the presence of the eggs, adults or the larval stages of parasites. Spermophilus citellus is one of the strictly protected animal species in Slovakia. In recent years, numerous projects aimed at supporting and protecting ground squirrels have been implemented. The present pilot study on intestinal parasites and the subsequent cooperation with environmental activists will contribute to the support and stabilisation of the presence of these animals in our country.


Subject(s)
Endangered Species , Feces , Intestinal Diseases, Parasitic , Sciuridae , Animals , Sciuridae/parasitology , Slovakia/epidemiology , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Feces/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Pilot Projects , Eimeria/isolation & purification , Eimeria/classification
19.
J Anim Ecol ; 93(6): 663-675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494654

ABSTRACT

Mathematical models highlighted the importance of pathogen-mediated invasion, with the replacement of red squirrels by squirrelpox virus (SQPV) carrying grey squirrels in the UK, a well-known example. In this study, we combine new epidemiological models, with a range of infection characteristics, with recent longitudinal field and experimental studies on the SQPV dynamics in red and grey squirrel populations to better infer the mechanistic basis of the disease interaction. A key finding is that a model with either partial immunity or waning immunity and reinfection, where individuals become seropositive on the second exposure to infection, that up to now has been shown in experimental data only, can capture the key aspects of the field study observations. By fitting to SQPV epidemic observations in isolated red squirrel populations, we can infer that SQPV transmission between red squirrels is significantly (4×) higher than the transmission between grey squirrels and as a result our model shows that disease-mediated replacement of red squirrels by greys is considerably more rapid than replacement in the absence of SQPV. Our findings recover the key results of the previous model studies, which highlights the value of simple strategic models that are appropriate when there are limited data, but also emphasise the likely complexity of immune interactions in wildlife disease and how models can help infer disease processes from field data.


Subject(s)
Poxviridae Infections , Sciuridae , Animals , Sciuridae/virology , Sciuridae/immunology , Sciuridae/physiology , United Kingdom/epidemiology , Poxviridae Infections/veterinary , Poxviridae Infections/transmission , Poxviridae Infections/virology , Poxviridae Infections/immunology , Poxviridae Infections/epidemiology , Rodent Diseases/virology , Rodent Diseases/transmission , Rodent Diseases/immunology , Rodent Diseases/epidemiology , Models, Biological , Poxviridae/physiology , Poxviridae/immunology , Introduced Species
20.
Exp Parasitol ; 259: 108726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428664

ABSTRACT

Cysticercus fasciolaris is a parasitic helminth that usually infects feline and canine mammal hosts. The intermediate hosts (rodents, occasionally lagomorphs, and humans) get infected by the consumption of feed or water contaminated with eggs. Rodents are vectors of disease and reservoirs of various zoonotic parasites. The current survey was aimed at determining endoparasitic helminth infections in rodents in central Morocco. Sampled rodents after specific identification were sacrificed and examined to identify parasitic helminths following ethical guidelines. Parasites were identified using morphological characteristics. A total of 197 specimens of rodents were collected and examined in this study. Ten rodent species were identified morphologically as Rattus rattus, R. norvegicus, Apodemus sylvaticus, Mus musculus, M. spretus, Mastomys erythroleucus, Meriones shawi, M. libycus, Gerbillus campestris, and Lemniscomys barbarus. The parasitological results showed that metacestode of tapeworms was found encysted in the liver, the larval stage of Taenia taeniaeformis develops large multinodular fibrosarcomas which envelope the tapeworm cysts in the liver of the R. rattus and R. norvegicus. Based on morphological data, the metacestode was identified as C. fasciolaris in 23 (23/80) R. rattus 2 (2/8) and R. norvegicus with a prevalence of 11.7 % and 1.0 %, respectively. Rodents are major vectors of human and domestic animal diseases worldwide, and therefore, important parasitic zoonotic agents (C. fasciolaris), which are transmitted by black rats (R. rattus) and brown rats (R. norvegicus), must be considered to prevent the infectivity of humans, domestic animals, and livestock such as cattle, sheep, and rabbits.


Subject(s)
Helminths , Rodent Diseases , Taenia , Mice , Rats , Animals , Cats , Dogs , Humans , Rabbits , Cattle , Sheep , Cysticercus , Morocco/epidemiology , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Animals, Domestic , Gerbillinae
SELECTION OF CITATIONS
SEARCH DETAIL
...