Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.170
Filter
1.
Virol J ; 21(1): 160, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039549

ABSTRACT

Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.


Subject(s)
Antigens, Viral , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Dynamics Simulation , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Subunit , Animals , Swine , Rotavirus/immunology , Rotavirus/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/chemistry , Rotavirus Vaccines/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus Infections/virology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Vaccines, Subunit/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/chemistry , Molecular Docking Simulation , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Vaccine Development , Immunogenicity, Vaccine
2.
Microb Pathog ; 193: 106775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960216

ABSTRACT

Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvß3 and αIIbß3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.


Subject(s)
Antigens, Viral , Capsid Proteins , Epitopes, T-Lymphocyte , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Rotavirus/immunology , Rotavirus/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics , Humans , India , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Vaccinology/methods , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Phylogeny , Molecular Docking Simulation , Epitopes/immunology , Epitopes/genetics , Vaccine Development
3.
Viruses ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38932111

ABSTRACT

Rotavirus infection continues to be a significant public health problem in developing countries, despite the availability of several vaccines. The efficacy of oral rotavirus vaccines in young children may be affected by significant immunological differences between individuals in early life and adults. Therefore, understanding the dynamics of early-life systemic and mucosal immune responses and the factors that affect them is essential to improve the current rotavirus vaccines and develop the next generation of mucosal vaccines. This review focuses on the advances in T-cell development during early life in mice and humans, discussing how immune homeostasis and response to pathogens is established in this period compared to adults. Finally, the review explores how this knowledge of early-life T-cell immunity could be utilized to enhance current and novel rotavirus vaccines.


Subject(s)
Rotavirus Infections , Rotavirus Vaccines , Rotavirus , T-Lymphocytes , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Humans , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Animals , Rotavirus/immunology , T-Lymphocytes/immunology , Administration, Oral , Immunity, Mucosal , Mice
4.
Virus Res ; 346: 199411, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823689

ABSTRACT

In the present study, first, rotaviruses that caused acute gastroenteritis in children under five years of age during the time before the vaccine was introduced in Iran (1986 to 2023) are reviewed. Subsequently, the antigenic epitopes of the VP7 and VP4/VP8 proteins in circulating rotavirus strains in Iran and that of the vaccine strains were compared and their genetic differences in histo-blood group antigens (HBGAs) and the potential impact on rotavirus infection susceptibility and vaccine efficacy were discussed. Overall data indicate that rotavirus was estimated in about 38.1 % of samples tested. The most common genotypes or combinations were G1 and P[8], or G1P[8]. From 2015 to 2023, there was a decline in the prevalence of G1P[8], with intermittent peaks of genotypes G3P[8] and G9P[8]. The analyses suggested that the monovalent Rotarix vaccine or monovalent vaccines containing the G1P[8] component might be proper in areas with a similar rotavirus genotype pattern and genetic background as the Iranian population where the G1P[8] strain is the most predominant and has the ability to bind to HBGA secretors. While the same concept can be applied to RotaTeq and RotasIIL vaccines, their complex vaccine technology, which involves reassortment, makes them less of a priority. The ROTASIIL vaccine, despite not having the VP4 arm (P[5]) as a suitable protection option, has previously shown the ability to neutralize not only G9-lineage I strains but also other G9-lineages at high titers. Thus, vaccination with the ROTASIIL vaccine may be more effective in Iran compared to RotaTeq. However, considering the rotavirus genotypic pattern, ROTAVAC might not be a good choice for Iran. Overall, the findings of this study provide valuable insights into the prevalence of rotavirus strains and the potential effectiveness of different vaccines in the Iranian and similar populations.


Subject(s)
Gastroenteritis , Genotype , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Iran/epidemiology , Rotavirus/genetics , Rotavirus/immunology , Rotavirus/classification , Gastroenteritis/virology , Gastroenteritis/prevention & control , Gastroenteritis/epidemiology , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Humans , Child, Preschool , Infant , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Mass Vaccination , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigenic Variation , Phylogeny
5.
J Virol ; 98(7): e0076224, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38837379

ABSTRACT

Rotavirus causes severe diarrhea in infants. Although live attenuated rotavirus vaccines are available, vaccine-derived infections have been reported, which warrants development of next-generation rotavirus vaccines. A single-round infectious virus is a promising vaccine platform; however, this platform has not been studied extensively in the context of rotavirus. Here, we aimed to develop a single-round infectious rotavirus by impairing the function of the viral intermediate capsid protein VP6. Recombinant rotaviruses harboring mutations in VP6 were rescued using a reverse genetics system. Mutations were targeted at VP6 residues involved in virion assembly. Although the VP6-mutated rotavirus expressed viral proteins, it did not produce progeny virions in wild-type cells; however, the virus did produce progeny virions in VP6-expressing cells. This indicates that the VP6-mutated rotavirus is a single-round infectious rotavirus. Insertion of a foreign gene, and replacement of the VP7 gene segment with that of human rotavirus clinical isolates, was successful. No infectious virions were detected in mice infected with the single-round infectious rotavirus. Immunizing mice with the single-round infectious rotavirus induced neutralizing antibody titers as high as those induced by wild-type rotavirus. Taken together, the data suggest that this single-round infectious rotavirus has potential as a safe and effective rotavirus vaccine. This system is also applicable for generation of safe and orally administrable viral vectors.IMPORTANCERotavirus, a leading cause of acute gastroenteritis in infants, causes an annual estimated 128,500 infant deaths worldwide. Although live attenuated rotavirus vaccines are available, they are replicable and may cause vaccine-derived infections. Thus, development of safe and effective rotavirus vaccine is important. In this study, we report the development of a single-round infectious rotavirus that can replicate only in cells expressing viral VP6 protein. We demonstrated that (1) the single-round infectious rotavirus did not replicate in wild-type cells or in mice; (2) insertion of foreign genes and replacement of the outer capsid gene were possible; and (3) it was as immunogenic as the wild-type virus. Thus, the mutated virus shows promise as a next-generation rotavirus vaccine. The system is also applicable to orally administrable viral vectors, facilitating development of vaccines against other enteric pathogens.


Subject(s)
Antigens, Viral , Capsid Proteins , Mutation , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Capsid Proteins/genetics , Capsid Proteins/immunology , Rotavirus/genetics , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Mice , Rotavirus Infections/virology , Rotavirus Infections/prevention & control , Rotavirus Vaccines/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Humans , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Cell Line , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Virion/genetics , Female
6.
Virology ; 597: 110130, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38850894

ABSTRACT

Porcine rotavirus (PoRV) is one of the main pathogens causing diarrhea in piglets, and multiple genotypes coexist. However, an effective vaccine is currently lacking. Here, the potential adjuvant of nonstructural protein 4 (NSP4) and highly immunogenic structural protein VP4 prompted us to construct recombinant NSP486-175aa (NSP4*) and VP426-476aa (VP4*) proteins, combine them as immunogens to evaluate their efficacy. Results indicated that NSP4* enhanced systemic and local mucosal responses induced by VP4*. The VP4*-IgG, VP4*-IgA in feces and IgA-secreting cells in intestines induced by the co-immunization were significantly higher than those induced by VP4* alone. Co-immunization of NSP4* and VP4* also induced strong cellular immunity with significantly increased IFN-λ than the single VP4*. Summarily, the NSP4* as a synergistical antigen exerted limited effects on the PoRV NAbs elevation, but conferred strong VP4*-specific mucosal and cellular efficacy, which lays the foundation for the development of a more effective porcine rotavirus subunit vaccine.


Subject(s)
Antibodies, Viral , Capsid Proteins , Immunity, Mucosal , Rotavirus Infections , Rotavirus , Viral Nonstructural Proteins , Animals , Swine , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Rotavirus/immunology , Rotavirus/genetics , Capsid Proteins/genetics , Capsid Proteins/immunology , Rotavirus Infections/virology , Rotavirus Infections/immunology , Rotavirus Infections/veterinary , Rotavirus Infections/prevention & control , Antibodies, Viral/immunology , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/genetics , Toxins, Biological/genetics , Toxins, Biological/immunology , Glycoproteins/genetics , Glycoproteins/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Immunoglobulin A/immunology , Swine Diseases/virology , Swine Diseases/immunology , Adjuvants, Immunologic/administration & dosage , Feces/virology , Immunoglobulin G/immunology , Antigens, Viral/immunology , Antigens, Viral/genetics
7.
J Med Virol ; 96(6): e29761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924137

ABSTRACT

Globally, Group A rotavirus (RVA) is the leading cause of acute gastroenteritis in children under 5 years old, with Pakistan having the highest rates of RVA-related morbidity and mortality. The current study aims to determine the genetic diversity of rotavirus and evaluate the impact of Rotarix-vaccine introduction on disease epidemiology in Pakistan. A total of 4749 children, hospitalized with acute gastroenteritis between 2018 and 2020, were tested at four hospitals in Lahore and Karachi. Of the total, 19.3% (918/4749) cases were tested positive for RVA antigen, with the positivity rate varying annually (2018 = 22.7%, 2019 = 14.4%, 2020 = 20.9%). Among RVA-positive children, 66.3% were under 1 year of age. Genotyping of 662 enzyme-linked immuno sorbent assay-positive samples revealed the predominant genotype as G9P[4] (21.4%), followed by G1P[8] (18.9%), G3P[8] (11.4%), G12P[6] (8.7%), G2P[4] (5.7%), G2P[6] (4.8%), and 10.8% had mixed genotypes. Among vaccinated children, genotypes G9P[4] and G12P[6] were more frequently detected, whereas a decline in G2P[4] was observed. Phylogenetic analysis confirmed the continued circulation of indigenous genotypes detected earlier in the country except G9 and P[6] strains. Our findings highlight the predominance of G9P[4] genotype after the vaccine introduction thus emphasizing continual surveillance to monitor the disease burden, viral diversity, and their impact on control of rotavirus gastroenteritis in children.


Subject(s)
Gastroenteritis , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Attenuated , Humans , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Gastroenteritis/virology , Gastroenteritis/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Infant , Child, Preschool , Pakistan/epidemiology , Female , Male , Vaccines, Attenuated/immunology , Genetic Variation , Feces/virology , Acute Disease/epidemiology
8.
Article in English | MEDLINE | ID: mdl-38926653

ABSTRACT

Abstract: This report from the Australian Rotavirus Surveillance Program describes the circulating rotavirus genotypes identified in children and adults during the period 1 January to 31 December 2022. After two years of a lower number of stool samples received as a result of the coronavirus disease 2019 (COVID-19) pandemic, this reporting period saw the highest number of samples received since the 2017 surveillance period, with samples received from all states and territories. During this period, 1,379 faecal specimens had been referred for rotavirus G- and P- genotype analysis, of which 1,276 were confirmed as rotavirus positive. In total, 1,119/1,276 were identified as wildtype rotavirus, 155/1,276 identified as the Rotarix vaccine strain and 2/1,276 that could not be confirmed as vaccine or wildtype due to sequencing failure. Whilst G12P[8] was the dominant genotype nationally among wildtype samples (28.2%; 315/1,119), multiple genotypes were identified at similar frequencies including G9P[4] (22.3%; 249/1,119) and G2P[4] (20.3%; 227/1,119). Geographical differences in genotype distribution were observed, largely driven by outbreaks reported in some jurisdictions. Outbreaks and increased reports of rotavirus disease were reported in the Northern Territory, Queensland, and New South Wales. A small number of unusual genotypes, potentially zoonotic in nature, were identified, including: G8P[14]; G10[14]; caninelike G3P[3]; G6P[9]; and G11P[25]. Ongoing rotavirus surveillance is crucial to identify changes in genotypic patterns and to provide diagnostic laboratories with quality assurance by reporting incidences of wildtype, vaccine-like, or false positive rotavirus results.


Subject(s)
Feces , Genotype , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , Australia/epidemiology , Feces/virology , Child, Preschool , Infant , Child , Adult , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Adolescent , Female , Male , Disease Outbreaks , Vaccines, Attenuated , Infant, Newborn , Annual Reports as Topic , Epidemiological Monitoring , Middle Aged
9.
BMC Pediatr ; 24(1): 358, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778329

ABSTRACT

BACKGROUND: Rotavirus has a significant morbidity and mortality in children under two years. The burden of rotavirus diarrhea 4 years post introduction of rotavirus vaccine in Uganda is not well established. This study aimed to determine the prevalence, severity of dehydration and factors associated with rotavirus diarrhea among children aged 3 to 24 months after the introduction of the vaccine at Fort Portal Regional Referral hospital. METHODS: This was a cross-sectional hospital-based study in which children with acute watery diarrhea were included. A rectal tube was used to collect a stool sample for those unable to provide samples. Stool was tested for rotavirus using rapid immunochromatographic assay. Data was analysed using SPSS version 22 with logistic regression done to determine the factors. RESULTS: Out of 268 children with acute watery diarrhea, 133 (49.6%) were females. Rotavirus test was positive in 42 (15.7%), majority of whom had some dehydration 28(66.7%). The factors that were independently associated with rotavirus diarrhea were; age < 12 months (AOR = 8.87, P = 0.014), male gender (AOR = 0.08, P = 0.001), coming from a home with another person with diarrhea (AOR = 17.82, P = 0.001) or a home where the water source was a well (AOR = 50.17, P = 0.002). CONCLUSION: The prevalence of rotavirus diarrhea was three times less in the post rotavirus vaccination period compared to pre-rota vaccination period. Majority of the participants with rotavirus diarrhea had some dehydration. There is need for provision of safe water sources to all homes. Surveillance to determine the cause of the non rota diarrhea should be done.


Subject(s)
Rotavirus Infections , Rotavirus Vaccines , Humans , Uganda/epidemiology , Cross-Sectional Studies , Male , Female , Infant , Rotavirus Vaccines/administration & dosage , Prevalence , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Risk Factors , Child, Preschool , Dehydration/epidemiology , Dehydration/etiology , Diarrhea/epidemiology , Diarrhea/virology , Feces/virology , Logistic Models , Diarrhea, Infantile/epidemiology , Diarrhea, Infantile/virology , Diarrhea, Infantile/prevention & control
10.
Hum Vaccin Immunother ; 20(1): 2353480, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38757507

ABSTRACT

Following the introduction of rotavirus vaccination into the Moroccan National Immunization Program, the prevalence of the disease has decreased by nearly 50%. However, evidence on the economic value of rotavirus vaccinations in Morocco is limited. This health economic analysis evaluated, from both country payer and societal perspectives, the costs and the cost-effectiveness of three rotavirus vaccines using a static, deterministic, population model in children aged < 5 years in Morocco. Included vaccines were HRV (2-dose schedule), HBRV (3-dose schedule) and BRV-PV 1-dose vial (3-dose schedule). One-way and probabilistic sensitivity analyses were conducted to assess the impact of uncertainty in model inputs. The model predicted that vaccination with HRV was estimated to result in fewer rotavirus gastroenteritis events (-194 homecare events, -57 medical visits, -8 hospitalizations) versus the 3-dose vaccines, translating into 7 discounted quality-adjusted life years gained over the model time horizon. HRV was associated with lower costs versus HBRV from both the country payer (-$1.8 M) and societal (-$4.1 M) perspectives, and versus BRV-PV 1-dose vial from the societal perspective (-$187,000), dominating those options in the cost-effectiveness analysis. However, costs of BRV-PV 1-dose vial were lower than HRV from the payer perspective, resulting in an ICER of approximately $328,376 per QALY, above the assumed cost effectiveness threshold of $3,500. Vaccination with a 2-dose schedule of HRV may be a cost-saving option and could lead to better health outcomes for children in Morocco versus 3-dose schedule rotavirus vaccines.


Subject(s)
Cost-Benefit Analysis , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/economics , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Child, Preschool , Rotavirus Infections/prevention & control , Rotavirus Infections/economics , Infant , Morocco , Female , Male , Infant, Newborn , Vaccination/economics , Gastroenteritis/prevention & control , Gastroenteritis/economics , Gastroenteritis/virology
11.
Vaccine ; 42(19): 4022-4029, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38744597

ABSTRACT

BACKGROUND: Rotavirus (RV) induced diarrhea led to hospitalization and mortality prior to the introduction of the rotavirus vaccine (RVV). The estimated RVV coverage was 86% in children less than one year of age in Pakistan. OBJECTIVES: To determine the difference in the number of diarrheal episodes among children who received and who did not receive RVV, along with the parental and physician's perspectives on the barriers toward RV immunization in children aged less than 1 year in Karachi, Pakistan. METHODS: A mixed-methods study design was conducted in three Primary Healthcare (PHC) private clinics located in different districts of Karachi, Pakistan. Data for RVV status and diarrheal episodes were collected, from medical records in June 2020 for children born between October 2019 to March 2020. Three In-depth Interviews (IDIs) with physicians and three focus group discussions (FGDs) with mothers were conducted for information on awareness and approach towards diarrhea, knowledge, and acceptance of RVV, and barriers towards RV immunization. RESULTS: A total of 430 infants visited the three PHC centres coded as A (n = 144), B (n = 146), and C (n = 140). The mean age of infants was 2.6 ± 0.2 months, 49.5 % were males and 87 (20.2 %) were partial/not vaccinated for RV. Reported diarrheal episodes were 104 (24.2 %), and of these 76 (73.1 %) were partially or not vaccinated, and 83 (79.8 %) were stunted. Recorded diarrhea was significantly associated with partial/not vaccinated status (p < 0.001), stunting (p < 0.001), and by PHC centre location (p < 0.001). PHC-C had the lowest percentage of reported diarrhea, stunting, and non/partially vaccinated status. Qualitative study (FGDs) showed that mothers had lack of awareness and knowledge on the prevention of diarrhea by RVV. Physicians' IDIs pointed towards a lack of sufficient training on RVV. CONCLUSION: Diarrheal episodes in infants were associated with partial or unvaccinated for RVV, low nutritional status, and areas of residence. Low levels of knowledge and awareness in caretakers and lack of training for RVV in PHC physicians were perceived as barriers in controlling diarrheal diseases.


Subject(s)
Diarrhea , Primary Health Care , Rotavirus Infections , Rotavirus Vaccines , Humans , Diarrhea/prevention & control , Diarrhea/epidemiology , Diarrhea/virology , Pakistan/epidemiology , Female , Infant , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Male , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Health Knowledge, Attitudes, Practice , Vaccination , Mothers , Rotavirus/immunology
12.
Vaccine ; 42(19): 4030-4039, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38796326

ABSTRACT

We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Rotavirus Vaccines , Vaccines, Inactivated , Humans , Adult , Double-Blind Method , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Middle Aged , Young Adult , Adolescent , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/adverse effects , China , Immunogenicity, Vaccine , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus/immunology , Healthy Volunteers , Neutralization Tests
13.
Expert Rev Vaccines ; 23(1): 606-618, 2024.
Article in English | MEDLINE | ID: mdl-38813689

ABSTRACT

INTRODUCTION: Rotavirus is a leading cause of severe diarrheal disease and death in children under five years of age worldwide. Vaccination is one of the most important public health interventions to reduce this significant burden. AREAS COVERED: This literature review examined vaccination coverage, hospitalization rate, mortality, genotypic distribution, immunogenicity, cost-effectiveness, and risk versus benefit of rotavirus vaccination in children in South America. Nine out of twelve countries in South America currently include a rotavirus vaccine in their national immunization program with coverage rates in 2022 above 90%. EXPERT OPINION: Introduction of the rotavirus vaccination has led to a marked reduction in hospitalizations and deaths from diarrheal diseases in children under 5 years, particularly infants under 1 year, in several South American countries. In Brazil, hospitalizations decreased by 59% and deaths by 21% (30-38% in infants). In Peru, hospitalizations in infants fell by 46% and deaths by 37% (56% in infants). Overall, data suggest that rotavirus vaccination has reduced rotavirus deaths by 15-50% in various South American countries. There is some evidence that immunity wanes after the age of 1-year old. Ongoing surveillance of vaccine coverage and changes in morbidity and mortality is important to maximize protection against this disease.


Subject(s)
Diarrhea , Hospitalization , Immunization Programs , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Diarrhea/prevention & control , Diarrhea/epidemiology , Diarrhea/virology , Infant , Hospitalization/statistics & numerical data , South America/epidemiology , Child, Preschool , Vaccination/statistics & numerical data , Cost-Benefit Analysis , Rotavirus/immunology , Vaccination Coverage/statistics & numerical data , Cost of Illness
14.
BMC Infect Dis ; 24(1): 547, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822241

ABSTRACT

Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Genetic Variation , Norovirus , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Infant , Africa/epidemiology , Child, Preschool , Caliciviridae Infections/epidemiology , Caliciviridae Infections/prevention & control , Caliciviridae Infections/virology , Norovirus/genetics , Norovirus/classification , Norovirus/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Infant, Newborn , Prevalence , Rotavirus/genetics , Rotavirus/immunology , Rotavirus/classification , Vaccination/statistics & numerical data
15.
Front Immunol ; 15: 1364429, 2024.
Article in English | MEDLINE | ID: mdl-38690265

ABSTRACT

Background: This meta-analysis was performed to assess the prevalence and circulating strains of rotavirus (RV) among Chinese children under 5 years of age after the implantation of the RV vaccine. Material and methods: Studies published between 2019 and 2023, focused on RV-based diarrhea among children less than 5 years were systematically reviewed using PubMed, Embase, Web of Science, CNKI, Wanfang and SinoMed Data. We synthesized their findings to examine prevalence and genetic diversity of RV after the RV vaccine implementation using a fixed-effects or random-effects model. Results: Seventeen studies met the inclusion criteria for this meta-analysis. The overall prevalence of RV was found to be 19.00%. The highest infection rate was noted in children aged 12-23months (25.79%), followed by those aged 24-35 months (23.91%), and 6-11 months (22.08%). The serotype G9 emerged as the most predominant RV genotype, accounting for 85.48% of infections, followed by G2 (7.70%), G8 (5.74%), G1 (4.86%), and G3 (3.21%). The most common P type was P[8], representing 64.02% of RV cases. Among G-P combinations, G9P[8] was the most frequent, responsible for 78.46% of RV infections, succeeded by G8P[8] (31.22%) and G3P[8] (8.11%). Conclusion: Despite the variation of serotypes observed in China, the G1, G2, G3, G8 and G9 serotypes accounted for most RV strains. The genetic diversity analysis highlights the dynamic nature of RV genotypes, necessitating ongoing surveillance to monitor changes in strain distribution and inform future vaccine strategies.


Subject(s)
Genetic Variation , Rotavirus Infections , Rotavirus , Humans , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , China/epidemiology , Prevalence , Infant , Child, Preschool , Genotype , Rotavirus Vaccines/immunology , Male
16.
J Med Virol ; 96(5): e29650, 2024 May.
Article in English | MEDLINE | ID: mdl-38727133

ABSTRACT

To analyze the epidemiological characteristics of group A rotavirus (RVA) diarrhea in Beijing between 2019 and 2022 and evaluate the effectiveness of the RV5 vaccine. Stool specimens were collected from patients with acute diarrhea, and RVA was detected and genotyped. The whole genome of RVA was sequenced by fragment amplification and Sanger sequencing. Phylogenetic trees were constructed using Bayesian and maximum likelihood methods. Descriptive epidemiological methods were used to analyze the characteristics of RVA diarrhea. Test-negative design was used to evaluate the vaccine effectiveness (VE) of the RV5. Compared with 2011-2018, RVA-positive rates in patients with acute diarrhea under 5 years of age and adults decreased significantly between 2019 and 2022, to 9.45% (249/634) and 3.66% (220/6016), respectively. The predominant genotype of RVA had changed from G9-VIP[8]-III between 2019 and 2021 to G8-VP[8]-III in 2022, and P[8] sequences from G8-VP[8]-III strains formed a new branch called P[8]-IIIb. The complete genotype of G8-VP[8]-III was G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. The VE of 3 doses of RV5 was 90.4% (95% CI: 28.8%-98.7%) against RVA diarrhea. The prevalence of RVA decreased in Beijing between 2019 and 2022, and the predominant genotype changed to G8P[8], which may be related to RV5 vaccination. Continuous surveillance is necessary to evaluate vaccine effectiveness and improve vaccine design.


Subject(s)
Diarrhea , Feces , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus/genetics , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/prevention & control , Diarrhea/virology , Diarrhea/epidemiology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Child, Preschool , Prevalence , Beijing/epidemiology , Male , Infant , Female , Adult , Feces/virology , Middle Aged , Child , Young Adult , Adolescent , Vaccine Efficacy , Aged , Genome, Viral , Infant, Newborn
17.
Diagn Microbiol Infect Dis ; 109(4): 116346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759540

ABSTRACT

Rotaviruses belong to genotype VP4-P[8] are a significant cause of severe loose diarrhea in infants and young children. In the present study, we characterised the complete genome of three of the Pakistani P[8]b RVA strains by Illumina HiSeq sequencing technology to determine the complete genotype constellation providing insight into the evolutionary dynamics of their genes using maximum likelihood analysis. The maximum genomic sequences of our study strains were similar to more recent human Wa-Like G1P[8]a, G3P[8]a, G4P[6], G4P[8], G9P[4], G9P[8]a, G11P[25],G12P[8]a and G12P[6] strains circulating around the world. Therefore, strains PAK274, PAK439 and PAK624 carry natively distinctive VP4 gene with universally common human Wa-Like genetic backbone. Comparing our study P[8]b strains with vaccines strains RotarixTM and RotaTeqTM, multiple amino acid differences were examined between vaccine virus antigenic epitopes and Pakistani isolates. Over time, these differences may result in the selection for strains that will escape the vaccine-induced RVA-neutralizing-antibody effect.


Subject(s)
Antigens, Viral , Capsid Proteins , Epitopes , Genome, Viral , Genotype , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Rotavirus/genetics , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Pakistan , Rotavirus Vaccines/immunology , Epitopes/genetics , Epitopes/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Genome, Viral/genetics , Antigens, Viral/genetics , Antigens, Viral/immunology , Infant , Phylogeny , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Child, Preschool
18.
Eur J Pediatr ; 183(7): 2843-2853, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38584228

ABSTRACT

The objective of this study was to estimate, by a novel spatiotemporal approach in an environment of non-funded rotavirus (RV) vaccines, the RV vaccine effectiveness (VE) to prevent acute gastroenteritis primary care (AGE-PC)-attended episodes, demonstrating how indirect protection leads to underestimation of direct VE under high vaccine coverage (VC). This population-based retrospective cohort study used electronic healthcare registries including all children 2 months-5 years old, born from 2009 to 2018 in the Valencia Region (Spain). Direct RV VE preventing AGE-PC episodes was estimated using propensity score matching and Poisson regressions stratified by VC, adjusted by age and calendar season. Indirect VE was estimated by Poisson regression comparing AGE-PC rates in unvaccinated children among the different VC levels. A total of 563,442 children were included for the RV VC estimation; of them, 360,576 were included in the birth-cohort for VE analysis. RV VC showed strong variability among districts and seasons, rising on average from 21% in 2009/2010 to 55% in 2017/2018. The highest direct VE was found in vaccinated children from districts with 0-30% RV VC (16.4%) and the lowest in those from districts with ≥ 70% RV VC (9.7%). The indirect protection in unvaccinated children raised from 6 to 16.6% for those living with 20-30% and ≥ 70% VC, respectively. CONCLUSION: Considering that RV is the causative agent in 20% of AGE cases, a direct effectiveness of 82% preventing AGE-PC episodes due to RV could be deduced using a novel spatiotemporal approach. A reduction of 17% of AGE-PC episodes in unvaccinated was observed in areas with VC over 70% because of indirect protection. WHAT IS KNOWN: • The effectiveness of RV vaccines preventing hospitalizations due to RV-acute gastroenteritis (RV-AGE) has been extensively studied. However, RV also burdens the primary care (PC) setting, and data on vaccine effectiveness (VE) in preventing AGE-PC visits are scarce. • The RV vaccine distribution in Spain (non-funded), with large differences in vaccine coverage (VC) among healthcare districts, provides an ideal scenario to assess the actual VE in preventing AGE-PC consultations, including the direct and indirect protection. WHAT IS NEW: • A direct effectiveness of 82% preventing AGE-PC episodes due to RV could be deduced using a novel spatiotemporal approach. A reduction of 17% of AGE-PC episodes in unvaccinated was observed in areas with high VC because of indirect protection. • These findings, together with existing data on the impact on hospitalizations due to RV-AGE, offer valuable insights for implementing vaccination initiatives in countries that have not yet commenced such programs.


Subject(s)
Gastroenteritis , Primary Health Care , Propensity Score , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Spain/epidemiology , Gastroenteritis/prevention & control , Gastroenteritis/virology , Gastroenteritis/epidemiology , Retrospective Studies , Infant , Rotavirus Infections/prevention & control , Child, Preschool , Male , Primary Health Care/statistics & numerical data , Female , Vaccine Efficacy , Acute Disease , Vaccination Coverage/statistics & numerical data
19.
Am J Trop Med Hyg ; 110(6): 1201-1209, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38626750

ABSTRACT

This study examined the relative proportion of enteric pathogens associated with severe gastroenteritis (GE) among children younger than 2 years in a phase III efficacy trial of the ROTASIIL® vaccine in India, evaluated the impact of co-infections on vaccine efficacy (VE), and characterized the association between specific pathogens and the clinical profile of severe GE. Stored stool samples collected from cases of severe GE in the phase III trial were tested by quantitative polymerase chain reaction using TaqMan™ Array Cards. Etiology was attributed by calculating the adjusted attributable fraction (AF) for each pathogen. A test-negative design was used to estimate VE. The pathogens with the highest AFs for severe diarrhea were rotavirus (23.5%), adenovirus 40/41 (17.0%), Shigella spp./enteroinvasive Escherichia coli, norovirus GII, enterotoxigenic E. coli, and Cryptosporidium spp. A considerable proportion of the disease in these children could not be explained by the pathogens tested. Severe GE cases associated with rotavirus and Shigella spp. were more likely to have a longer duration of vomiting and diarrhea, respectively. Cases attributed to Cryptosporidium spp. were more severe and required hospitalization. In the intention-to-treat population, VE was estimated to be 43.9% before and 46.5% after adjustment for co-infections; in the per-protocol population, VE was 46.7% before and 49.1% after adjustments. Rotavirus continued to be the leading cause of severe GE in this age group. The adjusted VE estimates obtained did not support co-infections as a major cause of lower vaccine performance in low- and middle-income countries.


Subject(s)
Coinfection , Diarrhea , Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus Vaccines/therapeutic use , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Infant , Gastroenteritis/virology , Gastroenteritis/microbiology , Gastroenteritis/prevention & control , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Diarrhea/virology , Diarrhea/microbiology , Diarrhea/prevention & control , Diarrhea/epidemiology , Coinfection/microbiology , Coinfection/virology , Rotavirus/immunology , Female , Vaccine Efficacy , Shigella/immunology , Male , India/epidemiology , Feces/virology , Feces/microbiology , Vaccines, Attenuated , Norovirus/immunology , Enterotoxigenic Escherichia coli/immunology
20.
Vaccine ; 42(15): 3514-3521, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38670845

ABSTRACT

Group A rotavirus (RVA) is the primary etiological agent of acute gastroenteritis (AGE) in children under 5 years of age. Despite the global implementation of vaccines, rotavirus infections continue to cause over 120,000 deaths annually, with a majority occurring in developing nations. Among infants, the P[8] rotavirus strain is the most prevalent and can be categorized into four distinct lineages. In this investigation, we expressed five VP4(aa26-476) proteins from different P[8] lineages of human rotavirus in E. coli and assessed their immunogenicity in rabbits. Among the different P[8] strains, the Wa-VP4 protein, derived from the MT025868.1 strain of the P[8]-1 lineage, exhibited successful purification in a highly homogeneous form and significantly elicited higher levels of neutralizing antibodies (nAbs) against both homologous and heterologous rotaviruses compared to other VP4 proteins derived from different P[8] lineages in rabbits. Furthermore, we assessed the immunogenicity of the Wa-VP4 protein in mice, pigs, and cynomolgus monkeys, observing that it induced robust production of nAbs in all animals. Interestingly, there was no significant difference between in nAb titers against homologous and heterologous rotaviruses in pigs and mankeys. Collectively, these findings suggest that the Wa-VP4* protein may serve as a potential candidate for a rotavirus vaccine.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins , Macaca fascicularis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Swine , Rabbits , Mice , Rotavirus/immunology , Rotavirus/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Female , Mice, Inbred BALB C , Humans , Immunogenicity, Vaccine , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL