Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.809
Filter
1.
Sci Rep ; 14(1): 16570, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019954

ABSTRACT

As an important pest on winter wheat, Rhopalosiphum padi (L.) causes damage to the wheat yield by sucking plant nutrients, transmitting plant viruses and producing mildew. R. padi has been reported to develop resistance to pyrethroids and neonicotinoids. To explore potential alternative approaches for R. padi control, the activity of 10 botanical insecticides was evaluated. Results suggested that the toxicity of rotenone and pyrethrins to R. padi were the highest and near to the commonly used chemical insecticides. When exposed to the low-lethal concentrations (LC10, LC30) of rotenone or pyrethrins for 24 h, the lifespan and fecundity of adults in F0 generation decreased significantly compared to control. The negative effect could also be observed in the F1 generation, including the decreased average offspring, longevity of adult, and prolonged nymph period. The population parameters in F1 generation of R. padi were also inhibited by exposing to the low-lethal concentrations of rotenone or pyrethrins, including the decreased net reproductive rate, intrinsic rate of natural increase, finite rate of population increase, and gross reproduction rate. Co-toxocity factor results showed that mixtures of rotenone and thiamethoxam, pyrethrins and thiamethoxam showed synergistic effect. Our work suggested that rotenone and pyrethrins showed negative effect on the population growth under low-lethal concentrations. They are suitable for R. padi control as foliar spraying without causing population resurgence.


Subject(s)
Insecticides , Pyrethrins , Rotenone , Pyrethrins/pharmacology , Pyrethrins/toxicity , Rotenone/pharmacology , Insecticides/pharmacology , Insecticides/toxicity , Population Growth , Animals , Aphids/drug effects , Aphids/growth & development , Triticum/growth & development , Triticum/drug effects , Reproduction/drug effects , Fertility/drug effects
2.
Cell Death Dis ; 15(6): 399, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849335

ABSTRACT

The loss of dopaminergic neurons in the substantia nigra is a hallmark of pathology in Parkinson's disease (PD). Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) is the critical enzyme responsible for the degradation of asymmetric dimethylarginine (ADMA) which inhibits nitric oxide (NO) synthase and has been implicated in neurodegeneration. Mitochondrial dysfunction, particularly in the mitochondria-associated endoplasmic reticulum membrane (MAM), plays a critical role in this process, although the specific molecular target has not yet been determined. This study aims to examine the involvement of DDAH-1 in the nigrostriatal dopaminergic pathway and PD pathogenesis. The distribution of DDAH-1 in the brain and its colocalization with dopaminergic neurons were observed. The loss of dopaminergic neurons and aggravated locomotor disability after rotenone (ROT) injection were showed in the DDAH-1 knockout rat. L-arginine (ARG) and NO donors were employed to elucidate the role of NO respectively. In vitro, we investigated the effects of DDAH-1 knockdown or overexpression on cell viability and mitochondrial functions, as well as modulation of ADMA/NO levels using ADMA or ARG. MAM formation was assessed by the Mitofusin2 oligomerization and the mitochondrial ubiquitin ligase (MITOL) phosphorylation. We found that DDAH-1 downregulation resulted in enhanced cell death and mitochondrial dysfunctions, accompanied by elevated ADMA and reduced NO levels. However, the recovered NO level after the ARG supplement failed to exhibit a protective effect on mitochondrial functions and partially restored cell viability. DDAH-1 overexpression prevented ROT toxicity, while ADMA treatment attenuated these protective effects. The declines of MAM formation in ROT-treated cells were exacerbated by DDAH-1 downregulation via reduced MITOL phosphorylation, which was reversed by DDAH-1 overexpression. Together, the abundant expression of DDAH-1 in nigral dopaminergic neurons may exert neuroprotective effects by maintaining MAM formation and mitochondrial function probably via ADMA, indicating the therapeutic potential of targeting DDAH-1 for PD.


Subject(s)
Amidohydrolases , Arginine , Dopaminergic Neurons , Endoplasmic Reticulum , Mitochondria , Nitric Oxide , Parkinson Disease , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Animals , Amidohydrolases/metabolism , Amidohydrolases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Arginine/metabolism , Arginine/analogs & derivatives , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Rats , Nitric Oxide/metabolism , Male , Rats, Sprague-Dawley , Humans , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Rotenone/pharmacology , Mitochondrial Proteins/metabolism , Mitochondria Associated Membranes
3.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822547

ABSTRACT

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Subject(s)
Behavior, Animal , Brain-Derived Neurotrophic Factor , Chalcone , Depression , Hippocampus , Quinones , Serotonin , Animals , Quinones/pharmacology , Quinones/therapeutic use , Chalcone/analogs & derivatives , Chalcone/pharmacology , Chalcone/therapeutic use , Male , Mice , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Behavior, Animal/drug effects , Serotonin/metabolism , Dopamine/metabolism , Rotenone/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/psychology
4.
Life Sci ; 351: 122865, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38914304

ABSTRACT

AIMS: Niacin (NIA) supplementation showed effectiveness against Parkinson's disease (PD) in clinical trials. The depletion of NAD and endoplasmic reticulum stress response (ERSR) are implicated in the pathogenesis of PD, but the potential role for NAD precursors on ERSR is not yet established. This study was undertaken to decipher NIA molecular mechanisms against PD-accompanied ERSR, especially in relation to PKC. METHODS: Alternate-day-low-dose-21 day-subcutaneous exposure to rotenone (ROT) in rats induced PD. Following the 5th ROT injection, rats received daily doses of either NIA alone or preceded by the PKC inhibitor tamoxifen (TAM). Extent of disease progression was assessed by behavioral, striatal biochemical and striatal/nigral histopathological/immunohistochemical analysis. KEY FINDINGS: Via activating PKC/LKB1/AMPK stream, NIA post-treatment attenuated the ERSR reflected by the decline in ATF4, ATF6 and XBP1s to downregulate the apoptotic markers, CHOP/GADD153, p-JNK and active caspase-3. Such amendments congregated in motor activity/coordination improvements in open field and rotarod tasks, enhanced grid test latency and reduced overall PD scores, while boosting nigral/striatal tyrosine hydroxylase immunoreactivity and increasing intact neurons (Nissl stain) in both SNpc and striatum that showed less neurodegeneration (H&E stain). To different extents, TAM reverted all the NIA-related actions to prove PKC as a fulcrum in conveying the drug neurotherapeutic potential. SIGNIFICANCE: PKC activation is a pioneer mechanism in the drug ERSR inhibitory anti-apoptotic modality to clarify NIA promising clinical and potent preclinical anti-PD efficacy. This kinase can be tagged as a druggable target for future add-on treatments that can assist dopaminergic neuronal aptitude against this devastating neurodegenerative disease.


Subject(s)
Endoplasmic Reticulum Stress , Niacin , Animals , Endoplasmic Reticulum Stress/drug effects , Rats , Niacin/pharmacology , Male , Protein Kinase C/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rotenone/pharmacology , Mice , Apoptosis/drug effects , Rats, Wistar , Disease Models, Animal
5.
Tissue Cell ; 89: 102423, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875923

ABSTRACT

Skeletal muscle function is highly dependent on the energy supply provided by mitochondria. Besides ATP production, mitochondria have several other roles, such as calcium storage, heat production, cell death signaling, autophagy regulation and redox state modulation. Mitochondrial function is crucial for skeletal muscle fiber formation. Disorders that affect mitochondria have a major impact in muscle development and function. Here we studied the role of mitochondria during chick skeletal myogenesis. We analyzed the intracellular distribution of mitochondria in myoblasts, fibroblasts and myotubes using Mitotracker labeling. Mitochondrial respiration was investigated in chick muscle cells. Our results show that (i) myoblasts and myotubes have more mitochondria than muscle fibroblasts; (ii) mitochondria are organized in long lines within the whole cytoplasm and around the nuclei of myotubes, while in myoblasts they are dispersed in the cytoplasm; (iii) the area of mitochondria in myotubes increases during myogenesis, while in myoblasts and fibroblasts there is a slight decrease; (iv) mitochondrial length increases in the three cell types (myoblasts, fibroblasts and myotubes) during myogenesis; (v) the distance of mitochondria to the nucleus increases in myoblasts and myotubes during myogenesis; (vi) Rotenone inhibits muscle fiber formation, while FCCP increases the size of myotubes; (vii) N-acetyl cysteine (NAC), an inhibitor of ROS formation, rescues the effects of Rotenone on muscle fiber size; and (viii) Rotenone induces the production of ROS in chick myogenic cells. The collection of our results suggests a role of ROS signaling in mitochondrial function during chick myogenesis.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Myoblasts , Reactive Oxygen Species , Rotenone , Animals , Reactive Oxygen Species/metabolism , Muscle Development/drug effects , Chick Embryo , Rotenone/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myoblasts/metabolism , Myoblasts/drug effects , Myoblasts/cytology , Fibroblasts/metabolism , Fibroblasts/drug effects , Mitochondria/metabolism , Mitochondria/drug effects
6.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786023

ABSTRACT

Parkinson's disease (PD) is the second-most common neurodegenerative disorder worldwide and is diagnosed based on motor impairments. Non-motor symptoms are also well-recognised in this disorder, and peripheral neuropathy is a frequent but poorly appreciated non-motor sign. Studying how central and peripheral sensory systems are affected can contribute to the development of targeted therapies and deepen our understanding of the pathophysiology of PD. Although the cause of sporadic PD is unknown, chronic exposure to the pesticide rotenone in humans increases the risk of developing the disease. Here, we aimed to investigate whether peripheral neuropathy is present in a traditional model of PD. Mice receiving intrastriatal rotenone showed greatly reduced dopamine terminals in the striatum and a reduction in tyrosine hydroxylase-positive neurons in the Substantia nigra pars compacta and developed progressive motor impairments in hindlimb stepping and rotarod but no change in spontaneous activity. Interestingly, repeated testing using gold-standard protocols showed no change in gut motility, a well-known non-motor symptom of PD. Importantly, we did not observe any change in heat, cold, or touch sensitivity, again based upon repeated testing with well-validated protocols that were statistically well powered. Therefore, this traditional model fails to replicate PD, and our data again reiterate the importance of the periphery to the disorder.


Subject(s)
Disease Models, Animal , Parkinson Disease , Rotenone , Animals , Mice , Parkinson Disease/physiopathology , Parkinson Disease/pathology , Rotenone/pharmacology , Mice, Inbred C57BL , Male , Peripheral Nervous System Diseases/physiopathology , Peripheral Nervous System Diseases/pathology , Corpus Striatum/pathology , Corpus Striatum/metabolism , Dopamine/metabolism
7.
Am J Physiol Cell Physiol ; 326(6): C1776-C1788, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38738304

ABSTRACT

Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA in pregnancies with placental dysfunction differs from that in healthy pregnancies, and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA, yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 µM) or rotenone (0.2-50 µM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane-bound, non-membrane-bound, and vesicle-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (P < 0.0001), induced cell necrosis (P = 0.0004) but not apoptosis (P = 0.6471), and was positively associated with release of membrane-bound and non-membrane-bound mtDNA (P < 0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicle-bound form; P = 0.0019) and reduced autophagy marker expression (LC3A/B, P = 0.0002; p62, P < 0.001). Rotenone treatment did not influence mtDNA release or cell death (P > 0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes nonapoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress.NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial (mt)DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mtDNA in preclinical experimental models and humans.


Subject(s)
Antimycin A , DNA, Mitochondrial , Extracellular Space , Oxidative Stress , Reactive Oxygen Species , Trophoblasts , Humans , Trophoblasts/metabolism , Trophoblasts/drug effects , Trophoblasts/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Pregnancy , Reactive Oxygen Species/metabolism , Extracellular Space/metabolism , Antimycin A/pharmacology , Rotenone/pharmacology , Placenta/metabolism , Placenta/drug effects , Placenta/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Necrosis , Cell Line , Apoptosis/drug effects , Autophagy/drug effects
8.
BMC Pharmacol Toxicol ; 25(1): 33, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783387

ABSTRACT

BACKGROUND: The specific mechanism by which rotenone impacts thoracic aortic autophagy and apoptosis is unknown. We aimed to investigate the regulatory effects of rotenone on autophagy and apoptosis in rat thoracic aortic endothelial cells (RTAEC) via activation of the LKB1-AMPK-ULK1 signaling pathway and to elucidate the molecular mechanisms of rotenone on autophagy and apoptosis in vascular endothelial cells. METHODS: In vivo, 60 male SD rats were randomly selected and divided into 5 groups: control (Con), DMSO, 1, 2, and 4 mg/kg groups, respectively. After 28 days of treatment, histopathological and ultrastructural changes in each group were observed using HE and transmission electron microscopy; Autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related proteins were detected by Western blot; Apoptosis levels in the thoracic aorta were detected by TUNEL. In vitro, RTAEC were cultured and divided into control (Con), DMSO, 20, 100, 500, and 1000 nM groups. After 24 h of intervention, autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related factors were detected by Western blot and qRT-PCR; Flow cytometry to detect apoptosis levels; Autophagy was inhibited with 3-MA and CQ to detect apoptosis levels, and changes in autophagy, apoptosis, and downstream factors were detected by the AMPK inhibitor CC intervention. RESULTS: Gavage in SD rats for 28 days, some degree of damage was observed in the thoracic aorta and heart of the rotenone group, as well as the appearance of autophagic vesicles was observed in the thoracic aorta. TUNEL analysis revealed higher apoptosis in the rotenone group's thoracic aorta; RTAEC cultured in vitro, after 24 h of rotenone intervention, showed increased ROS production and significantly decreased ATP production. The flow cytometry data suggested an increase in the number of apoptotic RTAEC. The thoracic aorta and RTAEC in the rotenone group displayed elevated levels of autophagy and apoptosis, and the LKB1-AMPK-ULK1 pathway proteins were activated and expressed at higher levels. Apoptosis and autophagy were both suppressed by the autophagy inhibitors 3-MA and CQ. The AMPK inhibitor CC reduced autophagy and apoptosis in RTAEC and suppressed the production of the AMPK downstream factors ULK1 and P-ULK1. CONCLUSIONS: Rotenone may promote autophagy in the thoracic aorta and RTAEC by activating the LKB1-AMPK-ULK1 signaling pathway, thereby inducing apoptosis.


Subject(s)
AMP-Activated Protein Kinases , Aorta, Thoracic , Apoptosis , Autophagy-Related Protein-1 Homolog , Autophagy , Endothelial Cells , Protein Serine-Threonine Kinases , Rats, Sprague-Dawley , Rotenone , Signal Transduction , Animals , Rotenone/toxicity , Rotenone/pharmacology , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Male , Apoptosis/drug effects , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aorta, Thoracic/drug effects , Protein Serine-Threonine Kinases/metabolism , Rats , AMP-Activated Protein Kinase Kinases , Cells, Cultured , Intracellular Signaling Peptides and Proteins/metabolism
9.
J Biochem Mol Toxicol ; 38(6): e23747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800879

ABSTRACT

Parkinson's disease (PD) is a predominant neuromotor disorder characterized by the selective death of dopaminergic neurons in the midbrain. The majority of PD cases are sporadic or idiopathic, with environmental toxins and pollutants potentially contributing to its development or exacerbation. However, clinical PD patients are often associated with a reduced stroke frequency, where circulating blood platelets are indispensable. Although platelet structural impairment is evident in PD, the platelet functional alterations and their underlying molecular mechanisms are still obscure. Therefore, we investigated rotenone (ROT), an environmental neurotoxin that selectively destroys dopaminergic neurons mimicking PD, on human blood platelets to explore its impact on platelet functions, thus replicating PD conditions in vitro. Our study deciphered that ROT decreased thrombin-induced platelet functions, including adhesion, activation, secretion, and aggregation in human blood platelets. As ROT is primarily responsible for generating intracellular reactive oxygen species (ROS), and ROS is a key player regulating the platelet functional parameters, we went on to check the effect of ROT on platelet ROS production. In our investigation, it became evident that ROT treatment resulted in the stimulation of ROS production in human blood platelets. Additionally, we discovered that ROT induced ROS production by augmenting Ca2+ mobilization from inositol 1,4,5-trisphosphate receptor. Apart from this, the treatment of ROT triggers protein kinase C associated NADPH oxidase-mediated ROS production in platelets. In summary, this research, for the first time, highlights ROT-induced abnormal platelet functions and may provide a mechanistic insight into the altered platelet activities observed in PD patients.


Subject(s)
Blood Platelets , Parkinson Disease , Reactive Oxygen Species , Rotenone , Humans , Rotenone/pharmacology , Blood Platelets/metabolism , Blood Platelets/drug effects , Parkinson Disease/metabolism , Parkinson Disease/blood , Reactive Oxygen Species/metabolism
10.
PLoS One ; 19(4): e0302102, 2024.
Article in English | MEDLINE | ID: mdl-38625964

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Neurodegeneration of the substantia nigra (SN) and diminished release of dopamine are prominent causes of this progressive disease. The current study aims to evaluate the protective potential of ethanolic extract of Mentha piperita (EthMP) against rotenone-mediated PD features, dopaminergic neuronal degeneration, oxidative stress and neuronal survival in a mouse model. Swiss albino male mice were assigned to five groups: control (2.5% DMSO vehicle), PD (rotenone 2.5 mg/kg), EthMP and rotenone (200mg/kg and 2.5mg/kg, respectively), EthMP (200 mg/kg), and Sinemet, reference treatment containing levodopa and carbidopa (20 mg/kg and rotenone 2.5mg/kg). Behavioral tests for motor functional deficit analysis were performed. Anti-oxidant capacity was estimated using standard antioxidant markers. Histopathology of the mid-brain for neurodegeneration estimation was performed. HPLC based dopamine level analysis and modulation of gene expression using quantitative real-time polymerase chain reaction was performed for the selected genes. EthMP administration significantly prevented the rotenone-mediated motor dysfunctions compared to PD group as assessed through open field, beam walk, pole climb down, stepping, tail suspension, and stride length tests. EthMP administration modulated the lipid peroxidation (LPO), reduced glutathione (GSH), and superoxide dismutase (SOD) levels, as well as glutathione-s-transferase (GST) and catalase (CAT) activities in mouse brain. EthMP extract prevented neurodegeneration in the SN of mice and partially maintained dopamine levels. The expression of genes related to dopamine, anti-oxidant potential and synapses were modulated in M. piperita (MP) extract treated mice brains. Current data suggest therapeutic capacities of MP extract and neuroprotective capacities, possibly through antioxidant capacities. Therefore, it may have potential clinical applications for PD management.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Animals , Parkinson Disease/drug therapy , Parkinson Disease/prevention & control , Parkinson Disease/metabolism , Antioxidants/metabolism , Mentha piperita/metabolism , Rotenone/pharmacology , Dopamine/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , Disease Models, Animal
11.
Biosci Trends ; 18(2): 153-164, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38599881

ABSTRACT

NAD(P)H-quinone oxidoreductase 1 (NQO1) is an essential redox enzyme responsible for redox balance and energy metabolism. Despite of its importance, the brain contains high capacity of polyunsaturated fatty acids and maintains low levels of NQO1 expression. In this study, we examined how levels of NQO1 expression affects cell survival in response to toxic insults causing mitochondrial dysfunction and ferroptosis, and whether NQO1 has a potential as a biomarker in different stressed conditions. Following treatment with rotenone, overexpressed NQO1 in SH-SY5Y cells improved cell survival by reducing mitochondrial reductive stress via increased NAD+ supply without mitochondrial biogenesis. However, NQO1 overexpression boosted lipid peroxidation following treatment with RSL3 and erastin. A lipid droplet staining assay showed increased lipid droplets in cells overexpressing NQO1. In contrast, NQO1 knockdown protected cells against ferroptosis by increasing GPX4, xCT, and the GSH/GSSG system. Also, NQO1 knockdown showed lower iron contents and lipid droplets than non-transfectants and cells overexpressing NQO1, even though it could not attenuate cell death when exposed to rotenone. In summary, our study suggests that different NQO1 levels may have advantages and disadvantages depending on the surrounding environments. Thus, regulating NQO1 expression could be a potential supplementary tool when treating neuronal diseases.


Subject(s)
Ferroptosis , Mitochondria , NAD(P)H Dehydrogenase (Quinone) , Rotenone , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Ferroptosis/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Rotenone/toxicity , Rotenone/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Lipid Peroxidation/drug effects , Piperazines/pharmacology , Carbolines
12.
PLoS One ; 19(4): e0292415, 2024.
Article in English | MEDLINE | ID: mdl-38669260

ABSTRACT

One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.


Subject(s)
Adenosine Triphosphate , Caenorhabditis elegans , Oxidation-Reduction , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/drug effects , Adenosine Triphosphate/metabolism , Optical Imaging/methods , Paralysis/chemically induced , Paralysis/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Rotenone/pharmacology , Anesthetics/pharmacology
13.
J Nat Prod ; 87(4): 1003-1012, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38579352

ABSTRACT

Three new (1-3) and six known rotenoids (5-10), along with three known isoflavones (11-13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14-18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 µg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4-10 µM, while compound 3 exhibited anti-HRV-2 (human rhinovirus 2) activity with an IC50 of 4.2 µM. Most of the compounds showed low cytotoxicity for laryngeal carcinoma (HEp-2) cells; however compounds 3, 11, and 14 exhibited low cytotoxicity also in primary lung fibroblasts. This is the first report on rotenoids showing antiviral activity against RSV and HRV viruses.


Subject(s)
Antiviral Agents , Isoflavones , Millettia , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/isolation & purification , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Millettia/chemistry , Molecular Structure , Humans , Rotenone/pharmacology , Rotenone/chemistry , Rotenone/analogs & derivatives , Plant Leaves/chemistry , Plant Roots/chemistry , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Viruses/drug effects
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124272, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38603960

ABSTRACT

Visualization of cell apoptosis is a critical task playing central roles in the fundamental studies in biology, pathology, and biomedicine. Dual-emissive fluorescent probes are desired molecular tools for study on apoptosis, which however were rarely reported. Herein, utilizing the polarity differences between lysosomes and nucleus, a translocation type of fluorescent probe (NA-S) was developed for the dual-color visualization of cell apoptosis. NA-S was designed to be polarity sensitive, bearing alkalescence group, and with DNA affinity. In living cells, NA-S targeted the lysosomes to give blue fluorescence, which translocated into the nucleus during cell apoptosis to give green emission. Thereby, the cell apoptosis could be visualized with NA-S in dual-emissive manner. With the unique probe, the cell apoptosis induced by oxidative stress, UV irradiation, rotenone, colchicine, and paclitaxel have been successfully visualized.


Subject(s)
Apoptosis , Cell Nucleus , Fluorescent Dyes , Lysosomes , Apoptosis/drug effects , Lysosomes/metabolism , Humans , Fluorescent Dyes/chemistry , Cell Nucleus/metabolism , Spectrometry, Fluorescence , HeLa Cells , Oxidative Stress , Colchicine/pharmacology , Rotenone/pharmacology , Paclitaxel/pharmacology
15.
Biomolecules ; 14(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38672457

ABSTRACT

Mitochondria, the energy hubs of the cell, are progressively becoming attractive targets in the search for potent therapeutics against neurodegenerative diseases. The pivotal role of mitochondrial dysfunction in the pathogenesis of various diseases, including Parkinson's disease (PD), underscores the urgency of discovering novel therapeutic strategies. Given the limitations associated with available treatments for mitochondrial dysfunction-associated diseases, the search for new potent alternatives has become imperative. In this report, we embarked on an extensive screening of 4224 fractions from 384 Australian marine organisms and plant samples to identify natural products with protective effects on mitochondria. Our initial screening using PD patient-sourced olfactory neurosphere-derived (hONS) cells with rotenone as a mitochondria stressor resulted in 108 promising fractions from 11 different biota. To further assess the potency and efficacy of these hits, the 11 biotas were subjected to a subsequent round of screening on human neuroblastoma (SH-SY5Y) cells, using 6-hydroxydopamine to induce mitochondrial stress, complemented by a mitochondrial membrane potential assay. This rigorous process yielded 35 active fractions from eight biotas. Advanced analysis using an orbit trap mass spectrophotometer facilitated the identification of the molecular constituents of the most active fraction from each of the eight biotas. This meticulous approach led to the discovery of 57 unique compounds, among which 12 were previously recognized for their mitoprotective effects. Our findings highlight the vast potential of natural products derived from Australian marine organisms and plants in the quest for innovative treatments targeting mitochondrial dysfunction in neurodegenerative diseases.


Subject(s)
Biological Products , High-Throughput Screening Assays , Mitochondria , Humans , Biological Products/pharmacology , Biological Products/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , High-Throughput Screening Assays/methods , Cell Line, Tumor , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Membrane Potential, Mitochondrial/drug effects , Rotenone/pharmacology , Aquatic Organisms/chemistry
16.
Molecules ; 29(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675592

ABSTRACT

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.


Subject(s)
Cell Survival , Dopamine , Grape Seed Extract , Nanoparticles , Parkinson Disease , Rotenone , alpha-Synuclein , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopamine/chemistry , Dopamine/metabolism , Nanoparticles/chemistry , Grape Seed Extract/chemistry , Grape Seed Extract/pharmacology , Rotenone/pharmacology , Cell Line, Tumor , alpha-Synuclein/metabolism , Cell Survival/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Oxidative Stress/drug effects , Cell Differentiation/drug effects , Particle Size , Liposomes/chemistry , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Neurons/drug effects , Neurons/metabolism
18.
Biomed Khim ; 70(1): 25-32, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38450678

ABSTRACT

Isatin (indoldione-2,3) is an endogenous biological regulator found in the brain, peripheral tissues, and biological fluids of humans and animals. Its biological activity is realized via isatin-binding proteins, many of which were identified during proteomic profiling of the brain of mice and rats. A number of these proteins are related to the development of neurodegenerative diseases. Previously, using a model of experimental Parkinsonism induced by a seven-day course of rotenone injections, we have observed behavioral disturbances, as well as changes in the profile and relative content of brain isatin-binding proteins. In this study, we have investigated behavioral responses and the relative content of brain isatin-binding proteins in rats with rotenone-induced Parkinsonism 5 days after the last administration of this neurotoxin. Despite the elimination of rotenone, animals exhibited motor and coordination impairments. Proteomic profiling of isatin-binding proteins revealed changes in the relative content of 120 proteins (the relative content of 83 proteins increased and that of 37 proteins decreased). Comparison of isatin-binding proteins characterized by the changes in the relative content observed in the brain right after the last injection of rotenone (n=16) and 5 days later (n=11) revealed only two common proteins (glyceraldehyde-3-phosphate dehydrogenase and subunit B of V-type proton ATPase). However, most of these proteins are associated with neurodegeneration, including Parkinson's and Alzheimer's diseases.


Subject(s)
Isatin , Parkinsonian Disorders , Humans , Animals , Rats , Carrier Proteins , Isatin/pharmacology , Rotenone/pharmacology , Proteomics , Brain , Parkinsonian Disorders/chemically induced
19.
Georgian Med News ; (346): 14-20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38501615

ABSTRACT

In neurodegenerative diseases, particularly in Parkinson's disease (PD), antinociceptive centers are often implicated in neurodegeneration, leading to persistent pain unresponsive to narcotic substances. This study investigated the periaqueductal gray matter (PAG) and the nucleus raphe magnus (NRM), components of the brain's antinociceptive system. In conditions of rotenone intoxication (an experimental PD model), morphological changes in intracellular structures were observed in PAG and NRM neurons, indicating metabolic disorders characteristic of PD (alterations in the shape and size of neuronal bodies and processes, disruption of acid phosphatase activity in neuron cytoplasm). Under the influence of bacterial melanin and in combination with synoestrol, positive changes in structural properties were observed in PAG and NRM neurons compared to the rotenone model of PD. This included the preservation of the morphological characteristics typical of these brain regions, with cells exhibiting shapes and sizes close to normal. Furthermore, under the influence of these therapeutic agents, an increase in phosphatase activity in cell cytoplasm was detected, indicating an acceleration of metabolic processes (metabolic activation) disrupted by rotenone intoxication. The data obtained suggests that bacterial melanin and synoestrol may act as potential neuroprotective agents against PAG and NRM neurons in the rat brain in the rotenone model of PD. Further research is needed to elucidate the mechanisms of action of therapeutic doses and propose their use in the treatment of PD, either in isolation or combination therapy.


Subject(s)
Parkinson Disease , Raphe Nuclei , Animals , Raphe Nuclei/physiology , Parkinson Disease/drug therapy , Rotenone/pharmacology , Rotenone/analysis , Melanins/analysis , Analgesics
20.
Molecules ; 29(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474469

ABSTRACT

Diacetylcurcumin manganese complex (DiAc-Cp-Mn) is a diacetylcurcumin (DiAc-Cp) derivative synthesized with Mn (II) to mimic superoxide dismutase (SOD). It exhibited superior reactive oxygen species (ROS) scavenging efficacy, particularly for the superoxide radical. The present study investigated the ROS scavenging activity, neuroprotective effects, and underlying mechanism of action of DiAc-Cp-Mn in a cellular model of Parkinson's disease. This study utilized rotenone-induced neurotoxicity in SH-SY5Y cells to assess the activities of DiAc-Cp-Mn by measuring cell viability, intracellular ROS, mitochondrial membrane potential (MMP), SOD, and catalase (CAT) activities. The mRNA expression of the nuclear factor erythroid 2 p45-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), inducible nitric oxide synthase (iNOS), and Interleukin 1ß (IL-1ß), which are oxidative and inflammatory genes, were also evaluated to clarify the molecular mechanism. The results of the in vitro assays showed that DiAc-Cp-Mn exhibited greater scavenging activity against superoxide radicals, hydrogen peroxide, and hydroxyl radicals compared to DiAc-Cp. In cell-based assays, DiAc-Cp-Mn demonstrated greater neuroprotective effects against rotenone-induced neurotoxicity when compared to its parent compound, DiAc-Cp. DiAc-Cp-Mn maintained MMP levels, reduced intracellular ROS levels, and increased the activities of SOD and CAT by activating the Nrf2-Keap1 signaling pathway. In addition, DiAc-Cp-Mn exerted its anti-inflammatory impact by down-regulating the mRNA expression of iNOS and IL-1ß that provoked neuro-inflammation. The current study indicates that DiAc-Cp-Mn protects against rotenone-induced neuronal damage by reducing oxidative stress and inflammation.


Subject(s)
Curcumin/analogs & derivatives , Mitochondrial Diseases , Neuroblastoma , Neuroprotective Agents , Neurotoxicity Syndromes , Parkinson Disease , Humans , Manganese/metabolism , Reactive Oxygen Species/metabolism , Rotenone/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Inflammation , Superoxide Dismutase/metabolism , Antioxidants/pharmacology , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL