Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 639
Filter
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 973-976, 2024 Aug 10.
Article in Chinese | MEDLINE | ID: mdl-39097282

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and variant of CREBBP gene in a fetus with Rubinstein-Taybi syndrome (RSTS). METHODS: A fetus with RSTS diagnosed at the Third Affiliated Hospital of Zhengzhou University in August 2022 was selected as the study subject. Clinical data, amniotic fluid sample of the fetus and peripheral blood samples of its parents were collected for whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing. RESULTS: Foot malformation, cerebellar vermis agenesis, brain agenesis, polysyndactyly of the big toes and other phenotypes were found by prenatal ultrasound. WES revealed that the fetus has harbored a heterozygous c.4684G>T (p.E1562*) variant in exon 28 of the CREBBP gene (NM_004380.3), which was de novo in origin. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted to be pathogenic (PVS1+PS2_Moderate+PM2_Supporting). After genetic counseling, the couple had opted to terminate the pregnancy and refused autopsy of the fetus. CONCLUSION: The c.4684G>T (p.E1562*) variant of the CREBBP gene probably underlay the RSTS in this fetus. The newly discovered variant has enriched the mutational spectrum of the CREBBP gene and illustrated that WES is an efficient tool for the prenatal diagnosis of RSTS.


Subject(s)
CREB-Binding Protein , Exome Sequencing , Prenatal Diagnosis , Rubinstein-Taybi Syndrome , Humans , Rubinstein-Taybi Syndrome/genetics , Female , Pregnancy , CREB-Binding Protein/genetics , Adult , Fetus/abnormalities , Fetus/diagnostic imaging , Mutation , Male , Ultrasonography, Prenatal
2.
Genes (Basel) ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927590

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is a rare genetic disorder characterized by intellectual disability, facial dysmorphisms, and enlarged thumbs and halluces. Approximately 55% of RTS cases result from pathogenic variants in the CREBBP gene, with an additional 8% linked to the EP300 gene. Given the close relationship between these two genes and their involvement in epigenomic modulation, RTS is grouped into chromatinopathies. The extensive clinical heterogeneity observed in RTS, coupled with the growing number of disorders involving the epigenetic machinery, poses a challenge to a phenotype-based diagnostic approach for these conditions. Here, we describe the first case of a patient clinically diagnosed with RTS with a CREBBP truncating variant in mosaic form. We also review previously described cases of mosaicism in CREBBP and apply clinical diagnostic guidelines to these patients, confirming the good specificity of the consensus. Nonetheless, these reports raise questions about the potential underdiagnosis of milder cases of RTS. The application of a targeted phenotype-based approach, coupled with high-depth NGS, may enhance the diagnostic yield of whole-exome sequencing (WES) in mild and mosaic conditions.


Subject(s)
CREB-Binding Protein , Mosaicism , Mutation , Phenotype , Rubinstein-Taybi Syndrome , Female , Humans , Male , CREB-Binding Protein/genetics , Exome Sequencing/methods , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/pathology
3.
Stem Cell Res ; 78: 103456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820863

ABSTRACT

Rubinstein Taybi Syndrome (RSTS) is a rare genetic disorder which is caused by mutations in either CREBBP or EP300. RSTS with mutations in CREBBP is known as RSTS-1. We have generated an induced pluripotent stem cell (iPSC) line, IGIBi018-A from an Indian RSTS-patient using the episomal reprogramming method. The CREBBP gene in the patient harbours a nonsense mutation at position NM_004380.3(c.6876 del C). IGIBi018-A iPSC showed expression of pluripotent stem cell markers, has a normal karyotype and could be differentiated into three germ layers. This iPSC line will help to explore the role of CREBBP in RSTS associated developmental defects.


Subject(s)
Induced Pluripotent Stem Cells , Rubinstein-Taybi Syndrome , Humans , Induced Pluripotent Stem Cells/metabolism , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Rubinstein-Taybi Syndrome/pathology , Cell Line , Cell Differentiation , India , Male , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism
4.
Hum Genet ; 143(6): 747-759, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753158

ABSTRACT

Histone deacetylases (HDACs) are enzymes pivotal for histone modification (i.e. acetylation marks removal), chromatin accessibility and gene expression regulation. Class I HDACs (including HDAC1, 2, 3, 8) are ubiquitously expressed and they often participate in multi-molecular protein complexes. To date, three neurodevelopmental disorders caused by mutations in genes encoding for HDACs (HDAC4, HDAC6 and HDAC8) and thus belonging to the group of chromatinopathies, have been described. We performed whole exome sequencing (WES) for a patient (#249) clinically diagnosed with the chromatinopathy Rubinstein-Taybi syndrome (RSTS) but negative for mutations in RSTS genes, identifying a de novo frameshift variant in HDAC2 gene. We then investigated its molecular effects in lymphoblastoid cell lines (LCLs) derived from the patient compared to LCLs from healthy donors (HD). As the variant was predicted to be likely pathogenetic and to affect the sequence of nuclear localization signal, we performed immunocytochemistry and lysates fractionation, observing a nuclear mis-localization of HDAC2 compared to HD LCLs. In addition, HDAC2 total protein abundance resulted altered in patient, and we found that newly identified variant in HDAC2 affects also acetylation levels, with significant difference in acetylation pattern among patient #249, HD and RSTS cells and in expression of a known molecular target. Remarkably, RNA-seq performed on #249, HD and RSTS cells shows differentially expressed genes (DEGs) common to #249 and RSTS. Interestingly, our reported patient was clinically diagnosed with RSTS, a chromatinopathy which known causative genes encode for enzymes antagonizing HDACs. These results support the role of HDAC2 as causative gene for chromatinopathies, strengthening the genotype-phenotype correlations in this relevant group of disorders.


Subject(s)
Exome Sequencing , Histone Deacetylase 2 , Humans , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Acetylation , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology , Chromatin/genetics , Chromatin/metabolism , Male , Female , Mutation , Frameshift Mutation , Cell Line
6.
BMJ Case Rep ; 17(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38642933

ABSTRACT

Pterygium is a benign, wing-shaped fibrovascular overgrowth of subconjunctival tissue that can encroach over the cornea. This condition usually occurs in individuals aged 20-40 years but is rarely seen in children. We report a case of an infant with Rubenstein-Taybi syndrome presenting with nebulo-macular corneal opacity and congenital pterygium. On examination under anaesthesia, bilateral infero-nasal nebulo-macular corneal opacity (6 × 5 mm) with a whitish pink tissue originating from nasal bulbar conjunctiva was noticed. The probe test was negative for this tissue. To the best of our knowledge, only two other cases of congenital pterygium have been reported in the literature. The presence of this anomaly supports the hypothesis of genetic factors having a role in the development of pterygium.


Subject(s)
Conjunctiva/abnormalities , Corneal Opacity , Eye Abnormalities , Pterygium , Rubinstein-Taybi Syndrome , Infant , Child , Humans , Pterygium/complications , Pterygium/surgery , Pterygium/diagnosis , Rubinstein-Taybi Syndrome/complications , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/genetics , Cornea/abnormalities
8.
HGG Adv ; 5(3): 100287, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38553851

ABSTRACT

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.


Subject(s)
CREB-Binding Protein , DNA Methylation , E1A-Associated p300 Protein , Humans , DNA Methylation/genetics , CREB-Binding Protein/genetics , Male , E1A-Associated p300 Protein/genetics , Female , Child , Adolescent , Child, Preschool , Adult , Phenotype , Young Adult , Rubinstein-Taybi Syndrome/genetics , Mutation , Protein Domains/genetics
9.
Zhonghua Er Ke Za Zhi ; 62(4): 351-356, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38527506

ABSTRACT

Objective: To investigate the phenotypes of Rubinstein-Taybi syndrome (RSTS) caused by variants in the CREBBP or EP300 gene, and the correlation between genotype and phenotype. Methods: This case series study was performed on pediatric patients who were referred to the Children's Hospital of Capital Institute of Pediatrics between January 2013 and July 2022. Both point variant and copy number deletion in CREBBP or EP300 gene were detected by whole exome sequencing, chromosomal microarray analysis, or copy number variation sequencing (CNV-seq). The variant categories were summarized and phenotype numbers were re-visited for RSTS patients. Based on variant types, the patients were divided into different groups (point variant or copy number deletion, EP300 or CREBBP point variant, and loss of function or missense variant). Phenotype counts between different groups were compared using the rank-sum test of two independent samples. Results: A total of 21 RSTS patients were recruited, including 12 males and 9 females, with ages ranging from 1 month to 14 years and 2 months. Among them, 67% (14/21) had point variants, and 33% (7/21) had copy number deletions. Out of these, 20 variants (95%) were de novo. Among 20 patients finishing phenotype count during re-visit, 95% (19/20) of the patients exhibited developmental delays before the age of 2 years. Additionally, 80% (16/20) of the patients had distinctive facial features. Considering phenotype count, no statistically significant difference was found between point variant (14 cases) and copy number deletion (6 cases) (5.0 (3.0, 7.0) vs. 5.0 (2.5, 5.3), Z=0.75, P=0.452), CREBBP (10 cases) and EP300 gene (4 cases) point variant (5.0 (3.8, 7.0) vs. 4.0 (2.0, 6.0), Z=1.14, P=0.253), and loss of function (9 cases) and missense (5 cases) variant (6.0 (4.5, 7.0) vs. 3.0 (2.5, 5.5), Z=1.54, P=0.121). Conclusions: Patients with RSTS primarily exhibit developmental delays in early childhood. Specific facial features serve as suggested signs of genetic testing. However, no significant genotype-phenotype correlation is found.


Subject(s)
Rubinstein-Taybi Syndrome , Male , Female , Child , Humans , Child, Preschool , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , DNA Copy Number Variations , Genotype , Phenotype , Genetic Testing , CREB-Binding Protein/genetics , Mutation
10.
J Med Genet ; 61(6): 503-519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38471765

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.


Subject(s)
CREB-Binding Protein , E1A-Associated p300 Protein , Rubinstein-Taybi Syndrome , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/therapy , Humans , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Consensus , Disease Management , Mutation
11.
J Pediatr Adolesc Gynecol ; 37(1): 67-71, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37704034

ABSTRACT

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is a multi-system neurodevelopmental condition caused by deficiency of CREBBP (16p13.3) or EP300 (22q13.2). Müllerian agenesis, or Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, is defined as congenital agenesis of the uterus, cervix, and upper vagina without a definite genetic cause. INDEX CASE AND CASE SERIES: We present a 14-year-old female with RSTS type 1 (CREBBP, c.4395-2A>C) and MRKH, the first documented in the literature. Following presentation to Gynecology for anticipatory guidance regarding future menstrual suppression and follow-up of previously diagnosed labial adhesions, exam under anesthesia revealed a single urogenital opening with cystoscopy demonstrating a normal urethra and bladder. Laboratory evaluation was consistent with peripubertal female gonadotropins and estradiol, 46,XX karyotype, and normal microarray, and a pelvic MRI confirmed Müllerian agenesis. Given this case, we assessed our cohort of females with RSTS and found that 4 of 12 individuals also had Müllerian anomalies. CONCLUSION: Gynecologic evaluation should be a part of medical care for females with RSTS, particularly in individuals with delayed menarche or abnormal menstrual history, on the basis of the observed association between RSTS and Müllerian anomalies in this case series. Although several candidate genes and copy number variants are associated with MRKH, no candidate genes in close proximity to the 16p13.3 region have been identified to explain both RSTS and MRKH in the index patient. Due to the regulatory nature of CREBBP during embryonic development, we theorize that CREBBP may play a role in the migration of Müllerian structures during embryogenesis.


Subject(s)
46, XX Disorders of Sex Development , Biological Products , Congenital Abnormalities , Rubinstein-Taybi Syndrome , Female , Humans , Adolescent , Rubinstein-Taybi Syndrome/genetics , Vagina/abnormalities , 46, XX Disorders of Sex Development/diagnosis , Mullerian Ducts/abnormalities , Congenital Abnormalities/genetics , Congenital Abnormalities/diagnosis
12.
J Gene Med ; 26(1): e3591, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37721116

ABSTRACT

BACKGROUND: Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS: RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.


Subject(s)
Intellectual Disability , Rhabdomyolysis , Rubinstein-Taybi Syndrome , Humans , CREB-Binding Protein/genetics , CREB-Binding Protein/chemistry , Intellectual Disability/genetics , Mutation , Mutation, Missense , Phenotype , Rhabdomyolysis/genetics , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/pathology
13.
Ophthalmic Genet ; 45(1): 51-58, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37017262

ABSTRACT

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is a rare genetic syndrome with a wide range of phenotypic presentations, including characteristic facial features. A variety of ocular abnormalities have been described in patients with RSTS. The genetic etiology of RSTS is heterogeneous but often involves two major genes, CREBBP (cAMP-response element binding protein-binding protein) and EP300 (E1A binding protein p300), with CREBBP variants responsible for the majority of the cases. MATERIALS AND METHODS: We report a new case of female patient with a novel variant in CREBBP (c.4495C>G), with clinical features consistent with RSTS. We performed a literature review to search for possible genotype-phenotype relationships between the type of variant in CREBBP and frequency of ocular presentations. A PubMed search generated 12 articles that met our inclusion criteria. With the addition of our patient, there were a total of 163 patients included for mutation analysis (164 variants given one patient had two different variants). RESULTS: Our review revealed that the most common variant types were frameshift (25%), gross deletion (23%), nonsense (18%), and intragenic deletions (13%). There does not appear to be an obvious hot spot location. A total of 127 patients were included for genotype-phenotype analysis of ocular features (36 patients were excluded as unable to discern variant type). The most frequent ocular features in patients with RSTS were down-slanting palpebral fissure (74%), arched eyebrows (56%), long eyelashes (52%), and strabismus (23%). CONCLUSIONS: Our results suggest that currently there is no clear genotype-phenotype relationship between the type of variant and frequency of associated ocular features in RSTS patients.


Subject(s)
Rubinstein-Taybi Syndrome , Humans , Female , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/genetics , Genetic Association Studies , Phenotype , Frameshift Mutation , Genotype , Mutation
14.
Sleep Med ; 112: 9-11, 2023 12.
Article in English | MEDLINE | ID: mdl-37801861

ABSTRACT

Neurodevelopmental disorders (NDD) are characterized by cognitive, emotional, and/or motor skills impairment since childhood, and sleep disturbances are a common comorbidity. Rubinstein-Taybi syndrome (RSTS), a rare genetic syndrome associated with NDD, is caused by CREBBP haploinsufficiency. This gene encodes an acetyltransferase with crucial role on the establishment of transcriptional programs during neurodevelopment. Although insomnia has been reported in RSTS patients, the convergent mechanisms between this sleep disturbance and CREBBP loss-of-function are not fully understood. We tested weather the genetic architecture underlying CREBBP regulatory targets and insomnia-associated genes is significantly shared. We then identified the biological pathways enriched among these shared genes. The intersection between CREBBP regulatory targets and genes associated with insomnia included 7 overlapping genes, indicating significantly more overlap than expected by chance. An over-representation analysis on these intersect genes identified pathways related to mitochondrial activity. This finding indicates that the transcriptional programs established by CREBBP might impact insomnia-related biological pathways through the modulation of energy metabolism. The overlapping gene set and biological pathways highlighted by this study may serve as a primer for new functional investigations of shared molecular mechanisms between insomnia and CREBBP regulatory targets.


Subject(s)
Rubinstein-Taybi Syndrome , Sleep Initiation and Maintenance Disorders , Humans , Child , Mutation , Sleep Initiation and Maintenance Disorders/genetics , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Energy Metabolism/genetics , Emotions , Phenotype
15.
Proc Natl Acad Sci U S A ; 120(28): e2217405120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406095

ABSTRACT

Early placenta development involves cytotrophoblast differentiation into extravillous trophoblast (EVT) and syncytiotrophoblast (STB). Defective trophoblast development and function may result in severe pregnancy complications, including fetal growth restriction and pre-eclampsia. The incidence of these complications is increased in pregnancies of fetuses affected by Rubinstein-Taybi syndrome, a developmental disorder predominantly caused by heterozygous mutations in CREB-binding protein (CREBBP) or E1A-binding protein p300 (EP300). Although the acetyltransferases CREBBP and EP300 are paralogs with many overlapping functions, the increased incidence of pregnancy complications is specific for EP300 mutations. We hypothesized that these complications have their origin in early placentation and that EP300 is involved in that process. Therefore, we investigated the role of EP300 and CREBBP in trophoblast differentiation, using human trophoblast stem cells (TSCs) and trophoblast organoids. We found that pharmacological CREBBP/EP300 inhibition blocks differentiation of TSCs into both EVT and STB lineages, and results in an expansion of TSC-like cells under differentiation-inducing conditions. Specific targeting by RNA interference or CRISPR/Cas9-mediated mutagenesis demonstrated that knockdown of EP300 but not CREBBP, inhibits trophoblast differentiation, consistent with the complications seen in Rubinstein-Taybi syndrome pregnancies. By transcriptome sequencing, we identified transforming growth factor alpha (TGFA, encoding TGF-α) as being strongly upregulated upon EP300 knockdown. Moreover, supplementing differentiation medium with TGF-α, which is a ligand for the epidermal growth factor receptor (EGFR), likewise affected trophoblast differentiation and resulted in increased TSC-like cell proliferation. These findings suggest that EP300 facilitates trophoblast differentiation by interfering with at least EGFR signaling, pointing towards a crucial role for EP300 in early human placentation.


Subject(s)
Pre-Eclampsia , Rubinstein-Taybi Syndrome , Pregnancy , Female , Humans , Trophoblasts/metabolism , Transforming Growth Factor alpha , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Cell Differentiation , E1A-Associated p300 Protein/genetics , CREB-Binding Protein/genetics , ErbB Receptors
16.
Mol Genet Genomic Med ; 11(9): e2219, 2023 09.
Article in English | MEDLINE | ID: mdl-37353886

ABSTRACT

INTRODUCTION: CREBBP truncating mutations and deletions are responsible for the well-known Rubinstein-Taybi syndrome. Recently, a new, distinct CREBBP-linked syndrome has been described: missense mutations located at the 3' end of exon 30 and the 5' portion of exon 31 induce Menke-Hennekam syndrome. Patients with this syndrome present a recognizable facial dysmorphism, intellectual disability of variable severity, microcephaly, short stature, autism, epilepsy, visual and hearing impairments, feeding problems, upper airway infections, scoliosis, and/or kyphosis. To date, all diagnoses were made postnatally. METHOD AND CASE REPORT: Trio-whole exome sequencing (WES) was performed in a fetus showing increased nuchal translucency persistence and aorta abnormalities at 28 weeks of gestation (WG). RESULTS: WES revealed a CREBBP de novo missense mutation (c.5602C>T; p.Arg1868Trp) in exon 31, previously reported as the cause of Menke-Hennekam syndrome. Termination of pregnancy was performed at 32 WG. We further reviewed the prenatal signs of Menke-Hennekam syndrome already reported. Among the 35 patients reported and diagnosed postnatally up to this day, 15 presented recognizable prenatal signs, the most frequent being intra-uterine growth retardation, brain, and cardiovascular anomalies. CONCLUSION: Menke-Hennekam is a rare syndrome with unspecific, heterogeneous, and inconstant prenatal symptoms occurring most frequently with the c.5602C>T, p.(Arg1868Trp) mutation. Therefore, the prenatal diagnosis of Menke-Hennekam syndrome is only possible by molecular investigation. Moreover, this case report and review reinforce the importance of performing prenatal WES when unspecific signs are present on imaging.


Subject(s)
Menkes Kinky Hair Syndrome , Rubinstein-Taybi Syndrome , Pregnancy , Female , Humans , Phenotype , Exome Sequencing , Mutation , Rubinstein-Taybi Syndrome/genetics , Mutation, Missense
17.
Ital J Dermatol Venerol ; 158(4): 316-320, 2023 08.
Article in English | MEDLINE | ID: mdl-37282850

ABSTRACT

Rubinstein-Taybi Syndrome is a rare congenital multisystem syndrome inherited in an autosomal dominant pattern caused by mutations in CREBBP and EP300 genes in approximately 60% and 10% respectively. These genes encode two highly evolutionarily conserved, ubiquitously expressed, and homologous lysine-acetyltransferases, that are involved in number of basic cellular activities, such as DNA repair, cell proliferation, growth, differentiation, apoptosis of cells, and tumor suppression. It is mainly characterized by global developmental delay, moderate to severe intellectual disability, postnatal retardation, microcephaly, skeletal anomalies including broad/short, angled thumbs and/or large first toes, short stature, and dysmorphic facial features. There is an increased risk to develop tumors mainly meningiomas and pilomatrixomas, without a clear genotype-phenotype correlation. Although not considered as characteristic manifestations, numerous cutaneous anomalies have also been reported in patients with this entity. Both susceptibility to the formation of keloids and pilomatricomas are the most often associated cutaneous features. In this review, we discuss the genetics, diagnosis, and clinical features in Rubinstein-Taybi Syndrome with a review of the major dermatological manifestations.


Subject(s)
Intellectual Disability , Pilomatrixoma , Rubinstein-Taybi Syndrome , Skin Neoplasms , Humans , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/pathology , Mutation , Genetic Association Studies , Skin Neoplasms/genetics
18.
Mol Genet Genomic Med ; 11(9): e2192, 2023 09.
Article in English | MEDLINE | ID: mdl-37162176

ABSTRACT

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is a rare autosomal-dominant genetic disease caused by variants of CREBBP (RSTS1) or EP300 (RSTS2) gene. RSTS2 is much less common, with less than 200 reported cases worldwide to date. More reports are still needed to increase the understanding of its clinical manifestations and genetic characteristics. METHODS: The clinical data of two children with RSTS2 were analyzed retrospectively, and their clinical manifestations, auxiliary examinations, and mutational spectrum were summarized. Liquid chromatography-tandem mass spectrometer (LC-MS/MS) technology was used to detect the levels of steroid hormones if possible. RESULTS: After analyzing the clinical and genetic characteristics of two boys with RSTS2 (0.7 and 10.4 years old, respectively) admitted in our hospital, we identified two novel heterozygous variants in the EP300 exon 22 (c.3750C > A, p. Cys1250*, pathogenic; c.1889A > G, p. Tyr630Cys, likely pathogenic), which could account for their phenotype. In addition to common clinical manifestations such as special facial features, microcephaly, growth retardation, intellectual disability, speech delay, congenital heart defect, recurrent respiratory infections, and immunodeficiency, we found one of them had a rare feature of adrenal insufficiency, and LC-MS/MS detection showed an overall decrease in steroid hormones. CONCLUSION: In our study, we identified two novel variants in the EP300 exon 22, and for the first time, we reported a case of RSTS2 associated with adrenal insufficiency, which will enrich the clinical and mutational spectrum of this syndrome.


Subject(s)
Rubinstein-Taybi Syndrome , Child , Humans , Infant , Male , Chromatography, Liquid , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , East Asian People , Genetic Association Studies , Retrospective Studies , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/genetics , Tandem Mass Spectrometry
19.
BMC Med Genomics ; 16(1): 84, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085840

ABSTRACT

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is characterized by distinctive facial features, broad and often angulated thumbs and halluces, short stature, and moderate-to-severe intellectual disability, classified into two types RSTS1 (CREBBP-RSTS) and RSTS2 (EP300-RSTS). More often, the clinical features are inconclusive and the diagnosis of RSTS is established in a proband with identification of a heterozygous pathogenic variant in CREBBP or EP300 to confirm the diagnosis. METHODS: In this study, to describe an association between the clinical phenotype and the genotype of a RSTS2 patient who was initially diagnosed with severe early-onset high myopia (eoHM) from a healthy Chinese family, we tested the proband of this family by whole exome sequencing (WES) and further verified among other family members by Sanger sequencing. Real-time quantitative PCR was used to detect differences in the relative mRNA expression of candidate genes available in the proband and family members. Comprehensive ophthalmic tests as well as other systemic examinations were also performed on participants with various genotypes. RESULTS: Whole-exome sequencing revealed that the proband carried the heterozygous frameshift deletion variant c.3714_3715del (p.Leu1239Glyfs*3) in the EP300 gene, which was not carried by the normal parents and young sister as verified by Sanger sequencing, indicating that the variant was de novo. Real-time quantitative PCR showed that the mRNA expression of EP300 gene was lower in the proband than in other normal family members, indicating that such a variant caused an effect on gene function at the mRNA expression level. The variant was classified as pathogenic as assessed by the interpretation principles of HGMD sequence variants and ACMG guidelines. According to ACMG guidelines, the heterozygous frameshift deletion variant c.3714_3715del (p.Leu1239Glyfs*3) in the EP300 gene was more likely the pathogenic variant of this family with RSTS2. CONCLUSIONS: Therefore, in this paper, we first report de novo heterozygous variation in EP300 causing eoHM-RSTS. Our study extends the genotypic spectrums for EP300-RSTS and better assists physicians in predicting, diagnosis, genetic counseling, eugenics guidance and gene therapy for EP300-RSTS.


Subject(s)
E1A-Associated p300 Protein , East Asian People , Myopia , Rubinstein-Taybi Syndrome , Humans , E1A-Associated p300 Protein/genetics , East Asian People/genetics , Exome Sequencing , Genetic Association Studies , Mutation , Myopia/diagnosis , Myopia/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/genetics
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(3): 360-363, 2023 Mar 10.
Article in Chinese | MEDLINE | ID: mdl-36854415

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic etiology of a child with Rubinstein-Taybi syndrome (RSTS). METHODS: A child who was admitted to the Children's Hospital of Soochow University on October 3, 2021 was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and his parents were collected. The child was subjected to whole exome sequencing (WES), and candidate variant was verified by Sanger sequencing of his family members and bioinformatic analysis. RESULTS: The patient, a 9-year-and-4-month-old boy, had manifested unique facies, microcephaly, broad toes, growth retardation, and intellectual impairment. WES revealed that he has harbored a heterozygous c.3604G>T (p.E1202*) variant in exon 20 of the EP300 gene. Sanger sequencing confirmed that neither of his parents has carried the same variant. The variant was not found in the Shenzhou Genome data Cloud, ExAC, 1000 Genomes and gnomAD databases.Analysis with SIFT, PolyPhen-2 and CADD online software has predicted the variant to be harmful. Based on the guidelines formulated by the American College of Medical Genetics and Genomics, the variant was rated as pathogenic (PVS1+PS2+PM2_Supporting) . CONCLUSION: The heterozygous c.3604G>T variant of the EP300 gene probably underlay the RSTS type 2 in this child. Above finding has also expanded the variation spectrum of the EP300 gene.


Subject(s)
Rubinstein-Taybi Syndrome , Child , Humans , Male , Computational Biology , E1A-Associated p300 Protein/genetics , Exons , Face , Facies , Rubinstein-Taybi Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL