Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
1.
PLoS One ; 19(7): e0294853, 2024.
Article in English | MEDLINE | ID: mdl-38950318

ABSTRACT

Feral populations of aoudad (Ammotragus lervia) occur in Texas bighorn sheep (Ovis canadensis) habitat and pose several conceptual ecological threats to bighorn sheep re-establishment efforts. The potential threat of disease transmission from aoudad to bighorn sheep may exacerbate these issues, but the host competency of aoudad and subsequent pathophysiology and transmissibility of pneumonic pathogens involved in the bighorn sheep respiratory disease complex is largely unknown. Because the largest population-limiting diseases of bighorn sheep involve pathogens causing bronchopneumonia, we evaluated the host competency of aoudad for Mycoplasma ovipneumoniae and leukotoxigenic Pasteurellaceae. Specifically, we described the shedding dynamics, pathogen carriage, seroconversion, clinical patterns, and pathological effects of experimental infection among wild aoudad held in captivity. We found that aoudad are competent hosts capable of maintaining and intraspecifically transmitting Mycoplasma ovipneumoniae and Pasteurellaceae and can shed the bacteria for 53 days after exposure. Aoudad developed limited clinical signs and pathological findings ranged from mild chronic lymphohistiocytic bronchointerstitial pneumonia to severe and acute suppurative pneumonia, similarly, observed in bighorn sheep infected with Mycoplasma spp. and Pasteurellaceae bacteria, respectively. Furthermore, as expected, clinical signs and lesions were often more severe in aoudad inoculated with a combination of Mycoplasma ovipneumoniae and Pasteurellaceae as compared to aoudad inoculated with only Mycoplasma ovipneumoniae. There may be evidence of interindividual susceptibility, pathogenicity, and/or transmissibility, indicated by individual aoudad maintaining varying severities of chronic infection who may be carriers continuously shedding pathogens. This is the first study to date to demonstrate that aoudad are a conceptual disease transmission threat to sympatric bighorn sheep populations due to their host competency and intraspecific transmission capabilities.


Subject(s)
Mycoplasma ovipneumoniae , Pasteurellaceae , Pneumonia, Mycoplasma , Animals , Mycoplasma ovipneumoniae/pathogenicity , Pasteurellaceae/pathogenicity , Pneumonia, Mycoplasma/transmission , Pneumonia, Mycoplasma/veterinary , Pneumonia, Mycoplasma/microbiology , Sheep , Sheep, Bighorn/microbiology , Ruminants/microbiology , Sheep Diseases/transmission , Sheep Diseases/microbiology , Pasteurellaceae Infections/transmission , Pasteurellaceae Infections/microbiology , Pasteurellaceae Infections/veterinary , Female
2.
J R Soc Interface ; 21(216): 20240278, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955228

ABSTRACT

The wildlife and livestock interface is vital for wildlife conservation and habitat management. Infectious diseases maintained by domestic species may impact threatened species such as Asian bovids, as they share natural resources and habitats. To predict the population impact of infectious diseases with different traits, we used stochastic mathematical models to simulate the population dynamics over 100 years for 100 times in a model gaur (Bos gaurus) population with and without disease. We simulated repeated introductions from a reservoir, such as domestic cattle. We selected six bovine infectious diseases; anthrax, bovine tuberculosis, haemorrhagic septicaemia, lumpy skin disease, foot and mouth disease and brucellosis, all of which have caused outbreaks in wildlife populations. From a starting population of 300, the disease-free population increased by an average of 228% over 100 years. Brucellosis with frequency-dependent transmission showed the highest average population declines (-97%), with population extinction occurring 16% of the time. Foot and mouth disease with frequency-dependent transmission showed the lowest impact, with an average population increase of 200%. Overall, acute infections with very high or low fatality had the lowest impact, whereas chronic infections produced the greatest population decline. These results may help disease management and surveillance strategies support wildlife conservation.


Subject(s)
Models, Biological , Population Dynamics , Animals , Thailand/epidemiology , Cattle , Animals, Wild , Communicable Diseases/epidemiology , Communicable Diseases/veterinary , Communicable Diseases/transmission , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Ruminants/microbiology
3.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38836500

ABSTRACT

Gut microbes play a crucial role in transforming primary bile acids (BAs) into secondary forms, which influence systemic metabolic processes. The rumen, a distinctive and critical microbial habitat in ruminants, boasts a diverse array of microbial species with multifaceted metabolic capabilities. There remains a gap in our understanding of BA metabolism within this ecosystem. Herein, through the analysis of 9371 metagenome-assembled genomes and 329 cultured organisms from the rumen, we identified two enzymes integral to BA metabolism: 3-dehydro-bile acid delta4,6-reductase (baiN) and the bile acid:Na + symporter family (BASS). Both in vitro and in vivo experiments were employed by introducing exogenous BAs. We revealed a transformation of BAs in rumen and found an enzyme cluster, including L-ribulose-5-phosphate 3-epimerase and dihydroorotate dehydrogenase. This cluster, distinct from the previously known BA-inducible operon responsible for 7α-dehydroxylation, suggests a previously unrecognized pathway potentially converting primary BAs into secondary BAs. Moreover, our in vivo experiments indicated that microbial BA administration in the rumen can modulate amino acid and lipid metabolism, with systemic impacts underscored by core secondary BAs and their metabolites. Our study provides insights into the rumen microbiome's role in BA metabolism, revealing a complex microbial pathway for BA biotransformation and its subsequent effect on host metabolic pathways, including those for glucose, amino acids, and lipids. This research not only advances our understanding of microbial BA metabolism but also underscores its wider implications for metabolic regulation, offering opportunities for improving animal and potentially human health.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Rumen , Rumen/microbiology , Animals , Bile Acids and Salts/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Metagenome , Cattle , Ruminants/microbiology , Lipid Metabolism
4.
Article in English | MEDLINE | ID: mdl-38842428

ABSTRACT

In a previous study characterizing Campylobacter strains deficient in selenium metabolism, 50 strains were found to be similar to, but distinct from, the selenonegative species Campylobacter lanienae. Initial characterization based on multilocus sequence typing and the phylogeny of a set of 20 core genes determined that these strains form three putative taxa within the selenonegative cluster. A polyphasic study was undertaken here to further clarify their taxonomic position within the genus. The 50 selenonegative strains underwent phylogenetic analyses based on the sequences of the 16S rRNA gene and an expanded set of 330 core genes. Standard phenotypic testing was also performed. All strains were microaerobic and anaerobic, Gram-negative, spiral or curved cells with some displaying coccoid morphologies. Strains were motile, oxidase, catalase, and alkaline phosphatase positive, urease negative, and reduced nitrate. Strains within each clade had unique phenotypic profiles that distinguished them from other members of the genus. Core genome phylogeny clearly placed the 50 strains into three clades. Pairwise average nucleotide identity and digital DNA-DNA hybridization values were all below the recommended cut-offs for species delineation with respect to C. lanienae and other related Campylobacter species. The data presented here clearly show that these strains represent three novel species within the genus, for which the names Campylobacter devanensis sp. nov. (type strain RM3662T=LMG 33097T=NCTC 15074T), Campylobacter porcelli sp. nov. (type strain RM6137T=LMG 33098T=CCUG 77054T=NCTC 15075T) and Campylobacter vicugnae sp. nov. (type strain RM12175T=LMG 33099T=CCUG 77055T=NCTC 15076T) are proposed.


Subject(s)
Bacterial Typing Techniques , Campylobacter , DNA, Bacterial , Multilocus Sequence Typing , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Campylobacter/genetics , Campylobacter/classification , Campylobacter/isolation & purification , Animals , DNA, Bacterial/genetics , Swine , Ruminants/microbiology
5.
Zoonoses Public Health ; 71(5): 568-577, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816921

ABSTRACT

BACKGROUND: Bartonellosis, caused by bacteria of the genus Bartonella, is a zoonotic disease with several mammalian reservoir hosts. In Somalia, a country heavily reliant on livestock, zoonotic diseases pose significant public health and economic challenges. To the best of our knowledge, no study has been performed aiming to verify the occurrence of Bartonella spp. in Somalia. This study investigated the occurrence and molecular characterization of Bartonella in dromedary (Camelus dromedarius, Linnaeus, 1758), cattle, sheep, and goats from Somalia. MATERIALS AND METHODS: 530 blood samples were collected from various animals (155 dromedary, 199 goat, 131 cattle, and 45 sheep) in Benadir and Lower Shabelle regions. DNA was extracted for molecular analysis, and a qPCR assay targeting the NADH dehydrogenase gamma subunit (nuoG) gene was used for Bartonella screening. Positive samples were also subjected to PCR assays targeting seven molecular markers including: nuoG, citrate synthase gene (gltA), RNA polymerase beta-subunit gene (rpoB), riboflavin synthase gene (ribC), 60 kDa heat-shock protein gene (groEL), cell division protein gene (ftsZ), and pap31 and qPCR targeting the 16-23S rRNA internal transcribed spacer (ITS) followed by Sanger sequencing, BLASTn and phylogenetic analysis. RESULTS: Out of 530 tested animals, 5.1% were positive for Bartonella spp. by the nuoG qPCR assay. Goats showed the highest Bartonella occurrence (17/199, 8.5%), followed by sheep (6/44, 6.8%), cattle (4/131, 3.1%), and dromedary (1/155, 1.9%). Goats, sheep, and cattle had higher odds of infection compared to dromedary. Among nuoG qPCR-positive samples, 11.1%, 14.8%, 11.1%, and 25.9% were positive in PCR assays based on nuoG, gltA, and pap31 genes, and in the qPCR based on the ITS region, respectively. On the other hand, nuoG qPCR-positive samples were negative in the PCR assays targeting the ribC, rpoB, ftsZ, and groEL genes. While Bartonella bovis sequences were detected in cattle (nuoG and ITS) and goats (gltA), Bartonella henselae ITS sequences were detected in dromedary, goat, and sheep. Phylogenetic analysis placed gltA Bartonella sequence from a goat in the same clade of B. bovis. CONCLUSION: The present study showed, for the first time, molecular evidence of Bartonella spp. in dromedary and ruminants from Somalia and B. henselae in sheep and goats globally. These findings contribute valuable insights into Bartonella spp. occurrence in Somali livestock, highlighting the need for comprehensive surveillance and control measures under the One Health approach.


Subject(s)
Bartonella Infections , Bartonella , Camelus , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Camelus/microbiology , Ruminants/microbiology , Goats , Sheep , Goat Diseases/microbiology , Goat Diseases/epidemiology , Phylogeny , Cattle , DNA, Bacterial/genetics
6.
Microbiome ; 12(1): 82, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725064

ABSTRACT

BACKGROUND: The rumen microbiome enables ruminants to digest otherwise indigestible feedstuffs, thereby facilitating the production of high-quality protein, albeit with suboptimal efficiency and producing methane. Despite extensive research delineating associations between the rumen microbiome and ruminant production traits, the functional roles of the pervasive and diverse rumen virome remain to be determined. RESULTS: Leveraging a recent comprehensive rumen virome database, this study analyzes virus-microbe linkages, at both species and strain levels, across 551 rumen metagenomes, elucidating patterns of microbial and viral diversity, co-occurrence, and virus-microbe interactions. Additionally, this study assesses the potential role of rumen viruses in microbial diversification by analyzing prophages found in rumen metagenome-assembled genomes. Employing CRISPR-Cas spacer-based matching and virus-microbe co-occurrence network analysis, this study suggests that the viruses in the rumen may regulate microbes at strain and community levels through both antagonistic and mutualistic interactions. Moreover, this study establishes that the rumen virome demonstrates responsiveness to dietary shifts and associations with key animal production traits, including feed efficiency, lactation performance, weight gain, and methane emissions. CONCLUSIONS: These findings provide a substantive framework for further investigations to unravel the functional roles of the virome in the rumen in shaping the microbiome and influencing overall animal production performance. Video Abstract.


Subject(s)
Metagenome , Rumen , Viruses , Rumen/microbiology , Rumen/virology , Animals , Viruses/classification , Viruses/genetics , Gastrointestinal Microbiome , Virome , Ruminants/microbiology , Ruminants/virology , Methane/metabolism , Animal Feed , Bacteria/classification , Bacteria/genetics
7.
Acta Trop ; 255: 107235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688445

ABSTRACT

Coxiellosis in animals is caused by the zoonotic pathogen, Coxiella burnetii. Although the disease is of public health importance it remains underdiagnosed and underreported. The cross- sectional study was aimed to estimate the occurrence of the disease in livestock of study area and also to identify the risk factors associated with the disease in animals. Blood, serum, and vaginal swabs samples were collected from 200 ruminants (cattle, sheep, and goats), across various farms in Karnataka, India. These samples were then screened using ELISA and PCR (com1 and IS1111). A questionnaire was administered to the farm owners to collect the risk factor-related information. About 5.26 % cattle, 12.3 % sheep, and 12.5 % goats were positive by ELISA. By PCR, 9.47 % cattle, 9.3 % sheep, and 10 % goats were positive. Overall, the occurrence of 14.73 %, 18.46 % and 17.5 % was estimated in cattle, sheep and goat, respectively. PCR targeting the IS1111 gene detected higher number of samples as positive as compared to the com1 gene PCR. Higher number of vaginal swab samples were detected as positive as compared to blood. History of reproductive disorders (OR: 4.30; 95 %CI:1.95- 9.46), abortion (OR: 30.94; 95 %CI:6.30- 151.84) and repeat breeding (OR:11.36; 95 %CI:4.16- 30.99) were significantly associated with coxiellosis (p < 0.005). Multivariable analysis by logistic regression model analysis suggested retained abortion, repeat breeding and rearing of animal in semi-intensive system as factors significantly associated with the infection. Cultural identification of the PCR positive samples were cultured using embryonated egg propagation and cell culture techniques and positivity was confirmed in six samples. Phylogenetic analysis of the com1 and IS1111 gene revealed clustering based on similar geographic locations. The study estimated the occurrence of the disease in the study area and identified the potential risk factors.


Subject(s)
Cattle Diseases , Coxiella burnetii , Goat Diseases , Goats , Polymerase Chain Reaction , Q Fever , Sheep Diseases , Animals , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Risk Factors , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Goats/microbiology , Sheep/microbiology , Cattle , Female , India/epidemiology , Cross-Sectional Studies , Goat Diseases/microbiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Enzyme-Linked Immunosorbent Assay , Ruminants/microbiology , Surveys and Questionnaires , Vagina/microbiology
8.
J Microbiol ; 62(3): 217-230, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38662310

ABSTRACT

The importance of ruminal microbiota in ruminants is emphasized, not only as a special symbiotic relationship with ruminants but also as an interactive and dynamic ecosystem established by the metabolites of various rumen microorganisms. Rumen microbial community is essential for life maintenance and production as they help decompose and utilize fiber that is difficult to digest, supplying about 70% of the energy needed by the host and 60-85% of the amino acids that reach the small intestine. Bacteria are the most abundant in the rumen, but protozoa, which are relatively large, account for 40-50% of the total microorganisms. However, the composition of these ruminal microbiota is not conserved or constant throughout life and is greatly influenced by the host. It is known that the initial colonization of calves immediately after birth is mainly influenced by the mother, and later changes depending on various factors such as diet, age, gender and breed. The initial rumen microbial community contains aerobic and facultative anaerobic bacteria due to the presence of oxygen, but as age increases, a hypoxic environment is created inside the rumen, and anaerobic bacteria become dominant in the rumen microbial community. As calves grow, taxonomic diversity increases, especially as they begin to consume solid food. Understanding the factors affecting the rumen microbial community and their effects and changes can lead to the early development and stabilization of the microbial community through the control of rumen microorganisms, and is expected to ultimately help improve host productivity and efficiency.


Subject(s)
Bacteria , Rumen , Animals , Rumen/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Cattle/microbiology , Ruminants/microbiology , Microbiota , Gastrointestinal Microbiome , Biodiversity
9.
Braz J Microbiol ; 55(2): 1997-2004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468116

ABSTRACT

Abortions in cattle and sheep are one of the major causes of economic losses worldwide. Brucella spp. are the most common infectious agent associated with these abortions. However, abortions caused by bacteria such as Listeria spp., Leptospira spp., Campylobacter spp. and Mycoplasma spp. are usually overlooked due to their sporadic nature and their status as non-priority abortion agents. In our study, we investigated the bacteria associated with abortion cases in cattle and sheep using PCR. For this purpose, we collected vaginal swab samples (n: 110) of aborted cattle and sheep, as well as stomach content samples (n: 69) of aborted calves and lambs from various cities in Turkey. The samples were analysed by bacteria-specific PCR to detect Campylobacter fetus, Leptospira spp., Listeria spp., Mycoplasma spp., and Yersinia spp. PCR analyses revealed that the investigated bacterial agents were present in 18.85% and 19.3% of the cattle and sheep samples, respectively, with an overall percentage of 18.99%. While the overall positivity rate for C. fetus, Leptospira spp., and Mycoplasma spp. was 2.79%, 10.06%, and 4.47%, respectively, the positivity rate for co-infection with Leptospira spp. and C. fetus was 1.68%. All samples were found to be negative for Yersinia spp. and Listeria spp. The high C. fetus positivity rate detected in sheep and in the stomach contents was statistically significant (p < 0.05). However, the difference in positivity rates between the cities, hosts, co-infections and causative agents was statistically insignificant (p > 0.05). This study provides preliminary data on the significant involvement of C. fetus, Leptospira spp. and Mycoplasma spp. in cattle and sheep abortions in Turkey indicating that they should not be overlooked in diagnosis. In addition, further research is needed to investigate the zoonotic potential of these pathogens for public health in Turkey.


Subject(s)
Abortion, Veterinary , Bacteria , Cattle Diseases , Sheep Diseases , Animals , Turkey/epidemiology , Sheep , Cattle , Cattle Diseases/microbiology , Cattle Diseases/diagnosis , Sheep Diseases/microbiology , Sheep Diseases/diagnosis , Abortion, Veterinary/microbiology , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/classification , Female , Pregnancy , Polymerase Chain Reaction/veterinary , Leptospira/isolation & purification , Leptospira/genetics , Bacterial Infections/veterinary , Bacterial Infections/microbiology , Bacterial Infections/diagnosis , Ruminants/microbiology
10.
Microbiome ; 12(1): 38, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38395946

ABSTRACT

BACKGROUND: Although rumen development is crucial, hindgut undertakes a significant role in young ruminants' physiological development. High-starch diet is usually used to accelerate rumen development for young ruminants, but always leading to the enteral starch overload and hindgut dysbiosis. However, the mechanism behind remains unclear. The combination of colonic transcriptome, colonic luminal metabolome, and metagenome together with histological analysis was conducted using a goat model, with the aim to identify the potential molecular mechanisms behind the disrupted hindgut homeostasis by overload starch in young ruminants. RESULT: Compared with low enteral starch diet (LES), high enteral starch diet (HES)-fed goats had significantly higher colonic pathology scores, and serum diamine oxidase activity, and meanwhile significantly decreased colonic mucosal Mucin-2 (MUC2) protein expression and fecal scores, evidencing the HES-triggered colonic systemic inflammation. The bacterial taxa Prevotella sp. P4-67, Prevotella sp. PINT, and Bacteroides sp. CAG:927, together with fungal taxa Fusarium vanettenii, Neocallimastix californiae, Fusarium sp. AF-8, Hypoxylon sp. EC38, and Fusarium pseudograminearum, and the involved microbial immune pathways including the "T cell receptor signaling pathway" were higher in the colon of HES goats. The integrated metagenome and host transcriptome analysis revealed that these taxa were associated with enhanced pathogenic ability, antigen processing and presentation, and stimulated T helper 2 cell (TH2)-mediated cytokine secretion functions in the colon of HES goats. Further luminal metabolomics analysis showed increased relative content of chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA), and decreased the relative content of hypoxanthine in colonic digesta of HES goats. These altered metabolites contributed to enhancing the expression of TH2-mediated inflammatory-related cytokine secretion including GATA Binding Protein 3 (GATA3), IL-5, and IL-13. Using the linear mixed effect model, the variation of MUC2 biosynthesis explained by the colonic bacteria, bacterial functions, fungi, fungal functions, and metabolites were 21.92, 20.76, 19.43, 12.08, and 44.22%, respectively. The variation of pathology scores explained by the colonic bacterial functions, fungal functions, and metabolites were 15.35, 17.61, and 57.06%. CONCLUSIONS: Our findings revealed that enteral starch overload can trigger interrupted hindgut host-microbiome homeostasis that led to impaired mucosal, destroyed colonic water absorption, and TH2-mediated inflammatory process. Except for the colonic metabolites mostly contribute to the impaired mucosa, the nonnegligible contribution from fungi deserves more future studies focused on the fungal functions in hindgut dysbiosis of young ruminants. Video Abstract.


Subject(s)
Microbiota , Multiomics , Animals , Dysbiosis , Ruminants/metabolism , Ruminants/microbiology , Goats , Cytokines , Diet/veterinary , Starch/chemistry , Starch/metabolism
11.
mSystems ; 9(2): e0122823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294243

ABSTRACT

Ruminant livestock, including cattle, sheep, goats, and camels, possess a distinctive digestive system with complex microbiota communities critical for feed conversion and secondary metabolite production, including greenhouse gases. Yet, there is limited knowledge regarding the diversity of rumen microbes and metabolites benefiting livestock physiology, productivity, climate impact, and defense mechanisms across ruminant species. In this study, we utilized metataxonomics and metabolomics data from four evolutionarily distinct livestock species, which had fed on diverse plant materials like grass, shrubs, and acacia trees, to uncover the unique signature microbes and secondary metabolites. We established the presence of a distinctive anaerobic fungus called Oontomyces in camels, while cattle exhibited a higher prevalence of unique microbes like Psychrobacter, Anaeromyces, Cyllamyces, and Orpinomyces. Goats hosted Cleistothelebolus, and Liebetanzomyces was unique to sheep. Furthermore, we identified a set of conserved core microbes, including Prevotella, Rickenellaceae, Cladosporium, and Pecoramyces, present in all the ruminants, irrespective of host genetics and dietary composition. This underscores their indispensable role in maintaining crucial physiological functions. Regarding secondary metabolites, camel's rumen is rich in organic acids, goat's rumen is rich in alcohols and hydrocarbons, sheep's rumen is rich in indoles, and cattle's rumen is rich in sesquiterpenes. Additionally, linalool propionate and terpinolene were uniquely found in sheep rumen, while valencene was exclusive to cattle. This may suggest the existence of species-specific microbes and metabolites that require host rumen-microbes' environment balance. These results have implications for manipulating the rumen environment to target specific microbes and secondary metabolite networks, thereby enhancing livestock productivity, resilience, reducing susceptibility to vectors, and environmentally preferred livestock husbandry.IMPORTANCERumen fermentation, which depends on feed components and rumen microbes, plays a crucial role in feed conversion and the production of various metabolites important for the physiological functions, health, and environmental smartness of ruminant livestock, in addition to providing food for humans. However, given the complexity and variation of the rumen ecosystem and feed of these various livestock species, combined with inter-individual differences between gut microbial communities, how they influence the rumen secondary metabolites remains elusive. Using metagenomics and metabolomics approaches, we show that each livestock species has a signature microbe(s) and secondary metabolites. These findings may contribute toward understanding the rumen ecosystem, microbiome and metabolite networks, which may provide a gateway to manipulating rumen ecosystem pathways toward making livestock production efficient, sustainable, and environmentally friendly.


Subject(s)
Livestock , Microbiota , Cattle , Humans , Sheep , Animals , Livestock/microbiology , Rumen/metabolism , Camelus , Multiomics , Ruminants/microbiology , Microbiota/genetics , Goats/physiology , Animal Feed/analysis
12.
Acta Trop ; 250: 107109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151070

ABSTRACT

Q fever is a significant zoonotic disease caused by Coxiella burnetii, an obligate intracellular gram-negative bacterium. Although C. burnetii infection has been identified in various animal species, domestic ruminants serve as the primary reservoirs and main sources of human infection. Understanding of the epidemiology of C. burnetii in domestic ruminants is crucial for preventing and controlling of C. burnetii infection in humans. In this study, spleen tissues from sheep and goats were collected in Hennan province, China. Through PCR screening, C. burnetii was detected in sheep and goats in Henan province with an overall infection rate of 6.8 %. Sequence comparison and phylogenetic analysis revealed that all newly identified C. burnetii strains shared a close genetic relationship with those found in humans worldwide. These findings highlight the high risk of C. burnetii infection among slaughterhouse workers and emphasize the importance of epidemiological studies that investigate samples from both humans and animals within the "One Health" framework. Such surveillance will contribute to a better understanding of the epidemic situation and aid in the development of effective prevention and control strategies for C. burnetii infections in humans.


Subject(s)
Coxiella burnetii , Goat Diseases , Q Fever , Sheep Diseases , Animals , Sheep , Humans , Q Fever/epidemiology , Q Fever/veterinary , Goats , Molecular Epidemiology , Phylogeny , Seroepidemiologic Studies , Goat Diseases/epidemiology , Goat Diseases/microbiology , Sheep Diseases/microbiology , Coxiella burnetii/genetics , Ruminants/microbiology , China/epidemiology
13.
Microb Genom ; 9(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37823548

ABSTRACT

Mycoplasma feriruminatoris is a fast-growing Mycoplasma species isolated from wild Caprinae and first described in 2013. M. feriruminatoris isolates have been associated with arthritis, kerato conjunctivitis, pneumonia and septicemia, but were also recovered from apparently healthy animals. To better understand what defines this species, we performed a genomic survey on 14 strains collected from free-ranging or zoo-housed animals between 1987 and 2017, mostly in Europe. The average chromosome size of the M. feriruminatoris strains was 1,040±0,024 kbp, with 24 % G+C and 852±31 CDS. The core genome and pan-genome of the M. feriruminatoris species contained 628 and 1312 protein families, respectively. The M. feriruminatoris strains displayed a relatively closed pan-genome, with many features and putative virulence factors shared with species from the M. mycoides cluster, including the MIB-MIP Ig cleavage system, a repertoire of DUF285 surface proteins and a complete biosynthetic pathway for galactan. M. feriruminatoris genomes were found to be mostly syntenic, although repertoires of mobile genetic elements, including Mycoplasma Integrative and Conjugative Elements, insertion sequences, and a single plasmid varied. Phylogenetic- and gene content analyses confirmed that M. feriruminatoris was closer to the M. mycoides cluster than to the ruminant species M. yeatsii and M. putrefaciens. Ancestral genome reconstruction showed that the emergence of the M. feriruminatoris species was associated with the gain of 17 gene families, some of which encode defence enzymes and surface proteins, and the loss of 25 others, some of which are involved in sugar transport and metabolism. This comparative study suggests that the M. mycoides cluster could be extended to include M. feriruminatoris. We also find evidence that the specific organization and structure of the DnaA boxes around the oriC of M. feriruminatoris may contribute to drive the remarkable fast growth of this minimal bacterium.


Subject(s)
Mycoplasma mycoides , Mycoplasma , Animals , Genome, Bacterial , Phylogeny , Mycoplasma mycoides/genetics , Mycoplasma mycoides/metabolism , Mycoplasma/genetics , Ruminants/microbiology , Genomics , Membrane Proteins/genetics
14.
BMC Vet Res ; 19(1): 213, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853405

ABSTRACT

Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.


Subject(s)
Anaplasmosis , Cattle Diseases , Goat Diseases , Sheep Diseases , Tick-Borne Diseases , Animals , Cattle , Sheep , Anaplasma/genetics , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Goats/microbiology , Ruminants/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , China/epidemiology , Genetic Variation , Phylogeny , Goat Diseases/epidemiology , Goat Diseases/microbiology , Cattle Diseases/epidemiology , Sheep Diseases/epidemiology
15.
Animal ; 17(8): 100895, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37515965

ABSTRACT

Ruminants are able to produce large quantities of saliva which enter into the rumen and salivary components exert different physiological functions. Although previous research has indicated that salivary immunoglobulins can partially modulate the rumen microbial activity, the role of the salivary components other than ions on the rumen microbial ecosystem has not been thoroughly investigated in ruminants. To investigate this modulatory activity, a total of 16 semi-continuous in vitro cultures with oats hay and concentrate were used to incubate rumen fluid from four donor goats with autoclaved saliva (AUT) as negative control, saliva from the same rumen fluid donor (OWN) as positive control, and either goat (GOAT) or sheep (SHEEP) saliva as experimental interventions. Fermentation was monitored throughout 7 days of incubation and the microbiome and metabolome were analysed at the end of this incubation by Next-Generation sequencing and liquid chromatography coupled with mass spectrometry, respectively. Characterisation of the proteome and metabolome of the different salivas used for the incubation showed a high inter-animal variability in terms of metabolites and proteins, including immunoglobulins. Incubation with AUT saliva promoted lower fermentative activity in terms of gas production (-9.4%) and highly divergent prokaryotic community in comparison with other treatments (OWN, GOAT and SHEEP) suggesting a modulatory effect derived from the presence of bioactive salivary components. Microbial alpha-diversity at amplicon sequence variant (ASV) level was unaffected by treatment. However, some differences were found in the microbial communities across treatments, which were mostly caused by a greater abundance of Proteobacteria and Rikenellacea in the AUT treatment and lower of Prevotellaceae. These bacteria, which are key in the rumen metabolism, had greater abundances in GOAT and SHEEP treatments. Incubation with GOAT saliva led to a lower protozoal concentration and propionate molar proportion indicating a capacity to modulate the rumen microbial ecosystem. The metabolomics analysis showed that the AUT samples were clustered apart from the rest indicating different metabolic pathways were promoted in this treatment. These results suggest that specific salivary components contribute to host-associated role in selecting the rumen commensal microbiota and its activity. These findings could open the possibility of developing new strategies to modulate the saliva composition as a way to manipulate the rumen function and activity.


Subject(s)
Goats , Microbiota , Animals , Sheep , Goats/physiology , Diet/veterinary , Rumen/metabolism , Multiomics , Ruminants/microbiology , Fermentation , Animal Feed/analysis
16.
Anal Biochem ; 658: 114926, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36183795

ABSTRACT

Bacteriocins exhibited a wide spectrum of antibacterial activity against different pathogens. The aim of current study was to characterize the bacteriocins produced by Bifidobacterium spp. isolated from ruminants. The Bifidobacterium isolates were identified as B. longum, B. pseudolongum, B. bifidum, B. thermophilum, B. boum, B. merycicum and B. ruminantium. Bacteriocins were found to be pH stable, heat resistant, highly diffusible, NaCl tolerant and resistant to UV radiations. SDS, EDTA and urea induced 14%, 21% and 24% bacteriocins activity loss. Modified MRS broth (1% tryptone, 1% yeast extract and 2% glucose) was found to be the best nutrient medium for optimal production of bacteriocins. Minimum inhibitory concentration (MIC) values varied from 300 µl/ml to 500 µl/ml and minimum bactericidal concentration (MBC) values ranged from 500 µl/ml to >500 µl/ml for E. coli and S. aureus respectively. The highest protein concentration (29.0248 mg/ml) was recorded for Bifidobacteria bacteriocin produced by B. longum. Tricine-Sodium Dodecyl Sulfate-Poly Acrylamide Gel Electrophoresis (SDS-PAGE) revealed that molecular weight of isolated bifidobacterial bacteriocins was in the range of 3.6 kDa-30 kDa. Current study indicated that bifidobacterial bacteriocins have considerable potential to be used as biopreservative.


Subject(s)
Bacteriocins , Bifidobacterium , Ruminants , Animals , Acrylamides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteriocins/pharmacology , Bacteriocins/chemistry , Edetic Acid , Escherichia coli , Glucose , Hydrogen-Ion Concentration , Ruminants/microbiology , Sodium Chloride , Sodium Dodecyl Sulfate , Staphylococcus aureus , Urea
17.
Trop Anim Health Prod ; 54(2): 129, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35257219

ABSTRACT

Tick-borne diseases have been an increasing threat to human and animal health all over the world. Anaplasmosis is one of the emerging tick-borne diseases and has zoonotic potential. A new novel species, which was detected in China in 2010-2012 and provisionally named Anaplasma capra in 2015, causes zoonotic infections and infects many different animal species. In this study, we investigated the presence of A. capra in domestic ruminants from Turkey. A total of 468 blood samples (cattle, sheep, and goat) were examined by the gltA gene-specific nested polymerase chain reaction, revealing the presence of A. capra in six samples (1.28%): one of them from cattle (0.41%) and the other five from sheep (3.22%). According to DNA sequences results of the gltA gene, A. capra isolates identified in the present study were shown high nucleotide similarity with A. capra isolates detected from different hosts. However, the nucleotide differences were detected in the same nucleotide positions between A. capra isolates. For this reason, we thought that at least two different A. capra genotypes could be circulating in the world. As a result, it is seen that A. capra, which was determined to be a new species with zoonotic potential, was revealed in European and Asian countries and in different hosts. In order to raise awareness about human anaplasmosis infections, it is important to reveal the prevalence of the species in the world. The emergence of A. capra in Turkey reveals the need for a re-evaluation of the human and animal health risk analysis in terms of anaplasmosis.


Subject(s)
Anaplasma , Anaplasmosis , Genetic Variation , Ruminants , Anaplasma/genetics , Anaplasmosis/epidemiology , Animals , Cattle , Genotype , Goats , Phylogeny , Ruminants/microbiology , Sheep , Turkey/epidemiology
18.
Trop Anim Health Prod ; 54(2): 110, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35195775

ABSTRACT

Given the ever-growing population in the developing countries located in the tropics of Asia, Africa, South America, and the Caribbean, the demand for products of animal origin has increased. Probiotics have proven to be a substantial substitute for antibiotics used in the animal diet and thus gained popularity. Probiotics are live and non-pathogenic microbes commercially utilized as modulators of gut microflora, hence exerting advantageous effects on the health and productivity of animals in tropical countries. Probiotics are mainly derived from a few bacterial (Lactobacillus, Enterococcus, Streptococcus, Propionibacterium, and Prevotella bryantii) and yeast (Saccharomyces and Aspergillus) species. Numerous studies in tropical animals revealed that probiotic supplementation in a ruminant diet improves the growth of beneficial rumen microbes, thus enhancing nutrient intake and digestibility, milk production, and reproductive and feed efficiency, along with immunomodulation. Furthermore, probiotic applications have proven to minimize adverse environmental consequences, including reduced methane emissions from ruminants' anaerobic fermentation of tropical feedstuffs. However, obtained results were inconsistent due to sources of probiotics, probiotic stability during storage and feeding, dose, feeding frequency, and animal factors including age, health, and nutritional status of the host. Furthermore, the mechanism of action of probiotics by which they exhibit beneficial effects is still not clear. Thus, more definitive research is needed to select the most effective strains of probiotics and their cost-benefit analysis. In this review article, we have briefly explained the impact of feeding probiotics on nutrient intake, digestibility, reproduction, growth efficiency, productivity, and health status of tropical ruminant animals.


Subject(s)
Nutritional Status , Probiotics , Animal Feed/analysis , Animals , Diet/veterinary , Rumen/microbiology , Ruminants/microbiology
19.
J Microbiol Methods ; 192: 106367, 2022 01.
Article in English | MEDLINE | ID: mdl-34785270

ABSTRACT

Paratuberculosis is a globally prevalent disease, that adversely affects the economy of livestock farming. Control is largely based on early detection followed by 'Test and Cull' or 'Test and Segregate' Policy. Implementation of paratuberculosis control is a special challenge due to the non-availability of point of care diagnostics (PoCD). Therefore, the present study aimed to optimize and evaluate a lateral flow assay (LFA) for the rapid serodiagnosis of paratuberculosis in ruminant species, especially in the view of the resource-limited areas. Performance of three different antigenic preparations including native purified protoplasmic antigen (nPPA-LFA), commercial purified protoplasmic antigen (cPPA-LFA), and a cocktail of recombinant secretory proteins (RP-LFA) was evaluated as detection reagents for coating LFA strips. Comparative performance of the optimized LFA was also evaluated with gold standard tissue culture, fecal PCR (polymerase chain reaction), and plate ELISA. In addition, the onsite testing of animals belonging to different farms (endemic), species, and regions using optimized LFA was also done to highlight the on-farm testing approach. Findings revealed recombinant secretory proteins based LFA (RP-LFA) had a higher sensitivity of detection compared to other antigens. RP-LFA had a sensitivity of 77.7%, 75.44%, and 75.16% in comparison to gold standard tissue culture, fecal PCR, and plate ELISA, respectively. The specificity of RP-LFA was 100% with all reference tests. In comparison to plate ELISA, RP-LFA had a detection limit of 100% when the S/P ratio of the serum sample is ≥1.0 and 80% when the S/P ratio range of 0.8-1.0. Using RP-LFA, on-farm testing of 608 animals was done and 283 (46.5%) were found positive. Kappa analysis of present RP-LFA revealed 'good strength of agreement' with gold standard tissue culture, fecal PCR, and plate ELISA. Optimized RP-LFA had no cross-reactivity with bovine tuberculosis (bovine TB). The RP-LFA was found reproducible, user-friendly and test results can be interpreted within five minutes. In conclusion, the findings of the present study advocate the huge potential of LFA-based PoCD in the rapid diagnosis and control of paratuberculosis.


Subject(s)
Antigens, Bacterial/analysis , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/diagnosis , Ruminants/microbiology , Serologic Tests/veterinary , Animals , Antigens, Bacterial/immunology , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/microbiology , Enzyme-Linked Immunosorbent Assay/methods , Goat Diseases/diagnosis , Goat Diseases/microbiology , Goats/microbiology , Livestock/microbiology , Point-of-Care Testing
20.
Comput Math Methods Med ; 2021: 9919700, 2021.
Article in English | MEDLINE | ID: mdl-34868347

ABSTRACT

In recent years, multiscale modelling approach has begun to receive an overwhelming appreciation as an appropriate technique to characterize the complexity of infectious disease systems. In this study, we develop an embedded multiscale model of paratuberculosis in ruminants at host level that integrates the within-host scale and the between-host. A key feature of embedded multiscale models developed at host level of organization of an infectious disease system is that the within-host scale and the between-host scale influence each other in a reciprocal (i.e., both) way through superinfection, that is, through repeated infection before the host recovers from the initial infectious episode. This key feature is demonstrated in this study through a multiscale model of paratuberculosis in ruminants. The results of this study, through numerical analysis of the multiscale model, show that superinfection influences the dynamics of paratuberculosis only at the start of the infection, while the MAP bacteria replication continuously influences paratuberculosis dynamics throughout the infection until the host recovers from the initial infectious episode. This is largely because the replication of MAP bacteria at the within-host scale sustains the dynamics of paratuberculosis at this scale domain. We further use the embedded multiscale model developed in this study to evaluate the comparative effectiveness of paratuberculosis health interventions that influence the disease dynamics at different scales from efficacy data.


Subject(s)
Models, Biological , Paratuberculosis/prevention & control , Ruminants/microbiology , Animals , Basic Reproduction Number/prevention & control , Basic Reproduction Number/statistics & numerical data , Basic Reproduction Number/veterinary , Computational Biology , Computer Simulation , Endemic Diseases/prevention & control , Endemic Diseases/statistics & numerical data , Endemic Diseases/veterinary , Host Microbial Interactions , Mathematical Concepts , Mycobacterium avium subsp. paratuberculosis/growth & development , Mycobacterium avium subsp. paratuberculosis/pathogenicity , Paratuberculosis/microbiology , Paratuberculosis/transmission , Superinfection/microbiology , Superinfection/prevention & control , Superinfection/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...