Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.498
Filter
1.
J Environ Sci (China) ; 148: 336-349, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095169

ABSTRACT

Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds (VOCs) originating from solvent-based industrial processes. The varied composition tends to influence each VOC's catalytic behavior in the reaction mixture. We investigated the catalytic destruction of multi-component VOCs including dichloromethane (DCM) and ethyl acetate (EA), as representatives from pharmaceutical waste gases, over co-supported HxPO4-RuOx/CeO2 catalyst. A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA's superior adsorption capacity. Preferential adsorption of EA on acidic sites (HxPO4/CeO2) promoted DCM activation on basic sites (O2-) and the dominating EA oxidation blocked DCM's access to oxidation centers (RuOx/CeO2), resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation. The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products, leading to increased gaseous by-products such as acetic acid originating from EA pyrolysis. Notably, DCM at low concentration slightly promoted EA conversion at low temperatures with or without water, consistent with the enhanced EA adsorption in co-adsorption analyses. This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity. Moreover, water benefited EA hydrolysis but decreased CO2 selectivity while the generated water derived from EA was likely to affect DCM transformation. This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.


Subject(s)
Acetates , Cerium , Methylene Chloride , Acetates/chemistry , Catalysis , Methylene Chloride/chemistry , Cerium/chemistry , Volatile Organic Compounds/chemistry , Adsorption , Oxidation-Reduction , Ruthenium/chemistry
2.
J Nanobiotechnology ; 22(1): 436, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044240

ABSTRACT

Cisplatin (DDP) is a prevalent chemotherapeutic agent used in tumor therapy, yet DDP-induced acute kidney injury (AKI) severely limits its clinical application. Antioxidants as reactive oxygen species (ROS) scavengers can circumvent this adverse effect while leading to the decrease of efficacy to tumor. Herein, we report ultrasmall ruthenium nanoparticles (URNPs) as switchable ROS scavengers/generators to alleviate DDP-induced AKI and improve its therapeutic efficacy. In the physiological environment of the kidney, URNPs mimic multi-enzyme activities, such as superoxide dismutase and catalase, effectively protecting the renal cell and tissue by down-regulating the increased ROS level caused by DDP and alleviating AKI. Specifically, URNPs are oxidized by high levels of H2O2 in the tumor microenvironment (TME), resulting in the generation of oxygen vacancies and Ru3+/Ru4+ ions. This unique structure transformation endows URNPs to generate singlet oxygen (1O2) under laser irradiation and hydroxyl radicals (∙OH) through a Fenton-like reaction in tumor cell and tissue. The simultaneous generation of multifarious ROS effectively improves the efficacy of DDP in vitro and in vivo. This TME-responsive ROS scavenger/generator acts as an adjuvant therapeutic agent to minimize side effects and improve the efficacy of chemotherapy drugs, providing a new avenue to chemotherapy and facilitating clinical tumor therapy.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Cisplatin , Kidney , Reactive Oxygen Species , Ruthenium , Cisplatin/pharmacology , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Reactive Oxygen Species/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Kidney/drug effects , Kidney/metabolism , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Tumor Microenvironment/drug effects , Cell Line, Tumor , Hydrogen Peroxide/metabolism , Mice, Inbred BALB C , Neoplasms/drug therapy , Male , Antioxidants/pharmacology , Antioxidants/chemistry
3.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000421

ABSTRACT

This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , Peptides/chemistry , Peptides/pharmacology
4.
Molecules ; 29(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999167

ABSTRACT

Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic activities, a series of mononuclear water-soluble ruthenium(II)-arene complexes incorporating substituted pyridine-quinoline ligands, with pending -CH2OH, -CO2H and -CO2Me groups in the 4-position of quinoline ring, were synthesized, for the first time, to study their possible effect to modulate the activity of the ruthenium p-cymene complexes. These include the [Ru(η6-p-cymene)(pqhyme)Cl][X] (X = Cl- (1-Cl), PF6- (1-PF6), pqhyme = 4-hydroxymethyl-2-(pyridin-2-yl)quinoline), [Ru(η6-p-cymene)(pqca)Cl][Cl] ((2-Cl), pqca = 4-carboxy-2-(pyridin-2-yl)quinoline), and [Ru(η6-p-cymene)(pqcame)Cl][X] (X = Cl- (3-Cl), PF6- (3-PF6), pqcame = 4-carboxymethyl-2-(pyridin-2-yl)quinoline) complexes, respectively. Identification of the complexes was based on multinuclear NMR and ATR-IR spectroscopic methods, elemental analysis, conductivity measurements, UV-Vis spectroscopic, and ESI-HRMS techniques. The solid-state structures of 1-PF6 and 3-PF6 have been elucidated by single-crystal X-ray diffraction revealing a three-legged piano stool geometry. This is the first time that the in vitro cytotoxic activities of these complexes are studied. These were conducted in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) via the MTT assay. The results show poor in vitro anticancer activities for the HeLa cancer cell lines and 3-Cl proved to be the most potent (IC50 > 80 µΜ). In both cell lines, the cytotoxicity of the ligand precursor pqhyme is significantly higher than that of cisplatin.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Cymenes , Pyridines , Quinolines , Ruthenium , Humans , Ruthenium/chemistry , Quinolines/chemistry , Quinolines/chemical synthesis , Quinolines/pharmacology , Ligands , Cymenes/chemistry , Cymenes/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Pyridines/chemistry , Pyridines/chemical synthesis , Pyridines/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Molecular Structure , Cell Line, Tumor , Crystallography, X-Ray , Cell Survival/drug effects
5.
Biosens Bioelectron ; 262: 116555, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39018982

ABSTRACT

Researchers unremittingly strive to develop innovative luminophores to enhance intrinsic electrochemiluminescence (ECL) performance. However, the potential to harness facile strategies, such as manipulating the physical properties of luminophores while retaining functional chemical properties to fabricate cost-effective ECL complexes, remains underexplored. Herein, we reported a novel and efficient one-step galvanic technique to actualize aggregation-enhanced ECL (AEECL) of ruthenium complexes. It marked the first instance of the galvanic process being employed to synthesize aggregate luminophores through electrostatic attraction. The ECL intensity and efficiency of the prepared ruthenium complexes with AEECL properties surpassed traditional ruthenium complexes by 8.9 and 13.6 times, respectively, outperforming most reported luminophores. Remarkably, the target luminophore exhibited high stability across varied scan rates and temperatures. Furthermore, a binder-free and carbon paper-based AEECL analytical device for lidocaine detection was fabricated, achieving a satisfactory detection limit (0.34 nM) and selectivity. The convenient modulation strategy of aggregate structure, along with the transformative leap from insufficient ECL to AEECL, bring forth a new revenue in aggregate science. This research also promises a universally applicable and versatile protocol for future biological analysis and bioimaging applications.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Luminescent Measurements , Luminescent Measurements/methods , Luminescent Measurements/instrumentation , Electrochemical Techniques/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Ruthenium/chemistry , Coordination Complexes/chemistry
6.
Environ Sci Technol ; 58(28): 12742-12753, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959431

ABSTRACT

Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.


Subject(s)
Oxidation-Reduction , Catalysis , Cerium/chemistry , Propane/chemistry , Propane/analogs & derivatives , Ruthenium/chemistry
7.
Environ Sci Technol ; 58(28): 12719-12730, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959427

ABSTRACT

Chlorofluorocarbons (CFCs) exert a strong greenhouse effect and constitute the largest contributor to ozone depletion. Catalytic removal is considered an effective pathway for eliminating low-concentration CFCs under mild conditions. The key issue is the easy deactivation of the catalysts due to their surface fluorination. We herein report a comparative investigation on catalytic dichlorodifluoromethane (CFC-12) removal in the absence or presence of water over the sulfuric-acid-modified three-dimensionally ordered macroporous vanadia-titania-supported Ru (S-Ru/3DOM VTO) catalysts. The S-Ru/3DOM VTO catalyst exhibited high activity (T90% = 278 °C at space velocity = 40 000 mL g-1 h-1) and good stability within 60 h of on-stream reaction in the presence of 1800 ppm of water due to the improvements in acid site amount and redox ability that promoted the adsorption of CFC-12 and the activation of C-F bonds. Compared with the case under dry conditions, catalytic performance for CFC-12 removal was better over the S-Ru/3DOM VTO catalyst in the presence of water. Water introduction mitigated surface fluorination by the replenishment of hydroxyl groups, inhibited the formation of halogenated byproducts via the surface fluorine species cleaning effect, and promoted the reaction pathway of COX2 (X = Cl/F) → carboxylic acid → CO2.


Subject(s)
Oxidation-Reduction , Catalysis , Halogenation , Sulfuric Acids/chemistry , Titanium/chemistry , Ruthenium/chemistry
8.
Eur J Med Chem ; 275: 116638, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38950489

ABSTRACT

The cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway promotes antitumor immune responses by sensing cytosolic DNA fragments leaked from nucleus and mitochondria. Herein, we designed a highly charged ruthenium photosensitizer (Ru1) with a ß-carboline alkaloid derivative as the ligand for photo-activating of the cGAS-STING pathway. Due to the formation of multiple non-covalent intermolecular interactions, Ru1 can self-assemble into carrier-free nanoparticles (NPs). By incorporating the triphenylphosphine substituents, Ru1 can target and photo-damage mitochondrial DNA (mtDNA) to cause the cytoplasmic DNA leakage to activate the cGAS-STING pathway. Finally, Ru1 NPs show potent antitumor effects and elicit intense immune responses in vivo. In conclusion, we report the first self-assembling mtDNA-targeted photosensitizer, which can effectively activate the cGAS-STING pathway, thus providing innovations for the design of new photo-immunotherapeutic agents.


Subject(s)
Antineoplastic Agents , Immunotherapy , Membrane Proteins , Nucleotidyltransferases , Photosensitizing Agents , Ruthenium , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Humans , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Animals , Ruthenium/chemistry , Ruthenium/pharmacology , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Nanoparticles/chemistry , Structure-Activity Relationship , Drug Screening Assays, Antitumor , DNA, Mitochondrial/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology
9.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063120

ABSTRACT

In this work, we describe the synthesis of novel Ruthenium (II) complex-based salen Schiff bases. The obtained Ruthenium (II) complexes are characterized using usual spectroscopic and spectrometric techniques, viz., IR, UV-Vis, NMR (1H and 13C), powder X-ray diffraction, and HRMS. Further techniques, such as DTA-TGA and elemental analysis, are used to well establish the structure of the obtained complexes. Octahedral geometries are tentatively proposed for the new Ru(II) complexes. The measured molar conductance for the Ruthenium (II) complexes shows their electrolytic nature (4.24-4.44 S/m). The new Ru(II) complexes are evaluated for their antioxidant and antibacterial activities. The DPPH radical scavenging, FRAP, and total antioxidant capacity (TAC) assays show that the obtained complexes are more potent than the used positive control. They also exhibit promising antibacterial responses against pathogen bacteria: [RuH2L3Cl2] exhibits an important inhibition against Bacillus subtilis DSM 6633, with an inhibition zone of 21 ± 1.41 mm with an MIC value of 0.39 mg/mL, and Proteus mirabilis INH, with 16.50 ± 0.70 mm and an MIC value of 0.78 mg/mL, while [RuH2L2Cl2] exerts interesting antibacterial effects versus Bacillus subtilis DSM 6633 (21 ± 1.41 mm) and Proteus mirabilis INH (25.5 ± 0.70 mm) with equal MIC values of 0.97 mg/mL.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Coordination Complexes , Microbial Sensitivity Tests , Ruthenium , Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Ruthenium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Bacillus subtilis/drug effects
10.
Dalton Trans ; 53(30): 12620-12626, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39010726

ABSTRACT

The Ru(II)-nitrite complex, Ru4, is explored to release nitric oxide (NO) under acidic conditions and selectively induce a cytotoxic effect towards SK-MEL-28 cisplatin-resistant malignant melanoma cells. These findings suggest that targeting the tumor-associated pHe level could be an effective strategy for the drug function of Ru(II)-nitrite compounds.


Subject(s)
Antineoplastic Agents , Cisplatin , Coordination Complexes , Cymenes , Drug Resistance, Neoplasm , Melanoma , Nitric Oxide , Nitrites , Ruthenium , Cisplatin/pharmacology , Cisplatin/chemistry , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cymenes/pharmacology , Cymenes/chemistry , Nitrites/chemistry , Nitrites/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Cell Line, Tumor , Nitric Oxide/metabolism , Monoterpenes/pharmacology , Monoterpenes/chemistry , Cell Death/drug effects
11.
Dalton Trans ; 53(30): 12627-12640, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39011568

ABSTRACT

Antimicrobial resistance has become a global threat to human health, which is coupled with the lack of novel drugs. Metallocompounds have emerged as promising diverse scaffolds for the development of new antibiotics. Herein, we prepared some metal compounds mainly focusing on cis-[Ru(bpy)(dppz)(SO3)(NO)](PF6) (PR02, bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine), in which phenazinic and nitric oxide ligands along with sulfite conferred some key properties. This compound exhibited a redox potential for bound NO+/0 of -0.252 V (vs. Ag|AgCl) and a high pH for nitrosyl-nitro conversion of 9.16, making the nitrosyl ligand the major species. These compounds were still able to bind to DNA structures. Interestingly, reduced glutathione (GSH) was unable to promote significant NO/HNO release, an uncommon feature of many similar systems. However, this reducing agent was essential to generate superoxide radicals. Antimicrobial studies were carried out using six bacterial strains, where none or very low activity was observed for Gram-negative bacteria. However, PR02 and PR (cis-[Ru(bpy)(dppz)Cl2]) showed high antibacterial activity in some Gram-positive strains (MBC for S. aureus up to 4.9 µmol L-1), where the activity of PR02 was similar to or at least 4-fold better than that of PR. Besides, PR02 showed capacity to inhibit bacterial biofilm formation, a major health issue leading to bacterial tolerance to antibiotics. Interestingly, we also showed that PR02 can function in synergism with the known antibiotic ampicillin, improving their action up to 4-fold even against resistant strains. Altogether, these results showed that PR02 is a promising antimicrobial nitrosyl ruthenium compound combining features beyond its killing action, which deserves further biological studies.


Subject(s)
Anti-Bacterial Agents , Biofilms , Coordination Complexes , Microbial Sensitivity Tests , Phenazines , Ruthenium , Phenazines/chemistry , Phenazines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Biofilms/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Drug Synergism , Staphylococcus aureus/drug effects
12.
J Phys Chem A ; 128(29): 5925-5940, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38990174

ABSTRACT

We investigated in this work ruthenium-ligand bonding across the RuN framework in 12 Ru(II) polypyridyl complexes in the gas phase and solution for both singlet and triplet states, in addition to their affinity for DNA binding through π-π stacking interactions with DNA nucleobases. As a tool to assess the intrinsic strength of the ruthenium-ligand bonds, we determined local vibrational force constants via our local vibrational mode analysis software. We introduced a novel local force constant that directly accounts for the intrinsic strength of the π-π stacking interaction between DNA and the intercalated Ru(II) complex. According to our findings, [Ru(phen)2(dppz)]2+ and [Ru(phen)2(11-CN-dppz)]2+ provide an intriguing trade-off between photoinduced complex excitation and the strength of the subsequent π-π stacking interaction with DNA. [Ru(phen)2(dppz)]2+ displays a small singlet-triplet splitting and a strong π-π stacking interaction in its singlet state, suggesting a favorable photoexcitation but potentially weaker interaction with DNA in the excited state. Conversely, [Ru(phen)2(11-CN-dppz)]2+ exhibits a larger singlet-triplet splitting and a stronger π-π stacking interaction with DNA in its triplet state, indicating a less favorable photoinduced transition but a stronger interaction with DNA postexcitation. We hope our study will inspire future experimental and computational work aimed at the design of novel Ru-polypyridyl drug candidates and that our new quantitative measure of π-π stacking interactions in DNA will find a general application in the field.


Subject(s)
Coordination Complexes , DNA , Intercalating Agents , Pyridines , Ruthenium , Vibration , DNA/chemistry , Ruthenium/chemistry , Ligands , Intercalating Agents/chemistry , Coordination Complexes/chemistry , Pyridines/chemistry , Molecular Structure
13.
J Inorg Biochem ; 259: 112659, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38976937

ABSTRACT

Ruthenium(II/III) coordination compounds have gained widespread attention as chemotherapy drugs, photosensitizers, and photodynamic therapy reagents. Herein, a family of 11 novel coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds, i.e., [RuII2(µ2-Cl)2(QL1a)2(DMSO)4] (YNU-4a = Yulin Normal University-4a), [RuII2(µ2-Cl)2(QL1b)2(DMSO)4] (YNU-4b), [RuII2(µ2-Cl)2(QL1c)2(DMSO)4] (YNU-4c), [RuII2(µ2-Cl)2(QL1d)2(DMSO)4]⋅2CH3OH (YNU-4d), [RuII(QL1e)2(DMSO)2] (YNU-4e), [RuIII(QL1e)2(QL3a)] (YNU-4f), [RuIII(QL1e)2(QL3b)] (YNU-4g), [RuIII(QL1e)2(QL3c)] (YNU-4h), [RuIICl2(H-QL3a)2(DMSO)2] (YNU-4i), [RuIICl2(H-QL3b)2(DMSO)2] (YNU-4j), and [RuIICl2(H-QL3c)2(DMSO)2] (YNU-4k), featuring the coligands 5,7-diiodo-8-hydroxyquinoline (H-QL1a), 5,7-dichloro-8-quinolinol (H-QL1b), 5-chloro-7-iodo-8-hydroxyquinolin (H-QL1c), 5,7-dibromo-8-hydroxyquinoline (H-QL1d), and 5,7-dichloro-8-hydroxy-2-methylquinoline (H-QL1e) and the main ligands 6,7-dichloro-3-pyridin-2-yl-chromen-2-one (H-QL3a), 6-bromo-3-pyridin-2-yl-chromen-2-one (H-QL3b), and 6-chloro-3-pyridin-2-yl-chromen-2-one (H-QL3c), respectively. The structure of compounds YNU-4a-YNU-4k was fully confirmed by conducting various spectroscopic analyses. The anticancer activity of YNU-4a-YNU-4k was evaluated in cisplatin-resistant A549/DDP lung cancer cells (LC549) versus normal embryonic kidney (HEK293) cells. Notably, compound YNU-4f bearing QL1e and QL3a ligands showed a more pronounced antiproliferative effect against LC549 cells (IC50 = 1.75 ± 0.09 µM) with high intrinsic selectivity toward LC549 cancer cells than YNU-4a-YNU-4e, H-QL1a-H-QL1e, cisplatin (PDD), YNU-4g-YNU-4k, and H-QL3a-H-QL3c. Additionally, a colocalization assay analysis of YNU-4e and YNU-4f showed that these two ruthenium(II/III) compounds were subcellularly accumulated in the mitochondria and other regions of the cytoplasm, where they induce mitophagy, adenosine triphosphate (ATP) reduction, mitochondrial respiratory chain complex I/IV(RC1/RC4) inhibition, and mitochondrial dysfunction. Accordingly, compounds YNU-4a-YNU-4k can be regarded as mitophagy inductors for the eradication of cisplatin-resistant LC549 cancer cells.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Coumarins , Oxyquinoline , Ruthenium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ruthenium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Oxyquinoline/chemistry , Oxyquinoline/pharmacology , Cell Line, Tumor , Animals , Apoptosis/drug effects , Mice
14.
J Inorg Biochem ; 259: 112657, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38981409

ABSTRACT

Imine reduction is a useful reaction in the preparation of amine derivatives. Various catalysts have been reported to promote this reaction and photoredox catalysts are promising candidates for sustainable amine synthesis. Improvement of this reaction using biomolecule-based reaction scaffolds is expected to increase the utility of the reaction. In this context, we have recently investigated photoredox Ru complexes with pentapeptide scaffolds via coordination bonds as catalysts for photoreduction of dihydroisoquinoline derivatives. First, Ru bipyridine terpyridine complexes coordinated with five different pentapeptides (XVHVV: X = V, F, W, Y, C) were prepared and characterized by mass spectrometry. Catalytic activities of the Ru complexes with XVHVV were evaluated for photoreduction of dihydroisoquinoline derivatives in the presence of ascorbate and thiol compounds as sacrificial reagents and hydrogen sources. Interestingly, the turnover number of the Ru complex with VVHVV is 531, which is two-fold higher than that of a simple Ru complex with an imidazole ligand. The detailed emission lifetime measurements indicate that the enhanced catalytic activity provided by the peptide scaffold is caused by an efficient reaction with the thiol derivative to accelerate reductive quenching of Ru complex. The quenching behavior suggests formation of an active species such as a Ru(I) complex. These findings reveal that the simple pentapeptide serves as an effective scaffold to enhance the photocatalytic activity of a photoactive Ru complex.


Subject(s)
Coordination Complexes , Imines , Oxidation-Reduction , Ruthenium , Ruthenium/chemistry , Imines/chemistry , Coordination Complexes/chemistry , Oligopeptides/chemistry , Pyridines/chemistry , Photochemical Processes , Catalysis
15.
J Inorg Biochem ; 259: 112664, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39018747

ABSTRACT

HIV-1 reverse transcriptase (RT) inhibitors play a crucial role in the treatment of HIV by preventing the activity of the enzyme responsible for the replication of the virus. The HIV-1 Tat protein binds to transactivation response (TAR) RNA and recruits host factors to stimulate HIV-1 transcription. We have created a small library consisting of 4 × 6 polypyridyl Ru(II) complexes that selectively bind to TAR RNA, with targeting groups specific to HIV-1 TAR RNA. The molecule design was conducted by introducing hydroxyl or methoxy groups into an established potent TAR binder. The potential TAR binding ability was analysis from nature charge population and electrostatic potential by quantum chemistry calculations. Key modifications were found to be R1 and R3 groups. The most potent and selective TAR RNA binder was a3 with R1 = OH, R2 = H and R3 = Me. Through molecular recognition of hydrogen bonds and electrostatic attraction, they were able to firmly and selectively bind HIV-1 TAR RNA. Furthermore, they efficiently obstructed the contact between TAR RNA and Tat protein, and inhibited the reverse transcription activity of HIV-1 RT. The polypyridyl Ru(II) complexes were chemical and photo-stable, and sensitive and selective spectroscopic responses to TAR RNA. They exhibited little toxicity towards normal cells. Hence, this study might offer significant drug design approaches for researching AIDS and other illnesses associated with RT, including HCV, EBOV, and SARS-CoV-2. Moreover, it could contribute to fundamental research on the interactions of inorganic transition metal complexes with biomolecules.


Subject(s)
Coordination Complexes , HIV Reverse Transcriptase , HIV-1 , RNA, Viral , Reverse Transcriptase Inhibitors , Ruthenium , Ruthenium/chemistry , HIV-1/drug effects , HIV-1/enzymology , Humans , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV Reverse Transcriptase/chemistry , Structure-Activity Relationship , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , RNA, Viral/metabolism , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , HIV Long Terminal Repeat/drug effects
16.
J Inorg Biochem ; 259: 112666, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39029397

ABSTRACT

Here, we designed, synthesized and characterized three new cyclometalated Ru(II) complexes, [Ru(phen)2(1-(4-Ph-Ph)-IQ)]+ (phen = 1,10-phenanthroline, IQ = isoquinoline, RuIQ9), [Ru(phen)2(1-(4-Ph-Ph)-7-OCH3-IQ)]+ (RuIQ10), and [Ru(phen)2(1-(4-Ph-Ph)-6,7-(OCH3)2-IQ)]+ (RuIQ11). The cytotoxicity experiments conducted on both 2D and 3D multicellular tumor spheroids (MCTSs) indicated that complexes RuIQ9-11 exhibited notably higher cytotoxicity against A549 and A549/DDP cells when compared to the ligands and precursor compounds as well as clinical cisplatin. Moreover, the Ru(II) complexes displayed low toxicity when tested on normal HBE cells in vitro and exposed to zebrafish embryos in vivo. In addition, complexes RuIQ9-11 could inhibit A549 and A549/DDP cell migration and proliferation by causing cell cycle arrest, mitochondrial dysfunction, and elevating ROS levels to induce apoptosis in these cells. Mechanistic studies revealed that RuIQ9-11 could suppress the expression of Nrf2 and its downstream antioxidant protein HO-1 by inhibiting Nrf2 gene transcription in drug-resistant A549/DDP cells. Simultaneously, they inhibited the expression of efflux proteins MRP1 and p-gp in drug-resistant cells, ensuring the accumulation of the complexes within the cells. This led to an increase in intracellular ROS levels in drug-resistant cells, ultimately causing damage and cell death, thus overcoming cisplatin resistance. More importantly, RuIQ11 could effectively inhibit the migration and proliferation of drug-resistant cells within zebrafish, addressing the issue of cisplatin resistance. Accordingly, the prepared Ru(II) complexes possess significant potential for development as highly effective and low-toxicity lung cancer therapeutic agents to overcome cisplatin resistance.


Subject(s)
Antineoplastic Agents , Cisplatin , Coordination Complexes , Drug Resistance, Neoplasm , NF-E2-Related Factor 2 , Ruthenium , Zebrafish , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , Zebrafish/embryology , Drug Resistance, Neoplasm/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , A549 Cells , Apoptosis/drug effects , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Cell Movement/drug effects
17.
Anal Chim Acta ; 1312: 342763, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834278

ABSTRACT

Developing effective electrochemiluminescence (ECL) platforms is always an essential concern in highly sensitive bioanalysis. In this work, a low-triggering-potential ECL sensor was designed for detecting synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) based on a dual-signal amplification strategy. Initially, a probe was created by integrating Ruthenium into the hollow porphyrin-based MOF (PCN-222) structure to decrease the excitation potential and enhance ECL performance without external co-reaction accelerators. Additionally, for the first time, photonic crystals (PCs) assembled from covalent organic frameworks (COFs) were employed to amplify the ECL signal, thereby increasing the photon flux and the loading capacity of the ECL emitter to enhance sensitivity of the sensor. In the presence of the target MDPV, the aptamer labeled with Ferrocene (Fc) experienced conformational changes, causing Fc to approach the luminophore and resulting in ECL quenching. This effect was attributed to aptamer's conformational changes induced by the target, directly correlating with the target concentration. The constructed sensor showed good linearity with the target MDPV concentration, covering a dynamic range from 1.0 × 10-14 to 1.0 × 10-6 g/L and achieved an ultra-low detection limit of 4.79 × 10-15 g/L. This work employed dual amplification strategies to enhance ECL signals effectively, providing a novel method for developing highly responsive and bioactive sensors.


Subject(s)
Electrochemical Techniques , Luminescent Measurements , Metal-Organic Frameworks , Photons , Pyrrolidines , Ruthenium , Metal-Organic Frameworks/chemistry , Electrochemical Techniques/methods , Ruthenium/chemistry , Pyrrolidines/chemistry , Alkaloids/chemistry , Alkaloids/analysis , Limit of Detection
18.
Inorg Chem ; 63(25): 11667-11687, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38860314

ABSTRACT

Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.


Subject(s)
Ferrous Compounds , Ruthenium , Trypanocidal Agents , Trypanosoma cruzi , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemical synthesis , Trypanosoma cruzi/drug effects , Ligands , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Animals , Ruthenium/chemistry , Ruthenium/pharmacology , Mice , Metallocenes/chemistry , Metallocenes/pharmacology , Metallocenes/chemical synthesis , Trypanosoma brucei brucei/drug effects , Parasitic Sensitivity Tests , Molecular Structure , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
19.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928044

ABSTRACT

Eastern Diamondback Rattlesnake (Crotalus adamanteus) envenomation is a medical emergency encountered in the Southeastern United States. The venom contains a snake venom thrombin-like enzyme (SVTLE) that is defibrinogenating, causing coagulopathy without effects on platelets in humans. This investigation utilized thrombelastographic methods to document this coagulopathy kinetically on the molecular level in a rabbit model of envenomation via the analyses of whole blood samples without and with platelet inhibition. Subsequently, the administration of a novel ruthenium compound containing site-directed antivenom abrogated the coagulopathic effects of envenomation in whole blood without platelet inhibition and significantly diminished loss of coagulation in platelet-inhibited samples. This investigation provides coagulation kinetic insights into the molecular interactions and results of SVTLE on fibrinogen-dependent coagulation and confirmation of the efficacy of a ruthenium antivenom. These results serve as a rationale to investigate the coagulopathic effects of other venoms with this model and assess the efficacy of this site-directed antivenom.


Subject(s)
Antivenins , Blood Coagulation , Crotalid Venoms , Crotalus , Animals , Rabbits , Antivenins/pharmacology , Crotalid Venoms/pharmacology , Crotalid Venoms/antagonists & inhibitors , Blood Coagulation/drug effects , Thrombelastography , Ruthenium/chemistry , Ruthenium/pharmacology , Snake Bites/drug therapy , Male , Venomous Snakes
20.
Inorg Chem ; 63(24): 11450-11458, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38823006

ABSTRACT

Two Ru(II) complexes, [Ru(pydppn)(bim)(py)]2+ [2; pydppn = 3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene; bim = 2,2'-bisimidazole; py = pyridine] and [Ru(pydppn)(Me4bim)(py)]2+ [3; Me4bim = 2,2'-bis(4,5-dimethylimidazole)], were synthesized and characterized, and their photophysical properties, DNA binding, and photocleavage were evaluated and compared to [Ru(pydppn)(bpy)(py)]2+ (1; bpy = 2,2'-bipyridine). Complexes 2 and 3 exhibit broad 1MLCT (metal-to-ligand charge transfer) transitions with maxima at ∼470 nm and shoulders at ∼525 and ∼600 nm that extend to ∼800 nm. These bands are red-shifted relative to those of 1, attributed to the π-donating ability of the bim and Me4bim ligands. A strong signal at 550 nm is observed in the transient absorption spectra of 1-3, previously assigned as arising from a pydppn-centered 3ππ* state, with lifetimes of ∼19 µs for 1 and 2 and ∼270 ns for 3. A number of methods were used to characterize the mode of binding of 1-3 to DNA, including absorption titrations, thermal denaturation, relative viscosity changes, and circular dichroism, all of which point to the intercalation of the pydpppn ligand between the nucleobases. The photocleavage of plasmid pUC19 DNA was observed upon the irradiation of 1-3 with visible and red light, attributed to the sensitized generation of 1O2 by the complexes. These findings indicate that the bim ligand, together with pydppn, serves to shift the absorption of Ru(II) complexes to the photodynamic therapy window, 600-900 nm, and also extend the excited state lifetimes for the efficient production of cytotoxic singlet oxygen.


Subject(s)
Coordination Complexes , DNA , Photochemotherapy , Photosensitizing Agents , Plasmids , Ruthenium , Singlet Oxygen , DNA/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Ruthenium/chemistry , Ruthenium/pharmacology , Plasmids/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Molecular Structure , DNA Cleavage/drug effects , DNA Cleavage/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL