Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.531
Filter
1.
Nutrients ; 16(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39339684

ABSTRACT

BACKGROUND: Sarcopenic obesity, which is associated with a poorer prognosis than that of sarcopenia alone, may be positively affected by soy isoflavones, known inhibitors of muscle atrophy. Herein, we hypothesize that these compounds may prevent sarcopenic obesity by upregulating the gut metabolites with anti-inflammatory effects. METHODS: To explore the effects of soy isoflavones on sarcopenic obesity and its mechanisms, we employed both in vivo and in vitro experiments. Mice were fed a high-fat, high-sucrose diet with or without soy isoflavone supplementation. Additionally, the mouse C2C12 myotube cells were treated with palmitic acid and daidzein in vitro. RESULTS: The isoflavone considerably reduced muscle atrophy and the expression of the muscle atrophy genes in the treated group compared to the control group (Fbxo32, p = 0.0012; Trim63, p < 0.0001; Foxo1, p < 0.0001; Tnfa, p = 0.1343). Elevated levels of daidzein were found in the muscles and feces of the experimental group compared to the control group (feces, p = 0.0122; muscle, p = 0.0020). The real-time PCR results demonstrated that the daidzein decreased the expression of the palmitate-induced inflammation and muscle atrophy genes in the C2C12 myotube cells (Tnfa, p = 0.0201; Il6, p = 0.0008; Fbxo32, p < 0.0001; Hdac4, p = 0.0002; Trim63, p = 0.0114; Foxo1, p < 0.0001). Additionally, it reduced the palmitate-induced protein expression related to the muscle atrophy in the C2C12 myotube cells (Foxo1, p = 0.0078; MuRF1, p = 0.0119). CONCLUSIONS: The daidzein suppressed inflammatory cytokine- and muscle atrophy-related gene expression in the C2C12 myotubes, thereby inhibiting muscle atrophy.


Subject(s)
Cytokines , Isoflavones , Muscular Atrophy , Isoflavones/pharmacology , Animals , Mice , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/prevention & control , Male , Cytokines/metabolism , Cytokines/genetics , Cell Line , Mice, Inbred C57BL , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Gene Expression Regulation/drug effects , Sarcopenia/prevention & control , Sarcopenia/metabolism , Sarcopenia/drug therapy , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Diet, High-Fat/adverse effects , Obesity/metabolism , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Glycine max/chemistry , Disease Models, Animal , Palmitic Acid/pharmacology
2.
Allergol Immunopathol (Madr) ; 52(5): 59-64, 2024.
Article in English | MEDLINE | ID: mdl-39278852

ABSTRACT

Acquired myasthenia (AM), a debilitating autoimmune disease, is typically characterized by skeletal muscle fatigue and weakness. Despite advances in myasthenia gravis treatment, current approaches remain unsatisfactory and many result in unexpected side effects. Traditional Chinese medicine has shown great potential in the treatment of myasthenia gravis, including relieving myasthenic symptoms, improving patients' quality of life, and reducing Western medicine side effects. This study investigates the protective effects and mechanism of BZYQD in mice with acquired myasthenia. BZYQD alleviates the reduced grip strength and increased expression of MAFbx and MuRF-1 in mice with acquired myasthenia. It also reduces levels of pro-inflammatory factors IL-1ß, IL-6, and TNF-α in the mouse serum. In addition, BZYQD reduces ROS accumulation and the mitochondrial ROS production rate, while increasing ATP levels and mitochondrial membrane potential in mice with acquired myasthenia. Moreover, BZYQD decreases the expression of p-JAK2, p-STAT3, and p-AKT in the skeletal muscle of mice with acquired myasthenia. In summary, BZYQD reduces inflammation, enhances mitochondrial function, and regulates the JAK2/STAT3/AKT signaling pathway to treat acquired myasthenia.


Subject(s)
Drugs, Chinese Herbal , Janus Kinase 2 , Mitochondria , Proto-Oncogene Proteins c-akt , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Drugs, Chinese Herbal/pharmacology , Mice , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Myasthenia Gravis/drug therapy , Myasthenia Gravis/immunology , Female , Inflammation/drug therapy , Inflammation/immunology , Cytokines/metabolism , Disease Models, Animal , Humans , Myasthenia Gravis, Autoimmune, Experimental/drug therapy , Myasthenia Gravis, Autoimmune, Experimental/immunology , SKP Cullin F-Box Protein Ligases/metabolism , Tripartite Motif Proteins/metabolism , Reactive Oxygen Species/metabolism , Muscle Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Life Sci ; 356: 123042, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39233198

ABSTRACT

AIMS: Primary sclerosing cholangitis (PSC) is a cholestatic liver disease that affects the hepatic bile ducts, leading to hepatic inflammation and fibrosis. PSC can also impact skeletal muscle through the muscle-liver axis, resulting in sarcopenia, a complication characterized by a generalized loss of muscle mass and strength. The underlying mechanisms and therapy of PSC-induced sarcopenia are not well understood, but one potential regulator is the transcription factor forkhead box protein O1 (FOXO1), which is involved in the ubiquitin proteasome system. Thus, the aim of this study is to assess the pharmacological potential of FOXO1 inhibition for treating PSC-induced sarcopenia. MATERIALS AND METHODS: To establish diet-induced PSC model, we provided mice with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 4 weeks. Mice were intramuscularly injected with AS1842856 (AS), a FOXO1 inhibitor, at a dose of 3.5 mg/kg twice a week for last two weeks. C2C12 myotubes with cholic acid (CA) or deoxycholic acid (DCA) were treated with AS. KEY FINDINGS: We observed a decrease in muscle size and performance in DDC-fed mice with upregulated expression of FOXO1 and E3 ligases such as ATROGIN1 and MuRF1. We found that myotube diameter and MyHC protein level were decreased by CA or DCA in C2C12 myotubes, but treatment of AS reversed these reductions. We observed that intramuscular injection of AS effectively mitigates DDC diet-induced sarcopenia in a rodent PSC model. SIGNIFICANCE: Our study suggests that a FOXO1 inhibitor could be a potential leading therapeutic drug for relieving PSC-induced sarcopenia.


Subject(s)
Cholangitis, Sclerosing , Disease Models, Animal , Forkhead Box Protein O1 , Sarcopenia , Signal Transduction , Animals , Sarcopenia/metabolism , Sarcopenia/etiology , Sarcopenia/drug therapy , Sarcopenia/prevention & control , Sarcopenia/pathology , Mice , Forkhead Box Protein O1/metabolism , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/drug therapy , Cholangitis, Sclerosing/metabolism , Cholangitis, Sclerosing/pathology , Signal Transduction/drug effects , Male , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Pyridines/pharmacology , Quinolones
4.
Commun Biol ; 7(1): 1099, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244596

ABSTRACT

Centromere pairing is crucial for synapsis in meiosis. This study delves into the Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex, specifically focusing on F-box protein 47 (FBXO47), in mouse meiosis. Here, we revealed that FBXO47 is localized at the centromere and it regulates centromere pairing cooperatively with SKP1 to ensure proper synapsis in pachynema. The absence of FBXO47 causes defective centromeres, resulting in incomplete centromere pairing, which leads to corruption of SC at centromeric ends and along chromosome axes, triggering premature dissociation of chromosomes and pachytene arrest. FBXO47 deficient pachytene spermatocytes exhibited drastically reduced SKP1 expression at centromeres and chromosomes. Additionally, FBXO47 stabilizes SKP1 by down-regulating its ubiquitination in HEK293T cells. In essence, we propose that FBXO47 collaborates with SKP1 to facilitate centromeric SCF formation in spermatocytes. In summary, we posit that the centromeric SCF E3 ligase complex regulates centromere pairing for pachynema progression in mice.


Subject(s)
Centromere , Chromosome Pairing , F-Box Proteins , Spermatocytes , Animals , Male , Centromere/metabolism , Centromere/genetics , Mice , Spermatocytes/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics , Humans , HEK293 Cells , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Meiosis , Mice, Knockout , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Mice, Inbred C57BL
5.
Eur J Med Chem ; 278: 116821, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39232359

ABSTRACT

Currently, as the largest family of E3 ubiquitin ligases, Skp1-Cullin 1-F-box (SCF) E3 ligase complexes have attracted extensive attention. Among SCF complexes, Skp2, ß-TrCP, and FBXW7 have undergone extensive research on their structures and functions. Previous studies suggest Skp2, ß-TrCP, and FBXW7 are overexpressed in numerous cancers. Thus, the SCF E3 ligase complex has become a significant target for the development of anti-cancer drugs. Over the past few decades, a variety of anti-tumor inhibitors targeting the SCF E3 ligase complex have been attempted. However, since almost none of the SCF E3 ligase inhibitors passed clinical trials, the design and synthesis of the new inhibitors are needed. Here, we will introduce the structure and function of Skp2, ß-TrCP, and FBXW7, their connections with cancer development, the relevant in vitro and in vivo activities, selectivity, structure-activity relationships, and the therapeutic or preventive application of small molecule inhibitors targeting these three F-box proteins reported in the patent (2010-present). This information will help develop drugs targeting the SCF E3 ubiquitin ligase, providing new strategies for future cancer treatments.


Subject(s)
Antineoplastic Agents , Drug Design , Neoplasms , Humans , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Neoplasms/drug therapy , Neoplasms/pathology , Patents as Topic , Animals , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/antagonists & inhibitors , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , S-Phase Kinase-Associated Proteins/antagonists & inhibitors , S-Phase Kinase-Associated Proteins/metabolism , F-Box-WD Repeat-Containing Protein 7/metabolism
6.
Biomolecules ; 14(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39199272

ABSTRACT

Mouse double minute 2 (MDM2) is an oncoprotein that is frequently overexpressed in tumors and enhances cellular transformation. Owing to the important role of MDM2 in modulating p53 function, it is crucial to understand the mechanism underlying the regulation of MDM2 levels. We identified ribosomal protein S4X-linked (RPS4X) as a novel binding partner of MDM2 and showed that RPS4X promotes MDM2 stability. RPS4X suppressed polyubiquitination of MDM2 by suppressing homodimer formation and preventing auto-ubiquitination. Moreover, RPS4X inhibited the interaction between MDM2 and Cullin1, a scaffold protein of the Skp1-Cullin1-F-box protein (SCF) complex and an E3 ubiquitin ligase for MDM2. RPS4X expression in cells enhanced the steady-state level of MDM2 protein. RPS4X was associated not only with MDM2 but also with Cullin1 and then blocked the MDM2/Cullin1 interaction. This is the first report of an interaction between ribosomal proteins (RPs) and Cullin1. Our results contribute to the elucidation of the MDM2 stabilization mechanism in cancer cells, expanding our understanding of the new functions of RPs.


Subject(s)
Cullin Proteins , Proto-Oncogene Proteins c-mdm2 , Ribosomal Proteins , Ubiquitination , Proto-Oncogene Proteins c-mdm2/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Humans , Cullin Proteins/metabolism , Cullin Proteins/genetics , Animals , Protein Stability , Mice , Protein Binding , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , HEK293 Cells
7.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201595

ABSTRACT

Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle-articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention.


Subject(s)
Chikungunya virus , Muscle, Skeletal , Muscular Atrophy , Oxidative Stress , Animals , Muscular Atrophy/virology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Mice , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/virology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya Fever/metabolism , Inflammation/pathology , Inflammation/metabolism , Inflammation/virology , Muscle Proteins/metabolism , Muscle Proteins/genetics , Virus Replication , Mice, Inbred C57BL , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Alphavirus Infections/virology , Alphavirus Infections/pathology , Alphavirus Infections/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Disease Models, Animal , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
8.
Nutrients ; 16(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39203823

ABSTRACT

Sarcopenia, a condition caused by an imbalance between muscle growth and loss, can severely affect the quality of life of elderly patients with metabolic, inflammatory, and cancer diseases. Vigeo, a nuruk-fermented extract of three plants (Eleutherococcus senticosus Maxim (ESM), Achyranthes japonica (Miq.) Nakai (AJN), and Atractylodes japonica Koidzumi (AJK)) has been reported to have anti-osteoporotic effects. However, evidence of the effects of Vigeo on muscle atrophy is not available. Here, in the in vivo model of dexamethasone (Dex)-induced muscle atrophy, Vigeo treatment significantly reversed Dex-induced decreases in calf muscle volume, gastrocnemius (GA) muscle weight, and histological cross-section area. In addition, in mRNA and protein analyses isolated from GA muscle, we observed that Vigeo significantly protected against Dex-induced mouse muscle atrophy by inhibiting protein degradation regulated by atrogin and MuRF-1. Moreover, we demonstrated that Vigeo significantly promoted C2C12 cell line differentiation, as evidenced by the increased width and length of myotubes, and the increased number of fused myotubes with three or more nuclei. Vigeo alleviated the formation of myotubes compared to the control group. Vigeo also significantly increased the mRNA and protein expression of myosin heavy chain (MyHC), MyoD, and myogenin compared to that in the control. Vigeo treatment significantly reduced the mRNA and protein expression of muscle degradation markers atrogin-1 and muscle RING Finger 1 (MuRF-1) in the C2C12 cell line in vitro. Vigeo also activated the AMP-activated protein kinase (AMPK)/silent information regulator 1 (Sirt-1)/peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) mitochondrial biogenesis pathway and the Akt/mTOR protein synthesis signaling pathway in Dex-induced myotube atrophy. These findings suggest that Vigeo may have protective effects against Dex-induced muscle atrophy. Therefore, we propose Vigeo as a supplement or potential therapeutic agent to prevent or treat sarcopenia accompanied by muscle atrophy and degeneration.


Subject(s)
AMP-Activated Protein Kinases , Cell Differentiation , Dexamethasone , Muscle Fibers, Skeletal , Muscular Atrophy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Proto-Oncogene Proteins c-akt , Signal Transduction , Sirtuin 1 , TOR Serine-Threonine Kinases , Animals , Dexamethasone/pharmacology , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Signal Transduction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice , TOR Serine-Threonine Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Cell Differentiation/drug effects , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/metabolism , Plant Extracts/pharmacology , Male , Proteolysis/drug effects , Muscle Proteins/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Cell Line , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Mice, Inbred C57BL , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins
9.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000606

ABSTRACT

Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.


Subject(s)
Dexamethasone , Gastrointestinal Microbiome , Mice, Inbred C57BL , Muscle, Skeletal , Muscular Atrophy , Animals , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/chemically induced , Mice , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Gastrointestinal Microbiome/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , Muscle Proteins/metabolism , Muscle Proteins/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Probiotics/administration & dosage , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/pathology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Lactobacillus plantarum
10.
EMBO Rep ; 25(8): 3324-3347, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992176

ABSTRACT

Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCFFBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCFFBXL4-mediated destruction of BNIP3 and NIX, suppressing both steady-state and induced mitophagy. Disruption of the phosphatase activity of PPTC7 does not influence BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homoeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7-BNIP3/NIX and PPTC7-FBXL4 interactions and their disruption interferes with both BNIP3/NIX degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts BNIP3/NIX-induced mitophagy.


Subject(s)
F-Box Proteins , Membrane Proteins , Mitochondrial Proteins , Mitophagy , Proteolysis , Proto-Oncogene Proteins , Animals , Humans , F-Box Proteins/metabolism , F-Box Proteins/genetics , HEK293 Cells , HeLa Cells , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Protein Binding , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases
11.
Plant Foods Hum Nutr ; 79(3): 607-616, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38879661

ABSTRACT

Sesamol is a major bioactive component extracted from sesame seeds and has various medicinal properties. However, the effects of sesamol on sarcopenia associated with aging and obesity remains unclear. Therefore, the protective effects and underlying mechanisms of sesamol on sarcopenia was evaluated in aged and obese C57BL/6 J male mouse models fed a high fat diet and C2C12 myotubes co-treated with D-gal and PA in this study. Our in vivo data showed that sesamol activated AKT/mTOR/FoxO1 signal pathway, and then upregulated p-p70S6K and p-4EBP1 to promote myoprotein synthesis, and downregulated Atrogin-1 and MuRF1 to inhibit myoprotein degradation, thus ameliorating sarcopenia related to aging and obesity. Furthermore, our in vitro results confirmed the protective effect and aforementioned mechanisms of sesamol on sarcopenia. Collectively, sesamol could alleviate sarcopenia associated with aging and obesity via activating the AKT/mTOR/FoxO1 signal pathway. Our findings highlight the therapeutic potentials of sesamol for aging and obesity-related metabolic muscular complications.


Subject(s)
Aging , Benzodioxoles , Forkhead Box Protein O1 , Obesity , Phenols , Sarcopenia , Signal Transduction , Animals , Male , Mice , Aging/drug effects , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Diet, High-Fat/adverse effects , Forkhead Box Protein O1/metabolism , Mice, Inbred C57BL , Mice, Obese , Muscle Proteins/metabolism , Obesity/drug therapy , Obesity/metabolism , Phenols/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Sarcopenia/metabolism , Sarcopenia/drug therapy , Signal Transduction/drug effects , SKP Cullin F-Box Protein Ligases/metabolism , TOR Serine-Threonine Kinases/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 219-227, 2024.
Article in English | MEDLINE | ID: mdl-38945887

ABSTRACT

This study investigated the protective effect of carnosine and its components (L-histidine and ß-alanine [HA]) against dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Myotubes were treated with Dex (10 µM) to induce muscle atrophy manifested by decreased myotube diameter, low myosin heavy chain content, and increased expression of muscle atrophy-associated ubiquitin ligases (Atrogin-1, MuRF-1, and Cbl-b). Carnosine (20 mM) treatment significantly improved the myotube diameter and MyHC protein expression level in Dex-treated C2C12 myotubes. It also downregulated the expression of Atrogin-1, MuRF-1, and Cbl-b and suppressed the expression of forkhead box O3 (FoxO3a) mediated by Dex. Furthermore, reactive oxygen species production was increased by Dex but was ameliorated by carnosine treatment. However, HA (20 mM), the component of carnosine, treatment was found ineffective in preventing Dex-induced protein damage. Therefore, based on above results it can be suggested that carnosine could be a potential therapeutic agent to prevent Dex-induced muscle atrophy compared to its components HA.


Subject(s)
Carnosine , Dexamethasone , Muscle Fibers, Skeletal , Muscle Proteins , Muscular Atrophy , Reactive Oxygen Species , SKP Cullin F-Box Protein Ligases , Carnosine/pharmacology , Dexamethasone/pharmacology , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Animals , Mice , Muscle Proteins/metabolism , Cell Line , Reactive Oxygen Species/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism , Forkhead Box Protein O3/metabolism , Tripartite Motif Proteins/metabolism , Myosin Heavy Chains/metabolism
13.
Nat Commun ; 15(1): 3894, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719837

ABSTRACT

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Subject(s)
Cadmium , Protein Binding , SKP Cullin F-Box Protein Ligases , Cadmium/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological , F-Box Proteins/metabolism , F-Box Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitination , Protein Domains , Humans , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
14.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732549

ABSTRACT

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Subject(s)
Catechols , Cyclopentane Monoterpenes , Muscle Fibers, Skeletal , Muscle Proteins , Muscular Atrophy , Tumor Necrosis Factor-alpha , Animals , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle Proteins/metabolism , Cyclopentane Monoterpenes/pharmacology , Catechols/pharmacology , Cell Line , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Muscle Development/drug effects , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Autophagy/drug effects , Phenols/pharmacology , Cachexia/prevention & control , Culture Media, Conditioned/pharmacology , Aldehydes
15.
J Biol Chem ; 300(6): 107359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735474

ABSTRACT

FOXK2 is a crucial transcription factor implicated in a wide array of biological activities and yet understanding of its molecular regulation at the level of protein turnover is limited. Here, we identify that FOXK2 undergoes degradation in lung epithelia in the presence of the virulent pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae through ubiquitin-proteasomal processing. FOXK2 through its carboxyl terminus (aa 428-478) binds the Skp-Cullin-F-box ubiquitin E3 ligase subunit FBXO24 that mediates multisite polyubiquitylation of the transcription factor resulting in its nuclear degradation. FOXK2 was detected within the mitochondria and targeted depletion of the transcription factor or cellular expression of FOXK2 mutants devoid of key carboxy terminal domains significantly impaired mitochondrial function. In experimental bacterial pneumonia, Fbxo24 heterozygous mice exhibited preserved mitochondrial function and Foxk2 protein levels compared to WT littermates. The results suggest a new mode of regulatory control of mitochondrial energetics through modulation of FOXK2 cellular abundance.


Subject(s)
Forkhead Transcription Factors , Mitochondria , Animals , Humans , Mice , Cell Respiration , F-Box Proteins/metabolism , F-Box Proteins/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mitochondria/metabolism , Proteolysis , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
16.
Cancer Res ; 84(16): 2607-2625, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38775804

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide, primarily due to its rapid progression. The current treatment options for PDAC are limited, and a better understanding of the underlying mechanisms responsible for PDAC progression is required to identify improved therapeutic strategies. In this study, we identified FBXO32 as an oncogenic driver in PDAC. FBXO32 was aberrantly upregulated in PDAC, and high FBXO32 expression was significantly associated with an unfavorable prognosis in patients with PDAC. FRG1 deficiency promoted FBXO32 upregulation in PDAC. FBXO32 promoted cell migration and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, FBXO32 directly interacted with eEF1A1 and promoted its polyubiquitination at the K273 site, leading to enhanced activity of eEF1A1 and increased protein synthesis in PDAC cells. Moreover, FBXO32-catalyzed eEF1A1 ubiquitination boosted the translation of ITGB5 mRNA and activated focal adhesion kinase (FAK) signaling, thereby facilitating focal adhesion assembly and driving PDAC progression. Importantly, interfering with the FBXO32-eEF1A1 axis or pharmaceutical inhibition of FAK by defactinib, an FDA-approved FAK inhibitor, substantially inhibited PDAC growth and metastasis driven by aberrantly activated FBXO32-eEF1A1 signaling. Overall, this study uncovers a mechanism by which PDAC cells rely on FBXO32-mediated eEF1A1 activation to drive progression and metastasis. FBXO32 may serve as a promising biomarker for selecting eligible patients with PDAC for treatment with defactinib. Significance: FBXO32 upregulation in pancreatic cancer induced by FRG1 deficiency increases eEF1A1 activity to promote ITGB5 translation and stimulate FAK signaling, driving cancer progression and sensitizing tumors to the FAK inhibitor defactinib.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Progression , F-Box Proteins , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Mice , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , F-Box Proteins/metabolism , F-Box Proteins/genetics , Cell Line, Tumor , Mice, Nude , Cell Movement , Ubiquitination , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic , Male , Female , Prognosis , Xenograft Model Antitumor Assays , Cell Proliferation , Peptide Elongation Factor 1/metabolism , Peptide Elongation Factor 1/genetics , Neoplasm Metastasis , Muscle Proteins , SKP Cullin F-Box Protein Ligases
17.
Cell Death Dis ; 15(4): 282, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643215

ABSTRACT

FBXO32, a member of the F-box protein family, is known to play both oncogenic and tumor-suppressive roles in different cancers. However, the functions and the molecular mechanisms regulated by FBXO32 in lung adenocarcinoma (LUAD) remain unclear. Here, we report that FBXO32 is overexpressed in LUAD compared with normal lung tissues, and high expression of FBXO32 correlates with poor prognosis in LUAD patients. Firstly, we observed with a series of functional experiments that FBXO32 alters the cell cycle and promotes the invasion and metastasis of LUAD cells. We further corroborate our findings using in vivo mouse models of metastasis and confirmed that FBXO32 positively regulates LUAD tumor metastasis. Using a proteomic-based approach combined with computational analyses, we found a positive correlation between FBXO32 and the PI3K/AKT/mTOR pathway, and identified PTEN as a FBXO32 interactor. More important, FBXO32 binds PTEN via its C-terminal substrate binding domain and we also validated PTEN as a bona fide FBXO32 substrate. Finally, we demonstrated that FBXO32 promotes EMT and regulates the cell cycle by targeting PTEN for proteasomal-dependent degradation. In summary, our study highlights the role of FBXO32 in promoting the PI3K/AKT/mTOR pathway via PTEN degradation, thereby fostering lung adenocarcinoma progression.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Cell Proliferation , Adenocarcinoma of Lung/pathology , Lung Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Muscle Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
18.
Nutr Cancer ; 76(6): 529-542, 2024.
Article in English | MEDLINE | ID: mdl-38567899

ABSTRACT

Astaxanthin (AST) is a natural marine carotenoid with a variety of biological activities. This study aimed to demonstrate the possible mechanisms by which AST improves skeletal muscle atrophy in cancer cachexia. In this study, the effects of different doses of AST (30 mg/kg b.w., 60 mg/kg b.w. and 120 mg/kg b.w.) on skeletal muscle functions were explored in mice with cancer cachexia. The results showed that AST (30, 60 and 120 mg/kg b.w.) could effectively protect cachexia mice from body weight and skeletal muscle loss. AST dose-dependently ameliorated the decrease in myofibres cross-sectional area and increased the expression of myosin heavy chain (MHC). AST treatment decreased both the serum and muscle level of IL-6 but not TNF-α in C26 tumor-bearing cachexia mice. Moreover, AST alleviated skeletal muscle atrophy by decreasing the expression of two muscle-specific E3 ligases MAFBx and MuRF-1. AST improved mitochondrial function by downregulating the levels of muscle Fis1, LC3B and Bax, upregulating the levels of muscle Mfn2 and Bcl-2. In conclusion, our study show that AST might be expected to be a nutritional supplement for cancer cachexia patients.


Subject(s)
Cachexia , Muscle, Skeletal , Muscular Atrophy , Xanthophylls , Animals , Xanthophylls/pharmacology , Cachexia/drug therapy , Cachexia/etiology , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Male , Muscle Proteins/metabolism , Interleukin-6/metabolism , Mice, Inbred BALB C , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Neoplasms/complications , Neoplasms/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Myosin Heavy Chains/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cell Line, Tumor
19.
J Med Food ; 27(5): 385-395, 2024 May.
Article in English | MEDLINE | ID: mdl-38574296

ABSTRACT

This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.


Subject(s)
Dexamethasone , Lactobacillus gasseri , Mice, Inbred BALB C , Muscle Fibers, Skeletal , Muscle Proteins , Muscle, Skeletal , Muscular Atrophy , Probiotics , Ubiquitin-Protein Ligases , Animals , Dexamethasone/adverse effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Mice , Female , Male , Muscle Proteins/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Lactobacillus gasseri/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Humans , Insulin-Like Growth Factor I/metabolism , TOR Serine-Threonine Kinases/metabolism
20.
Int Immunopharmacol ; 133: 112133, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652962

ABSTRACT

There is an increasing tendency for sepsis patients to suffer from diaphragm atrophy as well as mortality. Therefore, reducing diaphragm atrophy could benefit sepsis patients' prognoses. Studies have shown that Anisodamine (Anis) can exert antioxidant effects when blows occur. However, the role of Anisodamine in diaphragm atrophy in sepsis patients has not been reported. Therefore, this study investigated the antioxidant effect of Anisodamine in sepsis-induced diaphragm atrophy and its mechanism. We used cecal ligation aspiration (CLP) to establish a mouse septic mode and stimulated the C2C12 myotube model with lipopolysaccharide (LPS). After treatment with Anisodamine, we measured the mice's bodyweight, diaphragm weight, fiber cross-sectional area and the diameter of C2C12 myotubes. The malondialdehyde (MDA) levels in the diaphragm were detected using the oxidative stress kit. The expression of MuRF1, Atrogin1 and JAK2/STAT3 signaling pathway components in the diaphragm and C2C12 myotubes was measured by RT-qPCR and Western blot. The mean fluorescence intensity of ROS in C2C12 myotubes was measured by flow cytometry. Meanwhile, we also measured the levels of Drp1 and Cytochrome C (Cyt-C) in vivo and in vitro by Western blot. Our study revealed that Anisodamine alleviated the reduction in diaphragmatic mass and the loss of diaphragmatic fiber cross-sectional area and attenuated the atrophy of the C2C12 myotubes by inhibiting the expression of E3 ubiquitin ligases. In addition, we observed that Anisodamine inhibited the JAK2/STAT3 signaling pathway and protects mitochondrial function. In conclusion, Anisodamine alleviates sepsis-induced diaphragm atrophy, and the mechanism may be related to inhibiting the JAK2/STAT3 signaling pathway.


Subject(s)
Diaphragm , Muscular Atrophy , Sepsis , Signal Transduction , Solanaceous Alkaloids , Animals , Male , Mice , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cell Line , Diaphragm/drug effects , Diaphragm/pathology , Diaphragm/metabolism , Disease Models, Animal , Janus Kinase 2/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Sepsis/drug therapy , Sepsis/complications , Signal Transduction/drug effects , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Solanaceous Alkaloids/therapeutic use , Solanaceous Alkaloids/pharmacology , STAT3 Transcription Factor/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL