Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 585
Filter
1.
Sci Adv ; 10(29): eadp6039, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028813

ABSTRACT

The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.


Subject(s)
Cell Differentiation , Hippocampus , Neurogenesis , Neurons , SOXC Transcription Factors , Animals , Hippocampus/metabolism , Hippocampus/cytology , Neurons/metabolism , Neurons/cytology , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Cell Differentiation/genetics , Neurogenesis/genetics , Mice , Transcription, Genetic , Gene Expression Profiling , Transcription Factors/metabolism , Transcription Factors/genetics , Ependymoglial Cells/metabolism , Ependymoglial Cells/cytology
2.
J Cell Mol Med ; 28(14): e18556, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039706

ABSTRACT

Oral lichen planus (OLP) is a particularly prevalent oral disorder with the potential to progress to oral squamous cell carcinoma (OSCC). SRY-box transcription factor 11 (Sox11) has been reported to serve as a prognostic marker for various cancers. However, the role and mechanism of Sox11 in OLP-related OSCC are unknown. Our results indicated that Sox11 was highly expressed, and that Sox11 promoter methylation was significantly reduced in OLP-associated OSCC tissues. High Sox11 expression and Sox11 promoter hypomethylation indicate a poor patient prognosis. According to in vivo and in vitro experiments, the knockdown of Sox11 inhibited proliferation, invasion, and migration while driving its apoptotic death in OSSC cells; Sox11 overexpression exerted the opposite effect as Sox11 knockdown. Mechanistically, knockdown of Sox11 inhibited PI3K/AKT and glycolysis pathway, and overexpression of Sox11 enhanced the PI3K/AKT and glycolysis pathways in OSCC cells. In addition, we demonstrated that Sox11 overexpression accelerated the progression of OSCC, at least in part by promoting PI3K/AKT pathway activation. In conclusion, our data indicated that the DNA hypomethylation-associated upregulation of Sox11 could promote oncogenic transformation via the PI3K/AKT pathway in OLP-associated OSCC. Therefore, Sox11 might be a reliable biomarker for predicting the progression of precancerous oral tissues.


Subject(s)
Carcinogenesis , Cell Proliferation , DNA Methylation , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , SOXC Transcription Factors , Humans , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Signal Transduction , Male , Female , Animals , Up-Regulation/genetics , Promoter Regions, Genetic , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Movement/genetics , Middle Aged , Mice , Prognosis , Apoptosis/genetics
3.
J Cancer Res Clin Oncol ; 150(7): 366, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052126

ABSTRACT

PURPOSE: Kinase interacting with stathmin (KIS) is a serine/threonine kinase involved in RNA processing and protein phosphorylation. Increasing evidence has suggested its involvement in cancer progression. The aim of this study was to investigate the role of KIS in the development of lung adenocarcinoma (LUAD). Dual luciferase assay was used to explore the relationship between KIS and SOX4, and its effect on ID1/ß-catenin pathway. METHODS: Real-time qPCR and western blot were used to assess the levels of KIS and other factors. Cell proliferation, migration, and invasion were monitored, and xenograft animal model were established to investigate the biological functions of KIS in vitro and in vivo. RESULTS: In the present study, KIS was found to be highly expressed in LUAD tissues and cell lines. KIS accelerated the proliferative, migratory and invasive abilities of LUAD cells in vitro, and promoted the growth of LUAD in a mouse tumor xenograft model in vivo. Mechanistically, KIS activated the ß-catenin signaling pathway by modulating the inhibitor of DNA binding 1 (ID1) and was transcriptionally regulated by SOX4 in LUAD cells. CONCLUSION: KIS, a target of SOX4, regulates the ID1-mediated enhancement of ß-catenin to facilitate LUAD cell invasion and metastasis.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , Inhibitor of Differentiation Protein 1 , Lung Neoplasms , SOXC Transcription Factors , beta Catenin , Humans , Animals , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Inhibitor of Differentiation Protein 1/metabolism , Inhibitor of Differentiation Protein 1/genetics , beta Catenin/metabolism , Mice , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Mice, Nude , Neoplasm Metastasis , Cell Movement , Mice, Inbred BALB C , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Female , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays
4.
Biol Direct ; 19(1): 56, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014441

ABSTRACT

BACKGROUND: Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer (PCa), is characterized by loss of AR signaling and resistance to AR-targeted therapy. While it is well reported that second-generation AR blockers induce neuroendocrine (NE) trans-differentiation of castration-resistant prostate cancer (CRPC) to promote the occurrence of NEPC, and pluripotent transcription factors might be potential regulators, the underlying molecular mechanisms remain unclear. METHODS: We analyzed the data from public databsets to screen candidate genes and then focused on SOX4, a regulator of NE trans-differentiation. The expression changes of SOX4 and its relationship with tumor progression were validated in clinical tumor tissues. We evaluated malignant characteristics related to NEPC in prostate cancer cell lines with stable overexpression or knockdown of SOX4 in vitro. Tumor xenografts were analyzed after inoculating the relevant cell lines into nude mice. RNA-seq, ATAC-seq, non-targeted metabolomics analysis, as well as molecular and biochemical assays were carried out to determine the mechanism. RESULTS: We screened public datasets and identified that expression of SOX4 was significantly elevated in NEPC. Overexpressing SOX4 in C4-2B cells increased cell proliferation and migration, upregulated the expression of NE marker genes, and inhibited AR expression. Consistently, inhibition of SOX4 expression in DU-145 and PC-3 cells reduced the above malignant phenotypes and repressed the expression of NE marker genes. For the in vivo assay, we found that knockdown of SOX4 inhibited tumor growth of subcutaneous xenografts in castrated nude mice which were concomitantly treated with enzalutamide (ENZ). Mechanically, we identified that one of the key enzymes in gluconeogenesis, PCK2, was a novel target of SOX4. The activation of carbohydrate metabolism reprogramming by SOX4 could promote NE trans-differentiation via the SOX4/PCK2 pathway. CONCLUSIONS: Our findings reveal that SOX4 promotes NE trans-differentiation both in vitro and in vivo via directly enhancing PCK2 activity to activate carbohydrate metabolism reprogramming. The SOX4/PCK2 pathway and its downstream changes might be novel targets for blocking NE trans-differentiation.


Subject(s)
Cell Transdifferentiation , Prostatic Neoplasms, Castration-Resistant , SOXC Transcription Factors , Signal Transduction , Male , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Humans , Animals , Mice , Cell Line, Tumor , Mice, Nude , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics
6.
Curr Med Sci ; 44(3): 611-622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842772

ABSTRACT

OBJECTIVE: Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion. Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis. In this study, we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition. METHODS: Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls. A systematic analysis of clinical characteristics and prognostic factors was also conducted. Cell growth was assessed using the Cell Counting Kit-8 (CCK-8) assay, and apoptosis and cell cycle progression were evaluated by flow cytometry. Moreover, RNA pull-down was performed to identify target microRNAs, and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets. RESULTS: Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival (OS) (hazard ratio: 2.357; 95% confidence interval 1.258-4.415). The circ_0012152 knockdown reduced cell growth, increased apoptosis, and inhibited cell cycle progression in AML cell lines. RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152. Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors. We suggested that miR-652-3p targeted SOX4, as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells. CONCLUSION: Circ_0012152 is an independent poor prognostic factor for OS in AML, and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , RNA, Circular , SOXC Transcription Factors , Adult , Female , Humans , Male , Middle Aged , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/genetics , Prognosis , RNA, Circular/genetics , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Up-Regulation/genetics
7.
J Transl Med ; 22(1): 602, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943117

ABSTRACT

OBJECTIVE: This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS: Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS: Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION: The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.


Subject(s)
Disease Progression , Pancreatic Neoplasms , Proteomics , SOXC Transcription Factors , ras GTPase-Activating Proteins , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Mitogen-Activated Protein Kinase 1/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Phosphoproteins/metabolism , Phosphorylation , Prognosis , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Signal Transduction , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics
8.
Cells ; 13(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891067

ABSTRACT

Rapid information processing in the central nervous system requires the myelination of axons by oligodendrocytes. The transcription factor Sox2 and its close relative Sox3 redundantly regulate the development of myelin-forming oligodendrocytes, but little is known about the underlying molecular mechanisms. Here, we characterized the expression profile of cultured oligodendroglial cells during early differentiation and identified Bcas1, Enpp6, Zfp488 and Nkx2.2 as major downregulated genes upon Sox2 and Sox3 deletion. An analysis of mice with oligodendrocyte-specific deletion of Sox2 and Sox3 validated all four genes as downstream targets in vivo. Additional functional assays identified regulatory regions in the vicinity of each gene that are responsive to and bind both Sox proteins. Bcas1, Enpp6, Zfp488 and Nkx2.2 therefore likely represent direct target genes and major effectors of Sox2 and Sox3. Considering the preferential expression and role of these genes in premyelinating oligodendrocytes, our findings suggest that Sox2 and Sox3 impact oligodendroglial development at the premyelinating stage with Bcas1, Enpp6, Zfp488 and Nkx2.2 as their major effectors.


Subject(s)
Cell Differentiation , Homeobox Protein Nkx-2.2 , Oligodendroglia , SOXB1 Transcription Factors , Transcription Factors , Animals , Mice , Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Oligodendroglia/metabolism , Oligodendroglia/cytology , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
9.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38774451

ABSTRACT

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Subject(s)
Lymphoma, Mantle-Cell , SAM Domain and HD Domain-Containing Protein 1 , SOXC Transcription Factors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Animals , Mice , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Protein Binding , Cell Line, Tumor , Cytarabine/pharmacology
10.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38705228

ABSTRACT

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Subject(s)
Actin-Related Protein 2-3 Complex , Cell Movement , Colorectal Neoplasms , Cytoskeleton , Pseudopodia , SOXC Transcription Factors , Wiskott-Aldrich Syndrome Protein, Neuronal , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Cell Movement/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Cytoskeleton/metabolism , Pseudopodia/metabolism , Caco-2 Cells , Signal Transduction , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , HCT116 Cells , Actin Cytoskeleton/metabolism
11.
J Diabetes ; 16(6): e13565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751373

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a diabetic complication. LncRNAs are reported to participate in the pathophysiology of DN. Here, the function and mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) in DN were explored. METHODS: Streptozotocin (STZ)-induced DN mouse models and high glucose (HG)-treated human mesangial cells (MCs) were used to detect SNHG14 expression. SNHG14 silencing plasmids were applied to examine the function of SNHG14 on proliferation and fibrosis in HG-treated MCs. Potential targets of SNHG14 were predicted using bioinformatics tools and verified by luciferase reporter, RNA pulldown, and northern blotting assays. The functional role of SNHG14 in DN in vivo was detected by injection with adenoviral vector carrying sh-SNHG14 into DN mice. Serum creatinine, blood urea nitrogen, blood glucose, 24-h proteinuria, relative kidney weight, and renal pathological changes were examined in DN mice. RESULTS: SNHG14 expression was elevated in the kidneys of DN mice and HG-treated MCs. SNHG14 silencing inhibited proliferation and fibrosis of HG-stimulated MCs. SNHG14 bound to miR-30e-5p to upregulate SOX4 expression. In rescue assays, SOX4 elevation diminished the effects of SNHG14 silencing in HG-treated MCs, and SOX4 silencing reversed the effects of SNHG14 overexpression. In in vivo studies, SNHG14 downregulation significantly ameliorated renal injuries and renal interstitial fibrosis in DN mice. CONCLUSIONS: SNHG14 silencing attenuates kidney injury in DN mice and reduces proliferation and fibrotic phenotype of HG-stimulated MCs via the miR-30e-5p/SOX4 axis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Disease Progression , MicroRNAs , RNA, Long Noncoding , SOXC Transcription Factors , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , RNA, Long Noncoding/genetics , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Mice , MicroRNAs/genetics , Humans , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Male , Gene Silencing , Fibrosis , Cell Proliferation , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice, Inbred C57BL
12.
Br J Cancer ; 131(1): 171-183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38760444

ABSTRACT

BACKGROUND: Risk of recurrence and progression of ductal carcinoma in situ (DCIS) to invasive cancer remains uncertain, emphasizing the need for developing predictive biomarkers of aggressive DCIS. METHODS: Human cell lines and mouse models of disease progression were analyzed for candidate risk predictive biomarkers identified and validated in two independent DCIS cohorts. RESULTS: RNA profiling of normal mammary and DCIS tissues (n = 48) revealed that elevated SOX11 expression correlates with MKI67, EZH2, and DCIS recurrence score. The 21T human cell line model of DCIS progression to invasive cancer and two mouse models developing mammary intraepithelial neoplasia confirmed the findings. AKT activation correlated with chromatin accessibility and EZH2 enrichment upregulating SOX11 expression. AKT and HER2 inhibitors decreased SOX11 expression along with diminished mammosphere formation. SOX11 was upregulated in HER2+ and basal-like subtypes (P < 0.001). Longitudinal DCIS cohort (n = 194) revealed shorter recurrence-free survival in SOX11+ than SOX11- patients (P = 0.0056 in all DCIS; P < 0.0001 in HER2+ subtype) associated with increased risk of ipsilateral breast event/IBE (HR = 1.9, 95%CI = 1.2-2.9; P = 0.003). DISCUSSION: Epigenetic activation of SOX11 drives recurrence of DCIS and progression to invasive cancer, suggesting SOX11 as a predictive biomarker of IBE.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Disease Progression , Epigenesis, Genetic , Neoplasm Recurrence, Local , SOXC Transcription Factors , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Animals , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Intraductal, Noninfiltrating/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Mice , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Cell Line, Tumor , Neoplasm Invasiveness , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism
13.
Commun Biol ; 7(1): 565, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745044

ABSTRACT

Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Disease Progression , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA Methylation , RNA, Circular , SOXC Transcription Factors , Stomach Neoplasms , Animals , Female , Humans , Male , Mice , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , RNA, Circular/genetics , RNA, Circular/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , RNA Methylation/genetics
14.
Nat Commun ; 15(1): 2956, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580651

ABSTRACT

Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr+ mesenchymal cells and ability to upregulate genes for prominent anti-osteoblastogenic and pro-osteoclastogenic factors, including interferon signaling-related chemokines, contributing to these adult stem cells' secretome. SOXC, with SOX4 predominantly, are thus key regulators of adult bone mass.


Subject(s)
Mesenchymal Stem Cells , Mice , Animals , Humans , Adult , Mesenchymal Stem Cells/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism
15.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653778

ABSTRACT

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
16.
Clin Oral Investig ; 28(5): 287, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38684576

ABSTRACT

OBJECTIVES: Coffin-Siris Syndrome (CSS) is a congenital disorder characterized by delayed growth, dysmorphic facial features, hypoplastic nails and phalanges of the fifth digit, and dental abnormalities. Tooth agenesis has been reported in CSS patients, but the mechanisms regulating this syndromic tooth agenesis remain largely unknown. This study aims to identify the pathogenic mutation of CSS presenting tooth genesis and explore potential regulatory mechanisms. MATERIALS AND METHODS: We utilized whole-exome sequencing to identify variants in a CSS patient, followed by Sanger validation. In silico analysis including conservation analysis, pathogenicity predictions, and 3D structural assessments were carried out. Additionally, single-cell RNA sequencing and fluorescence in situ hybridization (FISH) were applied to explore the spatio-temporal expression of Sox4 expression during murine tooth development. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to examine the functional role of SOX4. RESULTS: A novel de novo SOX4 missense mutation (c.1255C > G, p.Leu419Val) was identified in a Chinese CSS patient exhibiting tooth agenesis. Single-cell RNA sequencing and FISH further verified high expression of Sox4 during murine tooth development, and WGCNA confirmed its central role in tooth development pathways. Enriched functions included cell-substrate junctions, focal adhesion, and RNA splicing. CONCLUSIONS: Our findings link a novel SOX4 mutation to syndromic tooth agenesis in CSS. This is the first report of SOX4 missense mutation causing syndromic tooth agenesis. CLINICAL RELEVANCE: This study not only enhances our understanding of the pathogenic mutation for syndromic tooth agenesis but also provides genetic diagnosis and potential therapeutic insights for syndromic tooth agenesis.


Subject(s)
Anodontia , Exome Sequencing , Face , Intellectual Disability , Micrognathism , Mutation, Missense , Neck , SOXC Transcription Factors , Animals , Female , Humans , Male , Mice , Abnormalities, Multiple/genetics , Anodontia/genetics , Face/abnormalities , Hand Deformities, Congenital/genetics , In Situ Hybridization, Fluorescence , Micrognathism/genetics , Neck/abnormalities , SOXC Transcription Factors/genetics
17.
J Biochem Mol Toxicol ; 38(4): e23703, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605439

ABSTRACT

Acute renal failure (ARF) is a huge threat to the lives of most patients in intensive care units, and there is currently no satisfactory treatment strategy. SRY-box transcription factor 4 (SOX4) plays a key role in the development of various diseases, but its effect on ARF is unknown. Therefore, this study aimed to explore the relationship between SOX4 and ARF. Blood samples were collected from 20 ARF patients and 20 healthy volunteers. We also established an ARF rat model by excising the right kidney and ligating the left renal artery, and SOX4 knockdown in ARF rats was achieved down by means of lentiviral infection. Subsequently, we used quantitative polymerase chain reaction and western bolt assays to detect the expression levels of SOX4 and nuclear factor-κB (NF-κB) signaling pathway-related proteins in human blood or rat renal tissue and hematoxylin and eosin and terminal deoxynucleotidyl transferase (TdT) 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling staining to observe the pathological changes and apoptosis of renal tissue. Enzyme-linked immunosorbent assay and biochemical kits were used to measure the levels of renal function-related indicators (blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin) and inflammatory factors (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-alpha), as well as changes in oxidative stress-related indicators (malondialdehyde [MDA], superoxide dismutase [SOD], and reactive oxygen species [ROS]) in rat serum. SOX4 expression levels in blood samples from ARF patients and renal tissue from ARF rats were significantly higher compared with those in healthy volunteers and control rats, respectively. ARF model rats displayed the typical ARF phenotype, while SOX4 silencing significantly improved pathological injury and apoptosis of renal tissue in ARF rats. Moreover, SOX4 silencing significantly inhibited increased levels of renal function-related indicators and inflammatory factors and reduced the level of excessive oxidative stress (MDA and ROS were upregulated, and SOD was downregulated) in ARF rats. SOX4 also reduced the activity of the NF-κB signaling pathway in ARF samples. Thus, SOX4 knockdown may reduce oxidative stress, the inflammatory response, and apoptosis by reducing the activity of the NF-κB signaling pathway, thereby improving renal injury in ARF rats.


Subject(s)
Acute Kidney Injury , Apoptosis , NF-kappa B , Oxidative Stress , SOXC Transcription Factors , Signal Transduction , Animals , Humans , Rats , Acute Kidney Injury/metabolism , Kidney , NF-kappa B/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Superoxide Dismutase/metabolism
18.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 90-94, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678622

ABSTRACT

Breast cancer (BC) is one of the most common fatal cancers. Recent studies have identified the vital role of long noncoding RNA (lncRNAs) in the development and progression of BC. In this research, lncRNA PCAT-1 was studied to identify how it functioned in the metastasis of BC. PCAT-1 expression of tissues was detected by real-time quantitative polymerase chain reaction (RT-qPCR) in 50 BC patients. Cell proliferation, wound healing assay and transwell assay were used to observe the biological behavior changes of BC cells through knockdown or overexpression of PCAT-1. In addition, RT-qPCR and Western blot assay were performed to discover the potential target protein of PCAT-1 in BC. PCAT-1 expression level in BC samples was higher than that of adjacent ones. Besides, cell proliferation, migrated ability and cell invaded ability of BC cells were inhibited after PCAT-1 was silenced. Cell proliferation, migration and invasion of BC cells were promoted after PCAT-1 was overexpressed. In addition, SOX4 was downregulated after silence of PCAT-1 in BC cells, while SOX4 was upregulated after overexpression of PCAT-1 in BC cells. Furthermore, SOX4 was upregulated in BC tissues and was positively associated with PCAT-1. Our study uncovers a new oncogene in BC and suggests that PCAT-1 could enhance BC cell proliferation, migration and invasion via targeting SOX4, which provided a novel therapeutic target for BC patients.


Subject(s)
Breast Neoplasms , Cell Proliferation , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , RNA, Long Noncoding , SOXC Transcription Factors , Female , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics
19.
Am J Med Genet A ; 194(8): e63626, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38591849

ABSTRACT

De novo germline variants of the SRY-related HMG-box 11 gene (SOX11) have been reported to cause Coffin-Siris syndrome-9 (CSS-9), a rare congenital disorder associated with multiple organ malformations, including ear anomalies. Previous clinical and animal studies have found that intragenic pathogenic variant or haploinsufficiency in the SOX11 gene could cause inner ear malformation, but no studies to date have documented the external ear malformation caused by SOX11 deficiency. Here, we reported a Chinese male with unilateral microtia and bilateral sensorineural deafness who showed CSS-like manifestations, including dysmorphic facial features, impaired neurodevelopment, and fingers/toes malformations. Using trio-based whole-exome sequencing, a de novo missense variant in SOX11 (NM_003108.4: c.347A>G, p.Y116C) was identified and classified as pathogenic variant as per American College of Medical Genetics guidelines. Moreover, a systematic search of the literature yielded 12 publications that provided data of 55 SOX11 intragenic variants affecting various protein-coding regions of SOX11 protein. By quantitatively analyzing phenotypic spectrum information related to these 56 SOX11 variants (including our case), we found variants affecting different regions of SOX11 protein (high-mobility group [HMG] domain and non-HMG regions) appear to influence the phenotypic spectrum of organ malformations in CSS-9; variants altering the HMG domain were more likely to cause the widest range of organ anomalies. In summary, this is the first report of CSS with external ear malformation caused by pathogenic variant in SOX11, indicating that the SOX11 gene may be not only essential for the development of the inner ear but also critical for the morphogenesis of the external ear. In addition, thorough clinical examination is recommended for patients who carry pathogenic SOX11 variants that affect the HMG domain, as these variants may cause the widest range of organ anomalies underlying this condition.


Subject(s)
Abnormalities, Multiple , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , SOXC Transcription Factors , Humans , Male , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Ear, External/abnormalities , Ear, External/pathology , Exome Sequencing , Face/abnormalities , Face/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Micrognathism/genetics , Micrognathism/pathology , Micrognathism/diagnosis , Mutation, Missense/genetics , Neck/abnormalities , Neck/pathology , Phenotype , SOXC Transcription Factors/genetics
20.
Sci Rep ; 14(1): 7863, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570586

ABSTRACT

Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Drug Resistance, Neoplasm/genetics , Reactive Oxygen Species/metabolism , Up-Regulation , Oxidation-Reduction , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL