Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.262
Filter
1.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849370

ABSTRACT

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Subject(s)
Apoptosis , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Receptors, Immunologic , STAT Transcription Factors , Signal Transduction , Animals , Macrophages/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Kidney/pathology , Kidney/metabolism , Mice, Knockout , Male , Fibrosis , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Cell Polarity , TOR Serine-Threonine Kinases/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics
2.
Biomed Pharmacother ; 176: 116911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861857

ABSTRACT

Atopic dermatitis (AD) is a globally increasing chronic inflammatory skin disease with limited and potentially side-effect-prone treatment options. Monotropein is the predominant iridoid glycoside in Morinda officinalis How roots, which has previously shown promise in alleviating AD symptoms. This study aimed to systematically investigate the pharmacological effects of monotropein on AD using a 2, 4-dinitrochlorobenzene (DNCB)/Dermatophagoides farinae extract (DFE)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated keratinocytes. Oral administration of monotropein demonstrated a significant reduction in AD phenotypes, including scaling, erythema, and increased skin thickness in AD-induced mice. Histological analysis revealed a marked decrease in immune cell infiltration in skin lesions. Additionally, monotropein effectively downregulated inflammatory markers, encompassing pro-inflammatory cytokines, T helper (Th)1 and Th2 cytokines, and pro-inflammatory chemokines in skin tissues. Notably, monotropein also led to a considerable decrease in serum immunoglobulin (Ig)E and IgG2a levels. At a mechanistic level, monotropein exerted its anti-inflammatory effects by suppressing the phosphorylation of Janus kinase / signal transducer and activator of transcription proteins in both skin tissues of AD-induced mice and TNF-α/IFN-γ-stimulated keratinocytes. In conclusion, monotropein exhibited a pronounced alleviation of AD symptoms in the experimental models used. These findings underscore the potential application of monotropein as a therapeutic agent in the context of AD, providing a scientific basis for further exploration and development.


Subject(s)
Dermatitis, Atopic , Janus Kinases , Keratinocytes , Signal Transduction , Skin , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/chemically induced , Signal Transduction/drug effects , Mice , Janus Kinases/metabolism , Skin/drug effects , Skin/pathology , Skin/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Cytokines/metabolism , Mice, Inbred BALB C , STAT Transcription Factors/metabolism , Humans , Dinitrochlorobenzene , Anti-Inflammatory Agents/pharmacology , Female , Disease Models, Animal , Inflammation/drug therapy , Inflammation/pathology , Immunoglobulin E/blood , Dermatophagoides farinae/immunology , Iridoids/pharmacology
3.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891899

ABSTRACT

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Subject(s)
Carps , Fish Proteins , Janus Kinases , MicroRNAs , Poly I-C , STAT Transcription Factors , Signal Transduction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Carps/genetics , Carps/immunology , Carps/virology , Carps/metabolism , Poly I-C/pharmacology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Immunity, Innate/genetics , Gene Expression Regulation/drug effects
4.
Mol Med ; 30(1): 78, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844873

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a life-threatening renal disease and needs urgent therapies. Wogonin is renoprotective in DN. This study aimed to explore the mechanism of how wogonin regulated high glucose (HG)-induced renal cell injury. METHODS: Diabetic mice (db/db), control db/m mice, and normal glucose (NG)- or HG-treated human tubule epithelial cells (HK-2) were used to evaluate the levels of suppressor of cytokine signaling 3 (SOCS3), Toll-like receptor 4 (TLR4), inflammation and fibrosis. Lentivirus was used to regulate SOCS3 and TLR4 expressions. After oral gavage of wogonin (10 mg/kg) or vehicle in db/db mice, histological morphologies, blood glucose, urinary protein, serum creatinine values (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione (GSH), and reactive oxygen species (ROS) were assessed. RT-qPCR and Western blot evaluated inflammation and fibrosis-related molecules. RESULTS: HG exposure induced high blood glucose, severe renal injuries, high serumal Src and BUN, low SOD and GSH, and increased ROS. HG downregulated SOCS3 but upregulated TLR4 and JAK/STAT, fibrosis, and inflammasome-related proteins. Wogonin alleviated HG-induced renal injuries by decreasing cytokines, ROS, Src, and MDA and increasing SOD and GSH. Meanwhile, wogonin upregulated SOCS3 and downregulated TLR4 under HG conditions. Wogonin-induced SOCS3 overexpression directly decreased TLR4 levels and attenuated JAK/STAT signaling pathway-related inflammation and fibrosis, but SOCS3 knockdown significantly antagonized the protective effects of wogonin. However, TLR4 knockdown diminished SOCS3 knockdown-induced renal injuries. CONCLUSION: Wogonin attenuates renal inflammation and fibrosis by upregulating SOCS3 to inhibit TLR4 and JAK/STAT pathway.


Subject(s)
Diabetic Nephropathies , Flavanones , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Toll-Like Receptor 4 , Flavanones/pharmacology , Flavanones/therapeutic use , Toll-Like Receptor 4/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Animals , Signal Transduction/drug effects , Mice , Humans , Male , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal
5.
Mol Med ; 30(1): 81, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862942

ABSTRACT

BACKGROUND: Studies have highlighted a possible crosstalk between the pathogeneses of COVID-19 and systemic lupus erythematosus (SLE); however, the interactive mechanisms remain unclear. We aimed to elucidate the impact of COVID-19 on SLE using clinical information and the underlying mechanisms of both diseases. METHODS: RNA-seq datasets were used to identify shared hub gene signatures between COVID-19 and SLE, while genome-wide association study datasets were used to delineate the interaction mechanisms of the key signaling pathways. Finally, single-cell RNA-seq datasets were used to determine the primary target cells expressing the shared hub genes and key signaling pathways. RESULTS: COVID-19 may affect patients with SLE through hematologic involvement and exacerbated inflammatory responses. We identified 14 shared hub genes between COVID-19 and SLE that were significantly associated with interferon (IFN)-I/II. We also screened and obtained four core transcription factors related to these hub genes, confirming the regulatory role of the IFN-I/II-mediated Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway on these hub genes. Further, SLE and COVID-19 can interact via IFN-I/II and IFN-I/II receptors, promoting the levels of monokines, including interleukin (IL)-6/10, tumor necrosis factor-α, and IFN-γ, and elevating the incidence rate and risk of cytokine release syndrome. Therefore, in SLE and COVID-19, both hub genes and core TFs are enriched within monocytes/macrophages. CONCLUSIONS: The interaction between SLE and COVID-19 promotes the activation of the IFN-I/II-triggered JAK-STAT signaling pathway in monocytes/macrophages. These findings provide a new direction and rationale for diagnosing and treating patients with SLE-COVID-19 comorbidity.


Subject(s)
COVID-19 , Genome-Wide Association Study , Lupus Erythematosus, Systemic , SARS-CoV-2 , Signal Transduction , Humans , COVID-19/genetics , Lupus Erythematosus, Systemic/genetics , SARS-CoV-2/physiology , Female , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Male , Transcriptome , Gene Expression Profiling , Multiomics
6.
Pestic Biochem Physiol ; 202: 105915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879296

ABSTRACT

The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is activated by infections of bacteria, fungi, viruses and parasites and mediated cellular and humoral immune responses. In the pea aphid Acyrthosiphon pisum little is known about the function of JAK/STAT signaling in its immune system. In this study, we first showed that expression of genes in the JAK/STAT signaling, including the receptors Domeless1/2, Janus kinase (JAK) and transcriptional factor Stat92E, is up-regulated upon bacteria Escherichia coli and Staphylococcus aureus and fungus Beauveria bassiana infections. After knockdown of expression of these genes by means of dsRNA injection, the aphids harbored more bacteria and suffered more death after infected with E. coli and S. aureus, but showed no significant change after B. bassiana infection. Our study suggests the JAK/STAT signaling contributes to the defense against bacterial infection in the pea aphid.


Subject(s)
Aphids , Janus Kinases , STAT Transcription Factors , Signal Transduction , Animals , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Staphylococcus aureus/physiology , Escherichia coli , Insect Proteins/metabolism , Insect Proteins/genetics , Beauveria/physiology
7.
J Immunol ; 213(1): 63-74, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38767414

ABSTRACT

The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.


Subject(s)
Feedback, Physiological , Janus Kinases , Penaeidae , STAT Transcription Factors , Signal Transduction , Animals , Penaeidae/immunology , Penaeidae/genetics , Signal Transduction/immunology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Phosphorylation , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/metabolism
8.
Iran J Immunol ; 21(2): 158-165, 2024 06 30.
Article in English | MEDLINE | ID: mdl-38761094

ABSTRACT

Background: The mechanisms of the function of interferon beta (IFN-ß) and natalizumab (NTZ) in multiple sclerosis (MS) patients have not yet been fully understood. Over the past decades, many studies have been conducted to evaluate gene expression changes especially regulatory non-coding RNAs such as microRNAs (miRNAs) following therapy in MS patients. Objective: To assess the changes in the expression of miR-20b in MS patients treated with IFN-ß or NTZ. Methods: Sixty patients with relapsing-remitting MS (RRMS) and 30 healthy controls (HCs) were enrolled. The patients were categorized as untreated (N=20), IFN-ß-treated (N=20), and NTZtreated (N=20). For the expression analysis, real-time PCR was performed on the whole blood. The bioinformatic tools were applied for signaling pathways enrichment analysis of miR-20b targetome. Results: The relative expression of miR-20b was significantly downregulated in the untreated patients compared with the HCs (-1.726-fold, p<0.001), while IFN-ß-treated and NTZ-treated patients showed no statistical difference compared with the HCs (0.733-fold, p=0.99 for IFN-ß and 1.025-fold, p=0.18 for NTZ). This indicates the restoration of miR-20b expression to normal level in the treated patients. Additionally, in silico analysis demonstrated that the Jak-STAT signaling pathway is enriched with miR-20b targets (p<0.0001). Conclusion: Our findings suggest that the positive effects of IFN-ß and NTZ in the RRMS patients could be potentially mediated by returning miR-20b expression to baseline.


Subject(s)
Interferon-beta , Janus Kinases , MicroRNAs , Multiple Sclerosis, Relapsing-Remitting , Natalizumab , STAT Transcription Factors , Signal Transduction , Humans , MicroRNAs/genetics , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/genetics , Interferon-beta/therapeutic use , Natalizumab/therapeutic use , Female , Case-Control Studies , Male , Adult , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Gene Expression Regulation/drug effects , Young Adult , Middle Aged , Computational Biology/methods
9.
Cells ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38727296

ABSTRACT

Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.


Subject(s)
Cytokines , Janus Kinases , Lipid Metabolism , STAT Transcription Factors , Th2 Cells , Humans , Cytokines/metabolism , Epidermis/metabolism , Epidermis/drug effects , Fatty Acids/metabolism , Interleukin-4/metabolism , Janus Kinase Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Lipid Metabolism/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/metabolism , Th2 Cells/metabolism , Th2 Cells/drug effects , Cell Culture Techniques, Three Dimensional
10.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809465

ABSTRACT

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Subject(s)
Alopecia Areata , Cell Proliferation , Hair Follicle , Interferon-gamma , Wnt Signaling Pathway , beta Catenin , Humans , Hair Follicle/drug effects , Hair Follicle/cytology , Hair Follicle/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Interferon-gamma/metabolism , beta Catenin/metabolism , Alopecia Areata/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/pathology , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Janus Kinases/metabolism , Dermis/cytology , Dermis/drug effects , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Hair/drug effects , Hair/growth & development , Wnt-5a Protein/metabolism , Janus Kinase 1/metabolism , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
11.
J Mol Endocrinol ; 73(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38722222

ABSTRACT

In this study, we investigate the effects of miRNA-138-5p and probable G-protein coupled receptor 124 (GPR124)-regulated inflammasome and downstream leukemia inhibitory factor (LIF)-STAT and adhesion molecule signaling in human decidual stromal cells. After informed consent was obtained from women aged 25-38 years undergoing surgical termination of the normal pregnancy and spontaneous miscarriage after 6-9 weeks of gestation, human decidual stromal cells were extracted from the decidual tissue. Extracellular vesicles (EVs) with microRNA (miRNA) between cells have been regarded as critical factors for embryo-maternal interactions on embryo implantation and programming of human pregnancy. MicroRNA-138-5p acts as the transcriptional regulator of GPR124 and the mediator of downstream inflammasome. LIF-regulated STAT activation and expression of integrins might influence embryo implantation. Hence, a better understanding of LIF-STAT and adhesion molecule signaling would elucidate the mechanism of microRNA-138-5p- and GPR124-regulated inflammasome activation on embryo implantation and pregnancy. Our results show that microRNA-138-5p, purified from the EVs of decidual stromal cells, inhibits the expression of GPR124 and the inflammasome, and activates the expression of LIF-STAT and adhesion molecules in human decidual stromal cells. Additionally, the knockdown of GPR124 and NLRP3 through siRNA increases the expression of LIF-STAT and adhesion molecules. The findings of this study help us gain a better understanding the role of EVs, microRNA-138-5p, GPR124, inflammasomes, LIF-STAT, and adhesion molecules in embryo implantation and programming of human pregnancy.


Subject(s)
Decidua , Embryo Implantation , Leukemia Inhibitory Factor , MicroRNAs , Signal Transduction , Stromal Cells , Humans , Female , Leukemia Inhibitory Factor/metabolism , Pregnancy , Decidua/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Adult , Stromal Cells/metabolism , Inflammasomes/metabolism , STAT Transcription Factors/metabolism , Extracellular Vesicles/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
12.
Clin Immunol ; 264: 110238, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729230

ABSTRACT

OBJECTIVE: Rheumatoid Arthritis (RA) is a systemic autoimmune disease involving pro-inflammatory cytokines that can be therapeutically targeted by antibodies or kinase inhibitors. Nevertheless, these drugs fail in a subset of patients independent of the abundance of the targeted cytokines. We aim to explore the cellular basis of this phenomenon by analyzing the relation of cytokine abundance and activation of downstream signaling pathways in RA. METHODS: The study included 62 RA patients and 9 healthy controls (HC). Phosphorylation of STAT 1-6 in various immune cell subsets was determined ex vivo using a novel robust flow cytometry-based protocol. Serum concentrations of IL-6, IL-10, IL-12p70, IL-17 A, interferon gamma, and TNFα in the same samples were measured using highly sensitive single molecule array (SIMOA). RESULTS: We found an increase in circulating cytokines in RA patients, while STAT activity was lower in RA patients compared to HC. Based on STAT activity we determined three endotypes in active RA patients (cDAI>10, n = 28): 1) those with active STAT5a/b signaling in T cells (n = 7/28), 2) those with a low STAT activity in all assessed cell types (n = 14/28), and 3) those with active STAT1 and STAT3 signaling mainly in myeloid cells (n = 7/28). Integrating intracellular STAT activation and cytokine analysis revealed diminished JAK/STAT signaling in a subset of patients (n = 8/20) despite elevated serum cytokine concentrations. CONCLUSION: Diminished JAK/STAT signaling in active RA may partly explain unresponsiveness to therapy targeting cytokine signaling. Analysis of JAK/STAT phosphorylation may identify patients at risk for non-response to these therapies.


Subject(s)
Arthritis, Rheumatoid , Cytokines , Janus Kinases , STAT Transcription Factors , Signal Transduction , Humans , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/immunology , Middle Aged , Female , Male , Cytokines/blood , Janus Kinases/metabolism , Adult , STAT Transcription Factors/metabolism , Aged , Phosphorylation , STAT5 Transcription Factor/metabolism , Leukocytes/metabolism , Leukocytes/immunology , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/blood
13.
Pharmacol Res ; 204: 107217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777110

ABSTRACT

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway functions as a central hub for transmitting signals from more than 50 cytokines, playing a pivotal role in maintaining hematopoiesis, immune balance, and tissue homeostasis. Dysregulation of this pathway has been implicated in various diseases, including immunodeficiency, autoimmune conditions, hematological disorders, and certain cancers. Proteins within this pathway have emerged as effective therapeutic targets for managing these conditions, with various approaches developed to modulate key nodes in the signaling process, spanning from receptor engagement to transcription factor activation. Following the success of JAK inhibitors such as tofacitinib for RA treatment and ruxolitinib for managing primary myelofibrosis, the pharmaceutical industry has obtained approvals for over 10 small molecule drugs targeting the JAK-STAT pathway and many more are at various stages of clinical trials. In this review, we consolidate key strategies employed in drug discovery efforts targeting this pathway, with the aim of contributing to the collective understanding of small molecule interventions in the context of JAK-STAT signaling. We aspire that our endeavors will contribute to advancing the development of innovative and efficacious treatments for a range of diseases linked to this pathway dysregulation.


Subject(s)
Drug Discovery , Janus Kinases , STAT Transcription Factors , Signal Transduction , Humans , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , STAT Transcription Factors/metabolism , STAT Transcription Factors/antagonists & inhibitors , Drug Discovery/methods , Animals , Signal Transduction/drug effects , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Molecular Targeted Therapy
14.
Phytomedicine ; 129: 155680, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728923

ABSTRACT

OBJECTIVE: Influenza, a viral respiratory illness, leads to seasonal epidemics and occasional pandemics. Given the rising resistance and adverse reactions associated with anti-influenza drugs, Traditional Chinese Medicine (TCM) emerges as a promising approach to counteract the influenza virus. Specifically, Haoqin Qingdan Tang (HQQDT), a TCM formula, has been employed as an adjuvant treatment for influenza in China. However, the active compounds and underlying mechanisms of HQQDT remain unknown. AIM: The aim of this study was to investigate HQQDT's antiviral and anti-inflammatory activities in both in vivo and in vitro, and further reveal its active ingredients and mechanism. METHODS: In vivo and in vitro experiments were conducted to verify the antiviral and anti-inflammatory activities of HQQDT. Subsequently, the active ingredients and mechanism of HQQDT were explored through combining high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS) analysis and network pharmacology. Finally, the examinations of cell cytokines and signaling pathways aimed to elucidate the predicted mechanisms. RESULTS: The results indicated that HQQDT exhibited inhibitory effects on influenza viruses A/PR/8/34 (H1N1), A/HK/1/68 (H3N2), and A/California/4/2009 (H1N1) in vitro. Furthermore, HQQDT enhanced the survival rate of influenza-infected mice, reduced the lung index and lung virus titer, and mitigated lung tissue damage in vivo. The proinflammatory cytokine expression levels upon influenza virus infection in PR8-induced A549 cells or mice were suppressed by HQQDT, including IL-6, IL-1ß, CCL2, CCL4, IP-10, interferon ß1 (IFN-ß1), the interferon regulatory factor 3 (IRF3), and hemagglutinin (HA). Twenty-two active components of HQQDT against influenza were identified using HPLC-Q-TOF-MS analysis. Based on network pharmacological predictions, the JAK/STAT signaling pathway is considered the most relevant for HQQDT's action against influenza. Finally, western blot assays revealed that HQQDT regulated the protein level of the JAK/STAT signaling pathway in PR8-infected A549 cells and lung tissue. CONCLUSION: These findings verified the antiviral and anti-inflammatory effects of HQQDT through JAK-STAT signaling pathway in influenza infections, laying the foundation for its further development.


Subject(s)
Antiviral Agents , Drugs, Chinese Herbal , Influenza A virus , Janus Kinases , Orthomyxoviridae Infections , Signal Transduction , Animals , Dogs , Female , Humans , Mice , A549 Cells , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Influenza A virus/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Janus Kinases/metabolism , Lung/drug effects , Lung/virology , Madin Darby Canine Kidney Cells , Mice, Inbred BALB C , Network Pharmacology , Orthomyxoviridae Infections/drug therapy , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
15.
Dev Biol ; 512: 13-25, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703942

ABSTRACT

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Mitochondria , Spermatogenesis , Testis , Animals , Spermatogenesis/genetics , Spermatogenesis/physiology , Male , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Mitochondria/metabolism , Testis/metabolism , Morphogenesis/genetics , Signal Transduction , Infertility, Male/genetics , Infertility, Male/metabolism , Gene Knockdown Techniques , STAT Transcription Factors/metabolism , Spermatids/metabolism
16.
Chem Biol Interact ; 396: 111037, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719172

ABSTRACT

Breast cancer (BC) is the most common cancer in women and is known for its tendency to spread to the bones, causing significant health issues and mortality. In this study, we aimed to investigate whether cryoprotective isoliquiritigenin-zein phosphatidylcholine nanoparticles (ISL@ZLH NPs) could inhibit BC-induced bone destruction and tumor metastasis in both in vitro and animal models. To evaluate the potential of ISL@ZLH NPs, we conducted various experiments. First, we assessed cell viability, colony formation, transwell migration, and wound healing assays to determine the impact of ISL@ZLH NPs on BC cell behavior. Western blotting, TRAP staining and ALP activity were performed to examine the effects of ISL@ZLH NPs on osteoclast formation induced by MDA-MB-231 cell-conditioned medium and RANKL treated RAW 264.7 cells. Furthermore, we assessed the therapeutic impact of ISL@ZLH NPs on tumor-induced bone destruction using a mouse model of BC bone metastasis. Treatment with ISL@ZLH NPs effectively suppressed BC cell proliferation, colony formation, and motility, reducing their ability to metastasize. ISL@ZLH NPs significantly inhibited osteoclast formation and the expression of factors associated with bone destruction in BC cells. Additionally, ISL@ZLH NPs suppressed JAK-STAT signaling in RAW264.7 cells. In the BCBM mouse model, ISL@ZLH NPs led to a significant reduction in osteolytic bone lesions compared to the control group. Histological analysis and TRAP staining confirmed that ISL@ZLH NPs preserved the integrity of bone structure, preventing invasive metastasis by confining tumor growth to the bone marrow cavity. Furthermore, ISL@ZLH NPs effectively suppressed tumor-induced osteoclastogenesis, a key process in BC-related bone destruction. Our findings demonstrate that ISL@ZLH NPs have the potential to inhibit BC-induced bone destruction and tumor metastasis by targeting JAK-STAT signaling pathways and suppressing tumor-induced osteoclastogenesis. These results underscore the therapeutic promise of ISL@ZLH NPs in managing BC metastasis to the bones.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Chalcones , Janus Kinases , Nanoparticles , Phosphatidylcholines , STAT Transcription Factors , Signal Transduction , Zein , Animals , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Mice , Janus Kinases/metabolism , Nanoparticles/chemistry , Female , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Signal Transduction/drug effects , Humans , STAT Transcription Factors/metabolism , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/therapeutic use , Zein/chemistry , Phosphatidylcholines/chemistry , Phosphatidylcholines/pharmacology , Cell Proliferation/drug effects , RAW 264.7 Cells , Cell Movement/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects
17.
Front Immunol ; 15: 1385473, 2024.
Article in English | MEDLINE | ID: mdl-38720890

ABSTRACT

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Subject(s)
Chikungunya Fever , Dengue , Interleukin-27 , Janus Kinases , Macrophages , Signal Transduction , Humans , Cells, Cultured , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/physiology , Dengue Virus/immunology , Interferons/metabolism , Interleukin-27/metabolism , Interleukins/immunology , Interleukins/pharmacology , Janus Kinases/metabolism , Macrophages/immunology , Macrophages/virology , Signal Transduction/genetics , STAT Transcription Factors/metabolism , Transcriptome , Virus Replication
18.
Asian Pac J Allergy Immunol ; 42(2): 105-122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710647

ABSTRACT

Signal Transducer and Activator of Transcription (STAT) proteins play pivotal roles in immune regulation. The dysregulation of these proteins, attributed to both gain-of-function (GOF) and loss-of-function (LOF) variants, has emerged as a substantial and intricate area of research. This comprehensive review delves into the intricate details of the diverse clinical spectrum associated with STAT variants and the immunological findings linked to these genetic alterations. Although this review does not encompass the treatment of each individual disease, we discuss investigative approaches ranging from immunophenotyping assessment to evaluation of STAT protein activity. These investigations play a crucial role in identifying affected patients and understanding the complexities of STAT.


Subject(s)
Gain of Function Mutation , STAT Transcription Factors , Humans , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , STAT Transcription Factors/immunology , Loss of Function Mutation , Immunogenetics/methods , Genetic Predisposition to Disease , Animals
19.
Brain Res Bull ; 213: 110988, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805766

ABSTRACT

SOCS (Suppressor of Cytokine Signalling) proteins are intracellular negative regulators that primarily modulate and inhibit cytokine-mediated signal transduction, playing a crucial role in immune homeostasis and related inflammatory diseases. SOCS act as inhibitors by regulating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, thereby intervening in the pathogenesis of inflammation and autoimmune diseases. Recent studies have also demonstrated their involvement in central immunity and neuroinflammation, showing a dual functionality. However, the specific mechanisms of SOCS in the central nervous system remain unclear. This review thoroughly elucidates the specific mechanisms linking the SOCS-JAK-STAT pathway with the inflammatory manifestations of neurodegenerative diseases. Based on this, it proposes the theory that SOCS proteins can regulate the JAK-STAT pathway and inhibit the occurrence of neuroinflammation. Additionally, this review explores in detail the current therapeutic landscape and potential of targeting SOCS in the brain via the JAK-STAT pathway for neuroinflammation, offering insights into potential targets for the treatment of neurodegenerative diseases.


Subject(s)
Janus Kinases , Neuroinflammatory Diseases , STAT Transcription Factors , Signal Transduction , Suppressor of Cytokine Signaling Proteins , Humans , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/physiology , Animals , Suppressor of Cytokine Signaling Proteins/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy , Inflammation/metabolism
20.
Mol Cell Endocrinol ; 591: 112280, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38797354

ABSTRACT

Cardiovascular complications are prevalent manifestations of type 2 diabetes mellitus (T2DM) and are usually the main cause of death. This study aims to show the underlying mechanisms of the potential therapeutic effect of mesenchymal stem cells (MSCs) on diabetic cardiac dysfunction. Twenty-four male Wistar rats were randomly assigned to one of three groups The control group received standard laboratory chow, and the groups with T2DM received a single dose of 45 mg/kg body weight of streptozotocin (STZ) after 3 weeks of pretreatment with a high-fat diet (HFD). Eight weeks after the diagnosis of T2DM, rats were divided into two groups: the T2DM model group and the T2DM + MSCs group. BM-MSCs were administered systemically at 2 × 106 cells/rat doses. A Significant amelioration in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and dyslipidemia was noted 2 weeks post-administration of MSCs. Administration of MSCs improved dyslipidemia, the altered cardiac injury biomarkers (p ≤ 0.0001), downregulated Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3)/inducible Nitric oxide synthase (iNOS) and iNOS/Apoptosis signaling pathways. This was associated with improved cardiac dysfunction (impaired left ventricular performance and decreased contractility index). Our results show that MSCs ameliorate cardiac dysfunction associated with diabetic cardiomyopathy by lowering dyslipidemia and insulin resistance, inhibiting oxidative stress, and inflammation, downregulating JAK2/STAT3/iNOS and iNOS/Apoptosis signaling pathways.


Subject(s)
Apoptosis , Biomarkers , Diabetes Mellitus, Experimental , Down-Regulation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Nitric Oxide Synthase Type II , Rats, Wistar , Signal Transduction , Animals , Male , Nitric Oxide Synthase Type II/metabolism , Mesenchymal Stem Cells/metabolism , Diabetes Mellitus, Experimental/complications , Apoptosis/drug effects , Mesenchymal Stem Cell Transplantation/methods , Biomarkers/metabolism , Rats , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Heart Injuries/metabolism , Heart Injuries/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...