Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.371
Filter
1.
Clin Exp Hypertens ; 46(1): 2373467, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38963020

ABSTRACT

BACKGROUND: Aortic endothelial diastolic dysfunction is an early complication of diabetes and the abnormal differentiation of Th17 cells is involved in the development of diabetes. However, the exact role of exercise on regulating the Th17 cells differentiation and the underlying molecular mechanisms remain to be elucidated in diabetic mice. METHODS: db/db and db/m+ mice were randomly divided into exercise and sedentary groups. Mice in exercise group were exercised daily, 6 days/week, for 6 weeks and mice in sedentary groups were placed on a nonmoving treadmill for 6 weeks. Vascular endothelial function was measured via wire myograph and the frequencies of Th17 from peripheral blood in mice were assessed via flow cytometry. RESULTS: Our data showed that exercise improved insulin resistance and aortic endothelial diastolic function in db/db mice. In addition, the proportion of Th17 cells and IL-17A level in peripheral blood of db/db mice were significantly increased, and exercise could promote Th17 cell differentiation and reduce IL-17A level. More importantly, STAT3 or ROR-γt inhibitors could promote Th17 cell differentiation in db/db mice, while exercise significantly down-regulated p-STAT3/ROR-γt signaling in db/db mice, suggesting that exercise regulated Th17 differentiation through STAT3/ROR-γt signaling. CONCLUSIONS: This study demonstrated that exercise improved vascular endothelial function in diabetic mice via reducing Th17 cell differentiation through p-STAT3/ROR-γt pathway, suggesting exercise may be an important non-pharmacological intervention strategy for the treatment of diabetes-related vascular complications.


Subject(s)
Cell Differentiation , Diabetes Mellitus, Experimental , Interleukin-17 , Physical Conditioning, Animal , STAT3 Transcription Factor , Th17 Cells , Vasodilation , Animals , Mice , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Vasodilation/physiology , STAT3 Transcription Factor/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/therapy , Male , Interleukin-17/blood , Interleukin-17/metabolism , Endothelium, Vascular/physiopathology , Insulin Resistance/physiology , Signal Transduction , Mice, Inbred C57BL , Aorta/physiopathology
2.
Clin Exp Med ; 24(1): 140, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951255

ABSTRACT

Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Cytokines , Interleukin-6 , Janus Kinase 2 , Kidney Neoplasms , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Ubiquitins , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cytokines/metabolism , Ubiquitins/metabolism , Ubiquitins/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Mice , Cell Line, Tumor , Male , Cell Movement , Female , Apoptosis , Gene Expression Regulation, Neoplastic , Prognosis , Disease Progression
3.
Theranostics ; 14(9): 3470-3485, 2024.
Article in English | MEDLINE | ID: mdl-38948063

ABSTRACT

Background: Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC), but acquired resistance during the treatment greatly limits its clinical efficiency. Lipid metabolic disorder plays an important role in hepatocarcinogenesis. However, whether and how lipid metabolic reprogramming regulates sorafenib resistance of HCC cells remains vague. Methods: Sorafenib resistant HCC cells were established by continuous induction. UHPLC-MS/MS, proteomics, and flow cytometry were used to assess the lipid metabolism. ChIP and western blot were used to reflect the interaction of signal transducer and activator of transcription 3 (STAT3) with glycerol-3-phosphate acyltransferase 3 (GPAT3). Gain- and loss-of function studies were applied to explore the mechanism driving sorafenib resistance of HCC. Flow cytometry and CCK8 in vitro, and tumor size in vivo were used to evaluate the sorafenib sensitivity of HCC cells. Results: Our metabolome data revealed a significant enrichment of triglycerides in sorafenib-resistant HCC cells. Further analysis using proteomics and genomics techniques demonstrated a significant increase in the expression of GPAT3 in the sorafenib-resistant groups, which was found to be dependent on the activation of STAT3. The restoration of GPAT3 resensitized HCC cells to sorafenib, while overexpression of GPAT3 led to insensitivity to sorafenib. Mechanistically, GPAT3 upregulation increased triglyceride synthesis, which in turn stimulated the NF-κB/Bcl2 signaling pathway, resulting in apoptosis tolerance upon sorafenib treatment. Furthermore, our in vitro and in vivo studies revealed that pan-GPAT inhibitors effectively reversed sorafenib resistance in HCC cells. Conclusions: Our data demonstrate that GPAT3 elevation in HCC cells reprograms triglyceride metabolism which contributes to acquired resistance to sorafenib, which suggests GPAT3 as a potential target for enhancing the sensitivity of HCC to sorafenib.


Subject(s)
Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , STAT3 Transcription Factor , Sorafenib , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Animals , STAT3 Transcription Factor/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Nude , Xenograft Model Antitumor Assays , Lipid Metabolism/drug effects , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 744-748, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948276

ABSTRACT

Objective: To investigate the roles of histone H3K27me3 methylation and its regulatory enzymes JMJD3 and EZH2 in the differentiation of Th17 cells in ankylosing spondylitis (AS), to unveil their potential involvement in the pathogenesis of AS, and to provide new strategies and targets for the clinical treatment of AS by analyzing the methylation state of H3K27me3 and its interactions with Th17-related factors. Methods: A total of 84 AS patients (42 active AS patiens and 42 patients in the stable phase of AS) were enrolled for the study, while 84 healthy volunteers were enrolled as the controls. Blood samples were collected. Peripheral blood mononuclear cells were isolated. ELISA assay was performed to examine Th17 cells and the relevant cytokines IL-21, IL-22, and IL-17. The mRNA expressions of RORc, JAK2, and STAT3 were analyzed by RT-PCR, the protein expressions of RORc, JAK2/STAT3 pathway protein, H3K27me3 and the relevant protease (EZH2 and JMJD3) were determined by Western blot. Correlation between H3K27me3, EZH2 and JMJD3 and the key signaling pathway molecules of Th cell differentiation was analyzed by Pearson correlation analysis. Results: The mRNA expressions of RORc, JAK2, and STAT3 were significantly higher in the active phase group than those in the stable phase group ( P<0.05). The relative grayscale values of H3K27me3 and EZH2 in the active phase group were lower than those of the stable phase group, which were lower than those of the control group, with the differences being statistically significant ( P<0.05). The relative grayscale values of JMJD3, RORc, JAK2, pJAK2, STAT3, and pSTAT3 proteins were significantly higher in the active phase group than those in the stable phase group, which were higher than those in the control group (all P<0.05). The proportion of Th17 and the expression level of inflammatory factors in the active period group were higher than those in the other two groups (P<0.05). H3K27me3 was negatively correlated with RORc, JAK2, STAT3, and IL-17, JMJD3 was positvely correlated with JAK2, STAT3, and IL-17, and EZH2 was negatively correlated with JAK2, STAT3, and IL-17 (all P<0.05). Conclusion: The low expression of H3K27me3 in AS is influenced by the gene loci JMJD3 and EZH2, which can regulate the differentiation of Th17 cells and thus play a role in the pathogenesis and progression of AS.


Subject(s)
Cell Differentiation , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic , Histones , Interleukin-17 , Jumonji Domain-Containing Histone Demethylases , Nuclear Receptor Subfamily 1, Group F, Member 3 , STAT3 Transcription Factor , Spondylitis, Ankylosing , Th17 Cells , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Th17 Cells/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Histones/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Methylation , Interleukins/metabolism , Interleukins/genetics , Interleukin-22 , Male , Female , Adult
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 520-526, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952091

ABSTRACT

Objective To investigate whether vitamin D3 (VD3) can alleviate Helicobacter pylori (Hp) infection by reducing blood lipids and inhibiting the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Methods High-cholesterol mouse model and Hp infected mouse model were established. Each was treated with VD3 via oral administration for 8 weeks. Real-time quantitative PCR was used to detect the expression of vitamin D receptor (VDR), insulin-induced gene 2 (Insig-2), and gastrin mRNA. Western blot analysis was used to examine the expression of JAK, STAT3, and cyclooxygenase-2 (COX2) proteins in gastric tissues. Biochemical analyses were performed to measure serum cholesterol levels, and ELISA was utilized to evaluate serum gastrin, interleukin 6 (IL-6), and IL-8 levels, along with histopathological examination of liver and gastric tissues using HE staining. Results After oral administration of VD3, the levels of VDR and Insig-2 in mouse liver tissue significantly increased in the high cholesterol group and the high cholesterol combined with Hp infection group. And the expression of serum gastrin decreased. The expression of JAK, STAT3 in gastric tissues reduced, as did the expression of COX2. Serum cholesterol levels decreased, with no significant changes in IL-6 levels, but a reduction in IL-8 levels. Compared to the control group, the high cholesterol combined with Hp infection group showed reduced hepatic ballooning degeneration and alleviated gastric tissue inflammation. In addition, inflammation in gastric tissue was also reduced in the cholesterol group and the Hp infection group. Conclusion VD3 alleviates gastritis by enhancing the activity of VDR in liver tissues, blocking the JAK/STAT3 signaling pathway, and inhibiting the expression of inflammatory factors.


Subject(s)
Cholecalciferol , Gastritis , Helicobacter Infections , Helicobacter pylori , Hypercholesterolemia , Janus Kinases , Liver , Receptors, Calcitriol , STAT3 Transcription Factor , Signal Transduction , Animals , Helicobacter Infections/drug therapy , Helicobacter Infections/metabolism , STAT3 Transcription Factor/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/administration & dosage , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Mice , Janus Kinases/metabolism , Gastritis/drug therapy , Gastritis/metabolism , Gastritis/microbiology , Male , Hypercholesterolemia/metabolism , Hypercholesterolemia/drug therapy
6.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38960622

ABSTRACT

A pleiotropic immunoregulatory cytokine, TGF-ß, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.


Subject(s)
Cell Differentiation , Dendritic Cells , Interferon Regulatory Factors , STAT3 Transcription Factor , Smad3 Protein , Animals , Cell Differentiation/genetics , Dendritic Cells/metabolism , Dendritic Cells/cytology , Smad3 Protein/metabolism , Smad3 Protein/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Mice , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Mice, Knockout , Mice, Inbred C57BL , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Smad2 Protein/metabolism , Smad2 Protein/genetics , Phosphorylation , Signal Transduction
7.
Front Immunol ; 15: 1381802, 2024.
Article in English | MEDLINE | ID: mdl-38966637

ABSTRACT

Background: Yishen-Tongbi Decoction (YSTB), a traditional Chinese prescription, has been used to improve syndromes of rheumatoid arthritis (RA) for many years. Previous research has shown that YSTB has anti-inflammatory and analgesic properties. However, the underlying molecular mechanism of the anti-RA effects of YSTB remains unclear. Purpose and study design: The purpose of this research was to investigate how YSTB affected mice with collagen-induced arthritis (CIA) and RAW264.7 cells induced with lipopolysaccharide (LPS). Results: The findings show that YSTB could significantly improve the clinical arthritic symptoms of CIA mice (mitigate paw swelling, arthritis score, thymus and spleen indices, augment body weight), downregulated expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-17, while upregulated the level of anti-inflammatory like IL-10 and transforming growth factor-ß (TGF-ß). Meanwhile, YSTB inhibits bone erosion and reduces inflammatory cell infiltration, synovial proliferation, and joint destruction in CIA mice. In addition, we found that YSTB was able to suppress the LPS-induced inflammation of RAW264.7 cells, which was ascribed to the suppression of nitric oxide (NO) production and reactive oxygen species formation (ROS). YSTB also inhibited the production of inducible nitric oxide synthase and reduced the releases of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in LPS-induced RAW264.7 cells. Furthermore, the phosphorylation expression of JAK2, JAK3, STAT3, p38, ERK and p65 protein could be suppressed by YSTB, while the expression of SOCS3 could be activated. Conclusion: Taken together, YSTB possesses anti-inflammatory and prevention bone destruction effects in RA disease by regulating the JAK/STAT3/SOCS3 signaling pathway.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Janus Kinases , STAT3 Transcription Factor , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , RAW 264.7 Cells , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Signal Transduction/drug effects , Janus Kinases/metabolism , Male , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Mice, Inbred DBA , Disease Models, Animal
8.
J Cell Mol Med ; 28(13): e18493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963241

ABSTRACT

Interleukin-5 (IL-5) has been reported to be involved in cardiovascular diseases, such as atherosclerosis and cardiac injury. This study aimed to investigate the effects of IL-5 on cardiac remodelling. Mice were infused with angiotensin II (Ang II), and the expression and source of cardiac IL-5 were analysed. The results showed that cardiac IL-5 expression was time- and dose-dependently decreased after Ang II infusion, and was mainly derived from cardiac macrophages. Additionally, IL-5-knockout (IL-5-/-) mice were used to observe the effects of IL-5 knockout on Ang II-induced cardiac remodelling. We found knockout of IL-5 significantly increased the expression of cardiac hypertrophy markers, elevated myocardial cell cross-sectional areas and worsened cardiac dysfunction in Ang II-infused mice. IL-5 deletion also promoted M2 macrophage differentiation and exacerbated cardiac fibrosis. Furthermore, the effects of IL-5 deletion on cardiac remodelling was detected after the STAT3 pathway was inhibited by S31-201. The effects of IL-5 on cardiac remodelling and M2 macrophage differentiation were reversed by S31-201. Finally, the effects of IL-5 on macrophage differentiation and macrophage-related cardiac hypertrophy and fibrosis were analysed in vitro. IL-5 knockout significantly increased the Ang II-induced mRNA expression of cardiac hypertrophy markers in myocardial cells that were co-cultured with macrophages, and this effect was reversed by S31-201. Similar trends in the mRNA levels of fibrosis markers were observed when cardiac fibroblasts and macrophages were co-cultured. In conclusions, IL-5 deficiency promote the differentiation of M2 macrophages by activating the STAT3 pathway, thereby exacerbating cardiac remodelling in Ang II-infused mice. IL-5 may be a potential target for the clinical prevention of cardiac remodelling.


Subject(s)
Angiotensin II , Cardiomegaly , Fibrosis , Interleukin-5 , Macrophages , Mice, Knockout , STAT3 Transcription Factor , Signal Transduction , Ventricular Remodeling , Animals , Angiotensin II/pharmacology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Ventricular Remodeling/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Interleukin-5/metabolism , Interleukin-5/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/genetics , Cardiomegaly/chemically induced , Male , Mice, Inbred C57BL , Cell Differentiation , Myocardium/metabolism , Myocardium/pathology
9.
Ren Fail ; 46(2): 2371988, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38952291

ABSTRACT

AIMS: Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS: This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS: In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION: CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.


Subject(s)
Chlorogenic Acid , Diabetic Nephropathies , Fibrosis , Kidney , Lipid Metabolism , Receptor, Notch1 , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , Receptor, Notch1/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Signal Transduction/drug effects , Fibrosis/drug therapy , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Humans , Mice , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Lipid Metabolism/drug effects , Molecular Docking Simulation , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line
10.
Oncotarget ; 15: 424-438, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953895

ABSTRACT

Single-agent TAS102 (trifluridine/tipiracil) and regorafenib are FDA-approved treatments for metastatic colorectal cancer (mCRC). We previously reported that regorafenib combined with a fluoropyrimidine can delay disease progression in clinical case reports of multidrug-resistant mCRC patients. We hypothesized that the combination of TAS102 and regorafenib may be active in CRC and other gastrointestinal (GI) cancers and may in the future provide a treatment option for patients with advanced GI cancer. We investigated the therapeutic effect of TAS102 in combination with regorafenib in preclinical studies employing cell culture, colonosphere assays that enrich for cancer stem cells, and in vivo. TAS102 in combination with regorafenib has synergistic activity against multiple GI cancers in vitro including colorectal and gastric cancer, but not liver cancer cells. TAS102 inhibits colonosphere formation and this effect is potentiated by regorafenib. In vivo anti-tumor effects of TAS102 plus regorafenib appear to be due to anti-proliferative effects, necrosis and angiogenesis inhibition. Growth inhibition by TAS102 plus regorafenib occurs in xenografted tumors regardless of p53, KRAS or BRAF mutations, although more potent tumor suppression was observed with wild-type p53. Regorafenib significantly inhibits TAS102-induced angiogenesis and microvessel density in xenografted tumors, as well inhibits TAS102-induced ERK1/2 activation regardless of RAS or BRAF status in vivo. TAS102 plus regorafenib is a synergistic drug combination in preclinical models of GI cancer, with regorafenib suppressing TAS102-induced increase in microvessel density and p-ERK as contributing mechanisms. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.


Subject(s)
Drug Combinations , Drug Synergism , Gastrointestinal Neoplasms , Mutation , Neoplastic Stem Cells , Neovascularization, Pathologic , Phenylurea Compounds , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Pyridines , Pyrrolidines , STAT3 Transcription Factor , Thymine , Trifluridine , Uracil , Xenograft Model Antitumor Assays , Humans , Trifluridine/pharmacology , Phenylurea Compounds/pharmacology , Animals , Pyridines/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/metabolism , Uracil/pharmacology , Uracil/analogs & derivatives , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Thymine/pharmacology , Cell Line, Tumor , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Cell Proliferation/drug effects , Angiogenesis
11.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38949650

ABSTRACT

Germline activating mutations in STAT3 cause a multi-systemic autoimmune and autoinflammatory condition. By studying a mouse model, Toth et al. (https://doi.org/10.1084/jem.20232091) propose a role for dysregulated IL-22 production by Th17 cells in causing some aspects of immune-mediated skin inflammation in human STAT3 GOF syndrome.


Subject(s)
Interleukin-22 , STAT3 Transcription Factor , Skin , Th17 Cells , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Animals , Humans , Th17 Cells/immunology , Th17 Cells/metabolism , Skin/metabolism , Skin/pathology , Interleukins/genetics , Interleukins/metabolism , Gain of Function Mutation , Mice , Inflammation/metabolism
12.
Cell Mol Life Sci ; 81(1): 255, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856747

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor; GBM's inevitable recurrence suggests that glioblastoma stem cells (GSC) allow these tumors to persist. Our previous work showed that FOSL1, transactivated by the STAT3 gene, functions as a tumorigenic gene in glioma pathogenesis and acts as a diagnostic marker and potential drug target in glioma patients. Accumulating evidence shows that STAT3 and NF-κB cooperate to promote the development and progression of various cancers. The link between STAT3 and NF-κB suggests that NF-κB can also transcriptionally regulate FOSL1 and contribute to gliomagenesis. To investigate downstream molecules of FOSL1, we analyzed the transcriptome after overexpressing FOSL1 in a PDX-L14 line characterized by deficient FOSL1 expression. We then conducted immunohistochemical staining for FOSL1 and NF-κB p65 using rabbit polyclonal anti-FOSL1 and NF-κB p65 in glioma tissue microarrays (TMA) derived from 141 glioma patients and 15 healthy individuals. Next, mutants of the human FOSL1 promoter, featuring mutations in essential binding sites for NF-κB were generated using a Q5 site-directed mutagenesis kit. Subsequently, we examined luciferase activity in glioma cells and compared it to the wild-type FOSL1 promoter. Then, we explored the mutual regulation between NF-κB signaling and FOSL1 by modulating the expression of NF-κB or FOSL1. Subsequently, we assessed the activity of FOSL1 and NF-κB. To understand the role of FOSL1 in cell growth and stemness, we conducted a CCK-8 assay and cell cycle analysis, assessing apoptosis and GSC markers, ALDH1, and CD133 under varying FOSL1 expression conditions. Transcriptome analyses of downstream molecules of FOSL1 show that NF-κB signaling pathway is regulated by FOSL1. NF-κB p65 protein expression correlates to the expression of FOSL1 in glioma patients, and both are associated with glioma grades. NF-κB is a crucial transcription factor activating the FOSL1 promoter in glioma cells. Mutual regulation between NF-κB and FOSL1 contributes to glioma tumorigenesis and stemness through promoting G1/S transition and inhibiting apoptosis. Therefore, the FOSL1 molecular pathway is functionally connected to NF-κB activation, enhances stemness, and is indicative that FOSL1 may potentially be a novel GBM drug target.


Subject(s)
Gene Expression Regulation, Neoplastic , NF-kappa B , Neoplastic Stem Cells , Promoter Regions, Genetic , Proto-Oncogene Proteins c-fos , Animals , Humans , Mice , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/pathology , Glioma/genetics , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
13.
Sci Rep ; 14(1): 13430, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862696

ABSTRACT

Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.


Subject(s)
Apigenin , Apoptosis , Glucuronates , Janus Kinase 2 , Microglia , STAT3 Transcription Factor , Signal Transduction , Animals , Apigenin/pharmacology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Glucuronates/pharmacology , PC12 Cells , Apoptosis/drug effects , Microglia/drug effects , Microglia/metabolism , Signal Transduction/drug effects , Rats , Mice , Caspase 3/metabolism , Glucose/metabolism , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , bcl-2-Associated X Protein/metabolism , Tyrphostins/pharmacology
14.
Int J Immunopathol Pharmacol ; 38: 3946320241260635, 2024.
Article in English | MEDLINE | ID: mdl-38831558

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder mainly affecting joints, yet the systemic inflammation can influence other organs and tissues. The objective of this study was to unravel the ameliorative capability of Ondansetron (O) or ß-sitosterol (BS) against inflammatory reactions and oxidative stress that complicates Extra-articular manifestations (EAM) in liver, kidney, lung, and heart of arthritic and arthritic irradiated rats. METHODS: This was accomplished by exposing adjuvant-induced arthritis (AIA) rats to successive weekly fractions of total body γ-irradiation (2 Gray (Gy)/fraction once per week for four weeks, up to a total dose of 8 Gy). Arthritic and/or arthritic irradiated rats were either treated with BS (40 mg/kg b.wt. /day, orally) or O (2 mg/kg) was given ip) or were kept untreated as model groups. RESULTS: Body weight changes, paw circumference, oxidative stress indices, inflammatory response biomarkers, expression of Janus kinase-2 (JAK-2), Signal transducer and activator of transcription 3 (STAT3), high mobility group box1 (HMGB1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as pro- and anti-inflammatory mediators in the target organs, besides histopathological examination of ankle joints and extra-articular tissues. Treatment of arthritic and/or arthritic irradiated rats with BS or O powerfully alleviated changes in body weight gain, paw swelling, oxidative stress, inflammatory reactions, and histopathological degenerative alterations in articular and non-articular tissues. CONCLUSION: The obtained data imply that BS or O improved the articular and EAM by regulating oxidative and inflammatory indices in arthritic and arthritic irradiated rats.


Subject(s)
Arthritis, Experimental , Kidney , Liver , Lung , Ondansetron , Oxidative Stress , Sitosterols , Animals , Sitosterols/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/radiation effects , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney/radiation effects , Oxidative Stress/drug effects , Rats , Liver/drug effects , Liver/pathology , Liver/metabolism , Liver/radiation effects , Male , Ondansetron/pharmacology , HMGB1 Protein/metabolism , Heart/drug effects , Heart/radiation effects , Myocardium/pathology , Myocardium/metabolism , Inflammation/pathology , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , STAT3 Transcription Factor/metabolism , Rats, Wistar
15.
Cells ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891028

ABSTRACT

Cervical cancer (CC) remains among the most frequent cancers worldwide despite advances in screening and the development of vaccines against human papillomavirus (HPV), involved in virtually all cases of CC. In mid-income countries, a substantial proportion of the cases are diagnosed in advanced stages, and around 40% of them are diagnosed in women under 49 years, just below the global median age. This suggests that members of this age group share common risk factors, such as chronic inflammation. In this work, we studied samples from 46 patients below 45 years old, searching for a miRNA profile regulating cancer pathways. We found 615 differentially expressed miRNAs between tumor samples and healthy tissues. Through bioinformatic analysis, we found that several of them targeted elements of the JAK/STAT pathway and other inflammation-related pathways. We validated the interactions of miR-30a and miR-34c with JAK1 and STAT3, respectively, through dual-luciferase and expression assays in cervical carcinoma-derived cell lines. Finally, through knockdown experiments, we observed that these miRNAs decreased viability and promoted proliferation in HeLa cells. This work contributes to understanding the mechanisms through which HPV regulates inflammation, in addition to its canonical oncogenic function, and brings attention to the JAK/STAT signaling pathway as a possible diagnostic marker for CC patients younger than 45 years. To our knowledge to date, there has been no previous description of a panel of miRNAs or even ncRNAs in young women with locally advanced cervical cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Inflammation , MicroRNAs , STAT3 Transcription Factor , Signal Transduction , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , Adult , Inflammation/genetics , Inflammation/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , HeLa Cells , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Middle Aged
16.
Exp Dermatol ; 33(6): e15112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840385

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) ranks as the second most prevalent skin tumour (excluding melanoma). However, the molecular mechanisms driving cSCC progression remain elusive. This study aimed to investigate GBP1 expression in cSCC and elucidate its potential molecular mechanisms underlying cSCC development. GBP1 expression was assessed across public databases, cell lines and tissue samples. Various assays, including clone formation, CCK8 and EdU were employed to evaluate cell proliferation, while wound healing and transwell assays determined cell migration and invasion. Subcutaneous tumour assays were conducted to assess in vivo tumour proliferation, and molecular mechanisms were explored through western blotting, immunofluorescence and immunoprecipitation. Results identified GBP1 as an oncogene in cSCC, with elevated expression in both tumour tissues and cells, strongly correlating with tumour stage and grade. In vitro and in vivo investigations revealed that increased GBP1 expression significantly enhanced cSCC cell proliferation, migration and invasion. Mechanistically, GBP1 interaction with SP1 promoted STAT3 activation, contributing to malignant behaviours. In conclusion, the study highlights the crucial role of the GBP1/SP1/STAT3 signalling axis in regulating tumour progression in cSCC. These findings provide valuable insights into the molecular mechanisms of cSCC development and offer potential therapeutic targets for interventions against cSCC.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , GTP-Binding Proteins , Neoplasm Invasiveness , STAT3 Transcription Factor , Skin Neoplasms , Sp1 Transcription Factor , STAT3 Transcription Factor/metabolism , Humans , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Sp1 Transcription Factor/metabolism , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Cell Line, Tumor , Animals , Mice , Signal Transduction , Female , Mice, Nude
17.
Exp Dermatol ; 33(6): e15111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840411

ABSTRACT

Keloids are pathological scar tissue resulting from skin trauma or spontaneous formation, often accompanied by itching and pain. Although GNAS antisense RNA 1 (GNAS-AS1) shows abnormal upregulation in keloids, the underlying molecular mechanism is unclear. The levels of genes and proteins in clinical tissues from patients with keloids and human keloid fibroblasts (HKFs) were measured using quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay. The features of HKFs, including proliferation and migration, were evaluated using cell counting kit 8 and a wound healing assay. The colocalization of GNAS-AS1 and miR-196a-5p in HKFs was measured using fluorescence in situ hybridization. The relationships among GNAS-AS1, miR-196a-5p and C-X-C motif chemokine ligand 12 (CXCL12) in samples from patients with keloids were analysed by Pearson correlation analysis. Gene interactions were validated by chromatin immunoprecipitation and luciferase reporter assays. GNAS-AS1 and CXCL12 expression were upregulated and miR-196a-5p expression was downregulated in clinical tissues from patients with keloids. GNAS-AS1 knockdown inhibited proliferation, migration, and extracellular matrix (ECM) accumulation of HKFs, all of which were reversed by miR-196a-5p downregulation. Signal transducer and activator of transcription 3 (STAT3) induced GNAS-AS1 transcription through GNAS-AS1 promoter interaction, and niclosamide, a STAT3 inhibitor, decreased GNAS-AS1 expression. GNAS-AS1 positively regulated CXCL12 by sponging miR-196-5p. Furthermore, CXCL12 knockdown restrained STAT3 phosphorylation in HKFs. Our findings revealed a feedback loop of STAT3/GNAS-AS1/miR-196a-5p/CXCL12/STAT3 that promoted HKF proliferation, migration and ECM accumulation and affected keloid progression.


Subject(s)
Cell Proliferation , Chemokine CXCL12 , Fibroblasts , Keloid , MicroRNAs , RNA, Long Noncoding , STAT3 Transcription Factor , Keloid/metabolism , Keloid/genetics , Keloid/pathology , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Fibroblasts/metabolism , Cell Movement , Feedback, Physiological , Chromogranins/genetics , Chromogranins/metabolism , Male , Female , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Signal Transduction , Adult , Cells, Cultured , Up-Regulation
18.
Arthritis Res Ther ; 26(1): 121, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879555

ABSTRACT

BACKGROUND: Janus kinase (JAK) inhibitors, such as baricitinib, are widely used to treat rheumatoid arthritis (RA). Clinical studies show that baricitinib is more effective at reducing pain than other similar drugs. Here, we aimed to elucidate the molecular mechanisms underlying the pain relief conferred by baricitinib, using a mouse model of arthritis. METHODS: We treated collagen antibody-induced arthritis (CAIA) model mice with baricitinib, celecoxib, or vehicle, and evaluated the severity of arthritis, histological findings of the spinal cord, and pain-related behaviours. We also conducted RNA sequencing (RNA-seq) to identify alterations in gene expression in the dorsal root ganglion (DRG) following baricitinib treatment. Finally, we conducted in vitro experiments to investigate the direct effects of baricitinib on neuronal cells. RESULTS: Both baricitinib and celecoxib significantly decreased CAIA and improved arthritis-dependent grip-strength deficit, while only baricitinib notably suppressed residual tactile allodynia as determined by the von Frey test. CAIA induction of inflammatory cytokines in ankle synovium, including interleukin (IL)-1ß and IL-6, was suppressed by treatment with either baricitinib or celecoxib. In contrast, RNA-seq analysis of the DRG revealed that baricitinib, but not celecoxib, restored gene expression alterations induced by CAIA to the control condition. Among many pathways changed by CAIA and baricitinib treatment, the interferon-alpha/gamma, JAK-signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways were considerably decreased in the baricitinib group compared with the celecoxib group. Notably, only baricitinib decreased the expression of colony-stimulating factor 1 (CSF-1), a potent cytokine that causes neuropathic pain through activation of the microglia-astrocyte axis in the spinal cord. Accordingly, baricitinib prevented increases in microglia and astrocytes caused by CAIA. Baricitinib also suppressed JAK/STAT3 pathway activity and Csf1 expression in cultured neuronal cells. CONCLUSIONS: Our findings demonstrate the effects baricitinib has on the DRG in relation to ameliorating both inflammatory and neuropathic pain.


Subject(s)
Arthritis, Experimental , Azetidines , Ganglia, Spinal , Interleukin-6 , Janus Kinases , Neuralgia , Purines , Pyrazoles , STAT3 Transcription Factor , Signal Transduction , Sulfonamides , Animals , Azetidines/pharmacology , Azetidines/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , STAT3 Transcription Factor/metabolism , Purines/pharmacology , Arthritis, Experimental/metabolism , Arthritis, Experimental/drug therapy , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Neuralgia/drug therapy , Neuralgia/metabolism , Janus Kinases/metabolism , Signal Transduction/drug effects , Mice , Interleukin-6/metabolism , Male , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Mice, Inbred DBA , Inflammation/metabolism , Inflammation/drug therapy , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 663-669, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926951

ABSTRACT

OBJECTIVE: To investigate the effects of the serine/threonine kinase family member 1 (PIM1) gene on the proliferation and apoptosis of acute myeloid leukemia (AML) U937 cells, and the regulation effect on Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. METHODS: Bone marrow mononuclear cells from newly diagnosed adult AML patients and patients with iron deficiency anemia were collected and PIM1 mRNA expression was detected by RT-qPCR. AML cell line U937 cells were divided into U937 group (U937 cells were cultured normally), Si-PIM1 group (U937 cells were transfected with low expression adenovirus vector containing PIM1 mRNA), Si-NC group (U937 cells were transfected with low expression adenovirus vector without PIM1 mRNA), coumermycin A1 (CoA1) group (JAK2 activator CoA1 was added to U937 cells at a concentration of 20 µmol/L), and Si-PIM1+CoA1 group (U937 cells were transfected with adenoviral vector containing low expression of PIM1 mRNA and added with CoA1 at a concentration of 20 µmol/L). After culture for 24 h, the expressions of PIM1 mRNA and protein, JAK2/STAT3 pathway, cell cycle and apoptosis-related proteins in U937 cells were detected by RT-qPCR and Western blot, the cell proliferation activity was detected by MTT assay, and flow cytometry was used to detect cell cycle changes and apoptosis rate. RESULTS: The PIM1 mRNA expression level in bone marrow mononuclear cells in AML patients was higher than that in patients with iron deficiency anemia (P < 0.05). Compared with U937 group, PIM1 mRNA and protein, phosphorylated JAK2 (p-JAK2)/JAK2, phosphorylated STAT3 (p-STAT3)/STAT3, Cyclin D1, cyclin-dependent kinase 2 (CDK2) protein, cell proliferation activity, S phase and G 2/M phase proportions were decreased in Si-PIM1 group (all P < 0.05), while p27, Caspase-3 protein, G0/G1 phase proportion and apoptosis rate were increased (all P < 0.05). However, the changes of above indicators in CoA1 group were just opposite to those in Si-PIM1 group, indicating that CoA1 could reverse the effect of Si-PIM1 on U937 cells. There were no significant differences in above indexes of U937 cells between U937 group, Si-PIM1+CoA1 group and Si-NC group (P >0.05). CONCLUSION: Knockdown of PIM1 gene expression can inhibit U937 cell proliferation and promote apoptosis, in order to alleviate ALM process, which may be related to the inhibition of JAK2/STAT3 pathway activation.


Subject(s)
Apoptosis , Cell Proliferation , Janus Kinase 2 , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-pim-1 , STAT3 Transcription Factor , Signal Transduction , Humans , Janus Kinase 2/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , STAT3 Transcription Factor/metabolism , Leukemia, Myeloid, Acute/genetics , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...