Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.244
Filter
1.
Food Res Int ; 190: 114637, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945626

ABSTRACT

Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.


Subject(s)
Butanols , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Butanols/metabolism , Fermentation , Ethanol/metabolism , Ethanol/pharmacology , 1-Butanol/metabolism , Ultraviolet Rays , Adaptation, Physiological
2.
Biomolecules ; 14(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927066

ABSTRACT

The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of (heterologous) nonself-DNA. The self-DNA treatment determined a reduction in the growth rate and a major elongation of the diauxic lag phase, as well as a significant delay in the achievement of the stationary phase. This was associated with significant changes in the cell cycle dynamics, with slower exit from the G0 phase, followed by an increased level of cell percentage in the S phase, during the cultivation. Comparatively, the exposure to heterologous DNA did not affect the growth curve and the cell cycle dynamics. The transcriptomic analysis showed that self-DNA exposure produced a generalized downregulation of transmembrane transport and an upregulation of genes associated with sulfur compounds and the pentose phosphate pathway. Instead, in the case of the nonself treatment, a clear response to nutrient deprivation was detected. Overall, the presented findings represent further insights into the complex functional mechanisms of self-DNA inhibition.


Subject(s)
Cell Cycle , Saccharomyces cerevisiae , Transcriptome , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Cell Cycle/genetics , Batch Cell Culture Techniques , Gene Expression Regulation, Fungal , DNA/metabolism , Glucose/metabolism
3.
Appl Microbiol Biotechnol ; 108(1): 393, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916650

ABSTRACT

Grass raw materials collected from grasslands cover more than 30% of Europe's agricultural area. They are considered very attractive for the production of different biochemicals and biofuels due to their high availability and renewability. In this study, a perennial ryegrass (Lolium perenne) was exploited for second-generation bioethanol production. Grass press-cake and grass press-juice were separated using mechanical pretreatment, and the obtained juice was used as a fermentation medium. In this work, Saccharomyces cerevisiae was utilized for bioethanol production using the grass press-juice as the sole fermentation medium. The yeast was able to release about 11 g/L of ethanol in 72 h, with a total production yield of 0.38 ± 0.2 gEthanol/gsugars. It was assessed to improve the fermentation ability of Saccharomyces cerevisiae by using the short-term adaptation. For this purpose, the yeast was initially propagated in increasing the concentration of press-juice. Then, the yeast cells were re-cultivated in 100%(v/v) fresh juice to verify if it had improved the fermentation efficiency. The fructose conversion increased from 79 to 90%, and the ethanol titers reached 18 g/L resulting in a final yield of 0.50 ± 0.06 gEthanol/gsugars with a volumetric productivity of 0.44 ± 0.00 g/Lh. The overall results proved that short-term adaptation was successfully used to improve bioethanol production with S. cerevisiae using grass press-juice as fermentation medium. KEY POINTS: • Mechanical pretreatment of grass raw materials • Production of bioethanol using grass press-juice as fermentation medium • Short-term adaptation as a tool to improve the bioethanol production.


Subject(s)
Biofuels , Culture Media , Ethanol , Fermentation , Saccharomyces cerevisiae , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Culture Media/chemistry , Lolium/metabolism , Fructose/metabolism , Adaptation, Physiological
4.
Appl Microbiol Biotechnol ; 108(1): 374, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878128

ABSTRACT

2-Phenylethanol (2-PE) is an aromatic compound with a rose-like fragrance that is widely used in food and other industries. Yeasts have been implicated in the biosynthesis of 2-PE; however, few studies have reported the involvement of filamentous fungi. In this study, 2-PE was detected in Annulohypoxylon stygium mycelia grown in both potato dextrose broth (PDB) and sawdust medium. Among the 27 A. stygium strains investigated in this study, the strain "Jinjiling" (strain S20) showed the highest production of 2-PE. Under optimal culture conditions, the concentration of 2-PE was 2.33 g/L. Each of the key genes in Saccharomyces cerevisiae shikimate and Ehrlich pathways was found to have homologous genes in A. stygium. Upon the addition of L-phenylalanine to the medium, there was an upregulation of all key genes in the Ehrlich pathway of A. stygium, which was consistent with that of S. cerevisiae. A. stygium as an associated fungus provides nutrition for the growth of Tremella fuciformis and most spent composts of T. fuciformis contain pure A. stygium mycelium. Our study on the high-efficiency biosynthesis of 2-PE in A. stygium offers a sustainable solution by utilizing the spent compost of T. fuciformis and provides an alternative option for the production of natural 2-PE. KEY POINTS: • Annulohypoxylon stygium can produce high concentration of 2-phenylethanol. • The pathways of 2-PE biosynthesis in Annulohypoxylon stygium were analyzed. • Spent compost of Tremella fuciformis is a potential source for 2-phenylethanol.


Subject(s)
Culture Media , Phenylethyl Alcohol , Phenylethyl Alcohol/metabolism , Culture Media/chemistry , Mycelium/growth & development , Mycelium/metabolism , Mycelium/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Phenylalanine/metabolism
5.
Curr Biol ; 34(12): 2672-2683.e4, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38823384

ABSTRACT

Cell division without cell separation produces multicellular clusters in budding yeast. Two fundamental characteristics of these clusters are their size (the number of cells per cluster) and cellular composition: the fractions of cells with different phenotypes. Using cells as nodes and links between mother and daughter cells as edges, we model cluster growth and breakage by varying three parameters: the cell division rate, the rate at which intercellular connections break, and the kissing number (the maximum number of connections to one cell). We find that the kissing number sets the maximum possible cluster size. Below this limit, the ratio of the cell division rate to the connection breaking rate determines the cluster size. If links have a constant probability of breaking per unit time, the probability that a link survives decreases exponentially with its age. Modeling this behavior recapitulates experimental data. We then use this framework to examine synthetic, differentiating clusters with two cell types, faster-growing germ cells and their somatic derivatives. The fraction of clusters that contain both cell types increases as either of two parameters increase: the kissing number and difference between the growth rate of germ and somatic cells. In a population of clusters, the variation in cellular composition is inversely correlated (r2 = 0.87) with the average fraction of somatic cells in clusters. Our results show how a small number of cellular features can control the phenotypes of multicellular clusters that were potentially the ancestors of more complex forms of multicellular development, organization, and reproduction.


Subject(s)
Models, Biological , Phenotype , Cell Division/physiology , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/cytology
6.
Food Microbiol ; 122: 104545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839231

ABSTRACT

Despite their acidic pH, carbonated beverages can be contaminated by spoilage microorganisms. Thermal treatments, before and/or after carbonation, are usually applied to prevent the growth of these microorganisms. However, the impact of CO2 on the heat resistance of spoilage microorganisms has never been studied. A better understanding of the combined impact of CO2 and pH on the heat resistance of spoilage microorganisms commonly found in carbonated beverages might allow to optimize thermal treatment. Five microorganisms were selected for this study: Alicyclobacillus acidoterrestris (spores), Aspergillus niger (spores), Byssochlamys fulva (spores), Saccharomyces cerevisiae (vegetative cells), and Zygosaccharomyces parabailii (vegetative cells). A method was developed to assess the impact of heat treatments in carbonated media on microbial resistance. The heat resistances of the five studied species are coherent with the literature, when data were available. However, neither the dissolved CO2 concentration (from 0 to 7 g/L), nor the pH (from 2.8 to 4.1) have an impact on the heat resistance of the selected microorganisms, except for As. niger, for which the presence of dissolved CO2 reduced the heat resistance. This study improved our knowledge about the heat resistance of some spoilage microorganisms in presence of CO2.


Subject(s)
Aspergillus niger , Hot Temperature , Aspergillus niger/growth & development , Hydrogen-Ion Concentration , Carbon Dioxide/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology , Alicyclobacillus/growth & development , Alicyclobacillus/physiology , Carbonated Beverages/microbiology , Byssochlamys/growth & development , Food Microbiology , Zygosaccharomyces/growth & development , Zygosaccharomyces/physiology , Food Contamination/analysis , Food Contamination/prevention & control , Culture Media/chemistry , Culture Media/metabolism
7.
Sci Rep ; 14(1): 12869, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834614

ABSTRACT

In this work, the effect of moderate electromagnetic fields (2.5, 10, and 15 mT) was studied using an immersed coil inserted directly into a bioreactor on batch cultivation of yeast under both aerobic and anaerobic conditions. Throughout the cultivation, parameters, including CO2 levels, O2 saturation, nitrogen consumption, glucose uptake, ethanol production, and yeast growth (using OD 600 measurements at 1-h intervals), were analysed. The results showed that 10 and 15 mT magnetic fields not only statistically significantly boosted and sped up biomass production (by 38-70%), but also accelerated overall metabolism, accelerating glucose, oxygen, and nitrogen consumption, by 1-2 h. The carbon balance analysis revealed an acceleration in ethanol and glycerol production, albeit with final concentrations by 22-28% lower, with a more pronounced effect in aerobic cultivation. These findings suggest that magnetic fields shift the metabolic balance toward biomass formation rather than ethanol production, showcasing their potential to modulate yeast metabolism. Considering coil heating, opting for the 10 mT magnetic field is preferable due to its lower heat generation. In these terms, we propose that magnetic field can be used as novel tool to increase biomass yield and accelerate yeast metabolism.


Subject(s)
Biomass , Ethanol , Fermentation , Magnetic Fields , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Aerobiosis , Anaerobiosis , Ethanol/metabolism , Glucose/metabolism , Bioreactors/microbiology , Glycerol/metabolism , Oxygen/metabolism , Nitrogen/metabolism
8.
World J Microbiol Biotechnol ; 40(8): 246, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902402

ABSTRACT

Saccharomyces cerevisiae, the primary microorganism involved in ethanol production, is hindered by the accumulation of ethanol, leading to reduced ethanol production. In this study, we employed histidine-modified Fe3O4 nanoparticles (His-Fe3O4) for the first time, to the best of our knowledge, as a method to enhance ethanol yield during the S. cerevisiae fermentation process. The results demonstrated that exposing S. cerevisiae cells to Fe3O4 nanoparticles (Fe3O4 NPs) led to increased cell proliferation and glucose consumption. Moreover, the introduction of His-Fe3O4 significantly boosted ethanol content by 17.3% (p < 0.05) during fermentation. Subsequent findings indicated that the increase in ethanol content was associated with enhanced ethanol tolerance and improved electron transport efficiency. This study provided evidence for the positive effects of His-Fe3O4 on S. cerevisiae cells and proposed a straightforward approach to enhance ethanol production in S. cerevisiae fermentation. The mediation of improved ethanol tolerance offers significant potential in the fermentation and bioenergy sectors.


Subject(s)
Ethanol , Fermentation , Glucose , Histidine , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Ethanol/metabolism , Histidine/metabolism , Glucose/metabolism , Electron Transport/drug effects , Magnetite Nanoparticles
9.
FEBS Lett ; 598(13): 1655-1666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750637

ABSTRACT

Cymoxanil (CYM) is a widely used synthetic acetamide fungicide, but its biochemical mode of action remains elusive. Since CYM inhibits cell growth, biomass production, and respiration in Saccharomyces cerevisiae, we used this model to characterize the effect of CYM on mitochondria. We found it inhibits oxygen consumption in both whole cells and isolated mitochondria, specifically inhibiting cytochrome c oxidase (CcO) activity during oxidative phosphorylation. Based on molecular docking, we propose that CYM blocks the interaction of cytochrome c with CcO, hampering electron transfer and inhibiting CcO catalytic activity. Although other targets cannot be excluded, our data offer valuable insights into the mode of action of CYM that will be instrumental in driving informed management of the use of this fungicide.


Subject(s)
Electron Transport Complex IV , Fungicides, Industrial , Mitochondria , Molecular Docking Simulation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/enzymology , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/antagonists & inhibitors , Fungicides, Industrial/pharmacology , Fungicides, Industrial/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Oxygen Consumption/drug effects , Oxidative Phosphorylation/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors
10.
Proc Natl Acad Sci U S A ; 121(20): e2310771121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709917

ABSTRACT

Shifts in the hydrogen stable isotopic composition (2H/1H ratio) of lipids relative to water (lipid/water 2H-fractionation) at natural abundances reflect different sources of the central cellular reductant, NADPH, in bacteria. Here, we demonstrate that lipid/water 2H-fractionation (2εfattyacid/water) can also constrain the relative importance of key NADPH pathways in eukaryotes. We used the metabolically flexible yeast Saccharomyces cerevisiae, a microbial model for respiratory and fermentative metabolism in industry and medicine, to investigate 2εfattyacid/water. In chemostats, fatty acids from glycerol-respiring cells were >550‰ 2H-enriched compared to those from cells aerobically fermenting sugars via overflow metabolism, a hallmark feature in cancer. Faster growth decreased 2H/1H ratios, particularly in glycerol-respiring cells by 200‰. Variations in the activities and kinetic isotope effects among NADP+-reducing enzymes indicate cytosolic NADPH supply as the primary control on 2εfattyacid/water. Contributions of cytosolic isocitrate dehydrogenase (cIDH) to NAPDH production drive large 2H-enrichments with substrate metabolism (cIDH is absent during fermentation but contributes up to 20 percent NAPDH during respiration) and slower growth on glycerol (11 percent more NADPH from cIDH). Shifts in NADPH demand associated with cellular lipid abundance explain smaller 2εfattyacid/water variations (<30‰) with growth rate during fermentation. Consistent with these results, tests of murine liver cells had 2H-enriched lipids from slower-growing, healthy respiring cells relative to fast-growing, fermenting hepatocellular carcinoma. Our findings point to the broad potential of lipid 2H/1H ratios as a passive natural tracker of eukaryotic metabolism with applications to distinguish health and disease, complementing studies that rely on complex isotope-tracer addition methods.


Subject(s)
Fatty Acids , Fermentation , NADP , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Fatty Acids/metabolism , NADP/metabolism , Aerobiosis , Deuterium/metabolism , Humans , Glycerol/metabolism , Isocitrate Dehydrogenase/metabolism
11.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38722822

ABSTRACT

Cell growth is required for cell cycle progression. The amount of growth required for cell cycle progression is reduced in poor nutrients, which leads to a reduction in cell size. In budding yeast, nutrients can influence cell size by modulating the extent of bud growth, which occurs predominantly in mitosis. However, the mechanisms are unknown. Here, we used mass spectrometry to identify proteins that modulate bud growth in response to nutrient availability. This led to the discovery that nutrients regulate numerous components of the mitotic exit network (MEN), which controls exit from mitosis. A key component of the MEN undergoes gradual multisite phosphorylation during bud growth that is dependent upon bud growth and correlated with the extent of growth. Furthermore, activation of the MEN is sufficient to override a growth requirement for mitotic exit. The data suggest a model in which the MEN ensures that mitotic exit occurs only when an appropriate amount of bud growth has occurred.


Subject(s)
Mitosis , Saccharomyces cerevisiae , Signal Transduction , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Nutrients/metabolism , Phosphorylation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/growth & development
12.
Proc Natl Acad Sci U S A ; 121(21): e2400679121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753514

ABSTRACT

Experimental observations tracing back to the 1960s imply that ribosome quantities play a prominent role in determining a cell's growth. Nevertheless, in biologically relevant scenarios, growth can also be influenced by the levels of mRNA and RNA polymerase. Here, we construct a quantitative model of biosynthesis providing testable scenarios for these situations. The model explores a theoretically motivated regime where RNA polymerases compete for genes and ribosomes for transcripts and gives general expressions relating growth rate, mRNA concentrations, ribosome, and RNA polymerase levels. On general grounds, the model predicts how the fraction of ribosomes in the proteome depends on total mRNA concentration and inspects an underexplored regime in which the trade-off between transcript levels and ribosome abundances sets the cellular growth rate. In particular, we show that the model predicts and clarifies three important experimental observations, in budding yeast and Escherichia coli bacteria: i) that the growth-rate cost of unneeded protein expression can be affected by mRNA levels, ii) that resource optimization leads to decreasing trends in mRNA levels at slow growth, and iii) that ribosome allocation may increase, stay constant, or decrease, in response to transcription-inhibiting antibiotics. Since the data indicate that a regime of joint limitation may apply in physiological conditions and not only to perturbations, we speculate that this regime is likely self-imposed.


Subject(s)
Escherichia coli , RNA, Messenger , Ribosomes , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/growth & development , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Protein Biosynthesis , Models, Biological
13.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38658183

ABSTRACT

Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.


Subject(s)
Acetic Acid , Adaptation, Physiological , Homeostasis , Ions , Saccharomyces cerevisiae , Stress, Physiological , Acetic Acid/metabolism , Acetic Acid/pharmacology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/growth & development , Ions/metabolism , Hydrogen-Ion Concentration
14.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668960

ABSTRACT

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Subject(s)
Benzo(a)pyrene , DNA Adducts , Environmental Pollutants , Saccharomyces cerevisiae , DNA Adducts/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Mutagens/toxicity , Mutagens/metabolism , DNA, Fungal/genetics , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism
15.
Sci Rep ; 14(1): 9365, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654026

ABSTRACT

Strategies against the opportunistic fungal pathogen Candida albicans based on probiotic microorganisms represent a promising alternative to traditional antifungals. Here, we investigated the effects of Lactobacillaceae isolates from fermented foods or the human vagina, alone or in combination with the probiotic yeast Saccharomyces cerevisiae CNCM I-3856, against C. albicans in vitro. Nine out of nineteen tested strains of Lactobacillaceae inhibited growth of C. albicans with inhibition zones of 1-3 mm in spot assays. Five out of nineteen lactobacilli tested as such or in combination with S. cerevisiae CNCM I-3856 also significantly inhibited C. albicans hyphae formation, including Limosilactobacillus fermentum LS4 and L. fermentum LS5 resulting in respectively 62% and 78% hyphae inhibition compared to the control. Thirteen of the tested nineteen lactobacilli aggregated with the yeast form of C. albicans, with Lactiplantibacillus carotarum AMBF275 showing the strongest aggregation. The aggregation was enhanced when lactobacilli were combined with S. cerevisiae CNCM I-3856. No significant antagonistic effects were observed between the tested lactobacilli and S. cerevisiae CNCM I-3856. The multifactorial activity of Lactobacillaceae strains alone or combined with the probiotic S. cerevisiae CNCM I-3856 against C. albicans without antagonistic effects between the beneficial strains, paves the way for developing consortium probiotics for in vivo applications.


Subject(s)
Candida albicans , Lactobacillus , Probiotics , Saccharomyces cerevisiae , Candida albicans/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/drug effects , Probiotics/pharmacology , Lactobacillus/physiology , Humans , Hyphae/drug effects , Hyphae/growth & development , Antibiosis , Female , Vagina/microbiology
16.
Biotechnol Lett ; 46(3): 431-441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578514

ABSTRACT

PURPOSE: CO2 fixation methods using green algae have attracted considerable attention because they can be applied for the fixation of dilute CO2 in the atmosphere. However, green algae generally exhibit low CO2 fixation efficiency under atmospheric conditions. Therefore, it is a challenge to improve the CO2 fixation efficiency of green algae under atmospheric conditions. Co-cultivation of certain microalgae with heterotrophic microorganisms can increase the growth potential of microalgae under atmospheric conditions. The objective of this study was to determine the culture conditions under which the growth potential of green algae Chlamydomonas reinhardtii is enhanced by co-culturing with the yeast Saccharomyces cerevisiae, and to identify the cause of the enhanced growth potential. RESULTS: When C. reinhardtii and S. cerevisiae were co-cultured with an initial green algae to yeast inoculum ratio of 1:3, the cell concentration of C. reinhardtii reached 133 × 105 cells/mL on day 18 of culture, which was 1.5 times higher than that of the monoculture. Transcriptome analysis revealed that the expression levels of 363 green algae and 815 yeast genes were altered through co-cultivation. These included genes responsible for ammonium transport and CO2 enrichment mechanism in green algae and the genes responsible for glycolysis and stress responses in yeast. CONCLUSION: We successfully increased C. reinhardtii growth potential by co-culturing it with S. cerevisiae. The main reasons for this are likely to be an increase in inorganic nitrogen available to green algae via yeast metabolism and an increase in energy available for green algae growth instead of CO2 enrichment.


Subject(s)
Chlamydomonas reinhardtii , Coculture Techniques , Saccharomyces cerevisiae , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Coculture Techniques/methods , Carbon Dioxide/metabolism , Gene Expression Profiling
17.
Int J Food Microbiol ; 417: 110692, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38640817

ABSTRACT

Previous investigations proved the potential of Saccharomyces cerevisiae MBELGA62 and Pichia kudriavzevii MBELGA61 as suitable biocontrolling agents against Aspergillus sp. through the production of soluble and volatile bioactive antifungal compounds. The present study delves into those finding by means of the identification of the volatile compounds produced by brewer's strains that demonstrated fungistatic and fungicidal effects against Aspergillus flavus and A. parasiticus when cultured in brewer's wort agar plates. Traditional brewer's yeasts such as S. cerevisiae MBELGA62 and Saccharomyces pastorianus SAFS235 synthetize volatiles that fully inhibited mycelial development for up to 9 days at 30 °C. The non-conventional brewer's strains P. kudriavzevii MBELGA61 and Meyerozyma guilliermondii MUS122 increased the lag phase by >100% and significantly reduced the fungal growth rate by 27.5-43.0% and 15.4-31.4%, respectively. In this context, 2-phenylethanol, 2-phenylethyl acetate and benzyl alcohol were identified as the main antifungal agents involved in Aspergillus sp.'s inhibition.


Subject(s)
Antifungal Agents , Aspergillus , Fermentation , Saccharomyces cerevisiae , Volatile Organic Compounds , Aspergillus/drug effects , Aspergillus/metabolism , Aspergillus/growth & development , Antifungal Agents/pharmacology , Volatile Organic Compounds/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Pichia/metabolism , Pichia/drug effects , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/metabolism
18.
Commun Biol ; 7(1): 511, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684888

ABSTRACT

Yeast colonies are routinely grown on agar plates in everyday experimental settings to understand basic molecular processes, produce novel drugs, improve health, and so on. Standardized conditions ensure these colonies grow in a reproducible fashion, while in nature microbes are under a constantly changing environment. Here we combine the power of computational simulations and laboratory experiments to investigate the impact of non-standard environmental factors on colony growth. We present the developement and parameterization of a quantitative agent-based model for yeast colony growth to reproduce measurements on colony size and cell number in a colony at non-standard environmental conditions. Specifically, we establish experimental conditions that mimic the effects of humidity changes and nutrient gradients. Our results show how colony growth is affected by moisture changes, nutrient availability, and initial colony inoculation conditions. We show that initial colony spread, not initial cell number have higher impact on the final size and cell number of colonies. Parameters of the model were identified by fitting these experiments and the fitted model gives guidance to establish conditions which enable unlimited growth of yeast colonies.


Subject(s)
Models, Biological , Saccharomyces cerevisiae , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Computer Simulation , Culture Media/chemistry , Humidity , Colony Count, Microbial
19.
Biosci Biotechnol Biochem ; 88(7): 804-815, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38592956

ABSTRACT

Alcohol fermentation comprises two phases: phase 1, alcohol fermentation occurs while yeast cells proliferate; phase 2, growth stops and alcohol fermentation continues. We categorized genes related to proliferation in low ethanol (phase 1) and viability in high ethanol (phase 2) as Alcohol Growth Ability (AGA) and Alcohol Viability (ALV), respectively. Although genes required for phase 1 are examined in budding yeast, those for phase 2 are unknown. We set conditions for ALV screening, searched for protein kinases (PKs) related to ALV in budding yeast, and expanded two screenings to fission yeast. Bub1 kinase was important for proliferation in low ethanol but not for viability in high ethanol, suggesting that the important PKs differ between the two phases. It was indeed the case. Further, 3 common PKs were identified as AGA in both yeasts, suggesting that the important cellular mechanism in phase 1 is conserved in both yeasts, at least partially.


Subject(s)
Ethanol , Schizosaccharomyces , Ethanol/metabolism , Ethanol/pharmacology , Schizosaccharomyces/genetics , Schizosaccharomyces/drug effects , Schizosaccharomyces/growth & development , Schizosaccharomyces/metabolism , Fermentation , Protein Kinases/metabolism , Protein Kinases/genetics , Cell Proliferation/drug effects , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development
20.
Biotechnol J ; 19(4): e2300475, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651262

ABSTRACT

The application of pulsed electric fields (PEFs) is becoming a promising tool for application in biotechnology, and the food industry. However, real-time monitoring of the efficiency of PEF treatment conditions is challenging, especially at the industrial scale and in continuous production conditions.  To overcome this challenge, we have developed a straightforward setup capable of real-time detection of yeast biological autoluminescence (BAL) during pulsing. Saccharomyces cerevisiae culture was exposed to 8 pulses of 100 µs width with electric field strength magnitude 2-7 kV cm-1. To assess the sensitivity of our method in detecting yeast electroporation, we conducted a comparison with established methods including impedance measurements, propidium iodide uptake, cell growth assay, and fluorescence microscopy. Our results demonstrate that yeast electroporation can be instantaneously monitored during pulsing, making it highly suitable for industrial applications. Furthermore, the simplicity of our setup facilitates its integration into continuous liquid flow systems. Additionally, we have established quantitative indicators based on a thorough statistical analysis of the data that can be implemented through a dedicated machine interface, providing efficiency indicators for analysis.


Subject(s)
Electroporation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/growth & development , Electroporation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...