Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52.717
Filter
1.
Mol Cell Biol ; 44(7): 273-288, 2024.
Article in English | MEDLINE | ID: mdl-38961766

ABSTRACT

Here, we report a novel role for the yeast lysine acetyltransferase NuA4 in regulating phospholipid availability for organelle morphology. Disruption of the NuA4 complex results in 70% of cells displaying nuclear deformations and nearly 50% of cells exhibiting vacuolar fragmentation. Cells deficient in NuA4 also show severe defects in the formation of nuclear-vacuole junctions (NJV), as well as a decrease in piecemeal microautophagy of the nucleus (PMN). To determine the cause of these defects we focused on Pah1, an enzyme that converts phosphatidic acid into diacylglycerol, favoring accumulation of lipid droplets over phospholipids that are used for membrane expansion. NuA4 subunit Eaf1 was required for Pah1 localization to the inner nuclear membrane and artificially tethering of Pah1 to the nuclear membrane rescued nuclear deformation and vacuole fragmentation defects, but not defects related to the formation of NVJs. Mutation of a NuA4-dependent acetylation site on Pah1 also resulted in aberrant Pah1 localization and defects in nuclear morphology and NVJ. Our work suggests a critical role for NuA4 in organelle morphology that is partially mediated through the regulation of Pah1 subcellular localization.


Subject(s)
Cell Nucleus , Lipid Metabolism , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuoles , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Vacuoles/metabolism , Cell Nucleus/metabolism , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , Acetylation , Nuclear Envelope/metabolism , Phospholipids/metabolism , Mutation
2.
Nat Commun ; 15(1): 5672, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971805

ABSTRACT

While the underlying genetic changes have been uncovered in some cases of adaptive evolution, the lack of a systematic study prevents a general understanding of the genomic basis of adaptation. For example, it is unclear whether protein-coding or noncoding mutations are more important to adaptive evolution and whether adaptations to different environments are brought by genetic changes distributed in diverse genes and biological processes or concentrated in a core set. We here perform laboratory evolution of 3360 Saccharomyces cerevisiae populations in 252 environments of varying levels of stress. We find the yeast adaptations to be primarily fueled by large-effect coding mutations overrepresented in a relatively small gene set, despite prevalent antagonistic pleiotropy across environments. Populations generally adapt faster in more stressful environments, partly because of greater benefits of the same mutations in more stressful environments. These and other findings from this model eukaryote help unravel the genomic principles of environmental adaptation.


Subject(s)
Adaptation, Physiological , Mutation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Adaptation, Physiological/genetics , Stress, Physiological/genetics , Genome, Fungal , Environment , Evolution, Molecular , Genetic Loci , Genetic Pleiotropy , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Subcell Biochem ; 104: 101-117, 2024.
Article in English | MEDLINE | ID: mdl-38963485

ABSTRACT

Yeast COMPASS (complex of proteins associated with Set1) and human MLL (mixed-lineage leukemia) complexes are histone H3 lysine 4 methyltransferases with critical roles in gene regulation and embryonic development. Both complexes share a conserved C-terminal SET domain, responsible for catalyzing histone H3 K4 methylation on nucleosomes. Notably, their catalytic activity toward nucleosomes is enhanced and optimized with assembly of auxiliary subunits. In this review, we aim to illustrate the recent X-ray and cryo-EM structures of yeast COMPASS and human MLL1 core complexes bound to either unmodified nucleosome core particle (NCP) or H2B mono-ubiquitinated NCP (H2Bub.NCP). We further delineate how each auxiliary component of the complex contributes to the NCP and ubiquitin recognition to maximize the methyltransferase activity.


Subject(s)
Histone-Lysine N-Methyltransferase , Myeloid-Lymphoid Leukemia Protein , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Nucleosomes/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Histones/metabolism , Histones/chemistry , Histones/genetics , Cryoelectron Microscopy/methods
4.
Structure ; 32(7): 849-850, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996509

ABSTRACT

In this issue of Structure, Schneider et al.1 report multiple structures of the low-affinity inorganic-phosphate transporter Pho90 from Saccharomyces cerevisiae. With remarkable resolution of the Divalent Anion Sodium Symporter family member, their cryo-EM studies of this fungal protein reveal new modes of sodium, substrate, and lipid binding.


Subject(s)
Phosphates , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Phosphates/metabolism , Phosphates/chemistry , Cryoelectron Microscopy , Sodium/metabolism
5.
Sci Adv ; 10(28): eadl6280, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996018

ABSTRACT

H3K4 methylation by Set1-COMPASS (complex of proteins associated with Set1) is a conserved histone modification. Although it is critical for gene regulation, the posttranslational modifications of this complex that affect its function are largely unexplored. This study showed that N-terminal acetylation of Set1-COMPASS proteins by N-terminal acetyltransferases (NATs) can modulate H3K4 methylation patterns. Specifically, deleting NatA substantially decreased global H3K4me3 levels and caused the H3K4me2 peak in the 5' transcribed regions to shift to the promoters. NatA was required for N-terminal acetylation of three subunits of Set1-COMPASS: Shg1, Spp1, and Swd2. Moreover, deleting Shg1 or blocking its N-terminal acetylation via proline mutation of the target residue drastically reduced H3K4 methylation. Thus, NatA-mediated N-terminal acetylation of Shg1 shapes H3K4 methylation patterns. NatB also regulates H3K4 methylation, likely via N-terminal acetylation of the Set1-COMPASS protein Swd1. Thus, N-terminal acetylation of Set1-COMPASS proteins can directly fine-tune the functions of this complex, thereby substantially shaping H3K4 methylation patterns.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Saccharomyces cerevisiae Proteins , Acetylation , Histones/metabolism , Methylation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Protein Processing, Post-Translational , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
6.
Appl Microbiol Biotechnol ; 108(1): 416, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995331

ABSTRACT

A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mutation , Plasmids , Polyploidy , Plasmids/genetics , Gene Editing/methods , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces/genetics , Saccharomyces cerevisiae/genetics , 3-Isopropylmalate Dehydrogenase/genetics , 3-Isopropylmalate Dehydrogenase/metabolism , Genome, Fungal/genetics
7.
Commun Biol ; 7(1): 855, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997419

ABSTRACT

Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Endocytosis , Golgi Apparatus , Saccharomyces cerevisiae , 1-Phosphatidylinositol 4-Kinase/metabolism , 1-Phosphatidylinositol 4-Kinase/genetics , Golgi Apparatus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Aspergillus nidulans/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/enzymology , Protein Transport , Phosphatidylinositol Phosphates/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
8.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39007857

ABSTRACT

Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.


Subject(s)
Ribosomal Proteins , Ribosome Subunits, Large, Eukaryotic , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Protein Binding , Molecular Docking Simulation , Cryoelectron Microscopy , Cell Nucleus/metabolism , Cell Nucleus/genetics
9.
Methods Mol Biol ; 2839: 3-29, 2024.
Article in English | MEDLINE | ID: mdl-39008245

ABSTRACT

Over the past 30 years, much has been learned regarding iron homeostatic regulation in budding yeast, S. cerevisiae, including the identity of many of the proteins and molecular-level regulatory mechanisms involved. Most advances have involved inferring such mechanisms based on the analysis of iron-dysregulation phenotypes arising in various genetic mutant strains. Still lacking is a cellular- or system-level understanding of iron homeostasis. These experimental advances are summarized in this review, and a method for developing cellular-level regulatory mechanisms in yeast is presented. The method employs the results of Mössbauer spectroscopy of whole cells and organelles, iron quantification of the same, and ordinary differential equation-based mathematical models. Current models are simplistic when compared to the complexity of iron homeostasis in real cells, yet they hold promise as a useful, perhaps even required, complement to the popular genetics-based approach. The fundamental problem in comprehending cellular regulatory mechanisms is that, given the complexities involved, different molecular-level mechanisms can often give rise to virtually indistinguishable cellular phenotypes. Mathematical models cannot eliminate this problem, but they can minimize it.


Subject(s)
Homeostasis , Iron , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Iron/metabolism , Computer Simulation , Models, Biological , Spectroscopy, Mossbauer/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
10.
BMC Biol ; 22(1): 149, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965504

ABSTRACT

BACKGROUND: Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS: During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS: Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.


Subject(s)
Hydrogen Peroxide , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Ethanol/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Oxidative Stress/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Osmotic Pressure , Catalase/metabolism , Catalase/genetics , Genetic Variation
11.
Commun Biol ; 7(1): 825, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971878

ABSTRACT

Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.


Subject(s)
Kluyveromyces , Kluyveromyces/genetics , Kluyveromyces/physiology , Saccharomyces cerevisiae/genetics , Genome, Fungal , Mutation , Evolution, Molecular , Adaptation, Physiological/genetics , Selection, Genetic , Biological Evolution , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Genomics/methods
12.
Wiley Interdiscip Rev RNA ; 15(4): e1866, 2024.
Article in English | MEDLINE | ID: mdl-38972853

ABSTRACT

Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.


Subject(s)
RNA Precursors , RNA Splicing , Saccharomyces cerevisiae , Spliceosomes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
13.
Nat Commun ; 15(1): 6104, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030241

ABSTRACT

G-quadruplexes (G4s) formed by guanine-rich nucleic acids induce genome instability through impeding DNA replication fork progression. G4s are stable DNA structures, the unfolding of which require the functions of DNA helicases. Pif1 helicase binds preferentially to G4 DNA and plays multiple roles in maintaining genome stability, but the mechanism by which Pif1 unfolds G4s is poorly understood. Here we report the co-crystal structure of Saccharomyces cerevisiae Pif1 (ScPif1) bound to a G4 DNA with a 5' single-stranded DNA (ssDNA) segment. Unlike the Thermus oshimai Pif1-G4 structure, in which the 1B and 2B domains confer G4 recognition, ScPif1 recognizes G4 mainly through the wedge region in the 1A domain that contacts the 5' most G-tetrad directly. A conserved Arg residue in the wedge is required for Okazaki fragment processing but not for mitochondrial function or for suppression of gross chromosomal rearrangements. Multiple substitutions at this position have similar effects on resolution of DNA duplexes and G4s, suggesting that ScPif1 may use the same wedge to unwind G4 and dsDNA. Our results reveal the mechanism governing dsDNA unwinding and G4 unfolding by ScPif1 helicase that can potentially be generalized to other eukaryotic Pif1 helicases and beyond.


Subject(s)
DNA Helicases , G-Quadruplexes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA Helicases/metabolism , DNA Helicases/chemistry , DNA Helicases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA/metabolism , DNA/chemistry , DNA/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Binding , DNA Replication , Genomic Instability
14.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000137

ABSTRACT

The URH1p enzyme from the yeast Saccharomyces cerevisiae has gained significant interest due to its role in nitrogenous base metabolism, particularly involving uracil and nicotinamide salvage. Indeed, URH1p was initially classified as a nucleoside hydrolase (NH) with a pronounced preference for uridine substrate but was later shown to also participate in a Preiss-Handler-dependent pathway for recycling of both endogenous and exogenous nicotinamide riboside (NR) towards NAD+ synthesis. Here, we present the detailed enzymatic and structural characterisation of the yeast URH1p enzyme, a member of the group I NH family of enzymes. We show that the URH1p has similar catalytic efficiencies for hydrolysis of NR and uridine, advocating a dual role of the enzyme in both NAD+ synthesis and nucleobase salvage. We demonstrate that URH1p has a monomeric structure that is unprecedented for members of the NH homology group I, showing that oligomerisation is not strictly required for the N-ribosidic activity in this family of enzymes. The size, thermal stability and activity of URH1p towards the synthetic substrate 5-fluoruridine, a riboside precursor of the antitumoral drug 5-fluorouracil, make the enzyme an attractive tool to be employed in gene-directed enzyme-prodrug activation therapy against solid tumours.


Subject(s)
Niacinamide , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Niacinamide/analogs & derivatives , Niacinamide/metabolism , Niacinamide/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Structure-Activity Relationship , Pyridinium Compounds/metabolism , Pyridinium Compounds/chemistry , N-Glycosyl Hydrolases/metabolism , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/chemistry , Uridine/metabolism , Uridine/analogs & derivatives , Uridine/chemistry , Substrate Specificity , Humans , Models, Molecular
15.
Sci Rep ; 14(1): 16641, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025990

ABSTRACT

In various eukaryotic kingdoms, long terminal repeat (LTR) retrotransposons repress transcription by infiltrating heterochromatin generated within their elements. In contrast, the budding yeast LTR retrotransposon Ty1 does not itself undergo transcriptional repression, although it is capable of repressing the transcription of the inserted genes within it. In this study, we identified a DNA region within Ty1 that exerts its silencing effect via sequence orientation. We identified a DNA region within the Ty1 group-specific antigen (GAG) gene that causes gene silencing, termed GAG silencing (GAGsi), in which the silent chromatin in the GAGsi region is created by euchromatin-specific histone modifications. A characteristic inverted repeat (IR) sequence is present at the 5' end of this region, forming a chromatin boundary between promoter-specific chromatin upstream of the IR sequence and silent chromatin downstream of the IR sequence. In addition, Esc2 and Rad57, which are involved in DNA repair, were required for GAGsi silencing. Finally, the chromatin boundary was required for the transcription of Ty1 itself. Thus, the GAGsi sequence contributes to the creation of a chromatin environment that promotes Ty1 transcription.


Subject(s)
Chromatin , Gene Silencing , Retroelements , Saccharomyces cerevisiae , Retroelements/genetics , Chromatin/genetics , Chromatin/metabolism , Saccharomyces cerevisiae/genetics , Insulator Elements/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Terminal Repeat Sequences/genetics , Gene Expression Regulation, Fungal , Transcription, Genetic , Gene Products, gag/genetics , Gene Products, gag/metabolism
16.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38980288

ABSTRACT

Autophagy is essential for maintaining glucose homeostasis. However, the mechanism by which cells sense and respond to glucose starvation to induce autophagy remains incomplete. Here, we show that calcium serves as a fundamental triggering signal that connects environmental sensing to the formation of the autophagy initiation complex during glucose starvation. Mechanistically, glucose starvation instigates the release of vacuolar calcium into the cytoplasm, thus triggering the activation of Rck2 kinase. In turn, Rck2-mediated Atg11 phosphorylation enhances Atg11 interactions with Bmh1/2 bound to the Snf1-Sip1-Snf4 complex, leading to recruitment of vacuolar membrane-localized Snf1 to the PAS and subsequent Atg1 activation, thereby initiating autophagy. We also identified Glc7, a protein phosphatase-1, as a critical regulator of the association between Bmh1/2 and the Snf1 complex. We thus propose that calcium-triggered Atg11-Bmh1/2-Snf1 complex assembly initiates autophagy by controlling Snf1-mediated Atg1 activation in response to glucose starvation.


Subject(s)
Autophagy , Calcium , Glucose , Protein Serine-Threonine Kinases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Glucose/metabolism , Calcium/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Phosphorylation , Vacuoles/metabolism , Vacuoles/genetics
17.
BMC Bioinformatics ; 25(1): 242, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026169

ABSTRACT

BACKGROUND: The progress of the cell cycle of yeast involves the regulatory relationships between genes and the interactions proteins. However, it is still obscure which type of protein plays a decisive role in regulation and how to identify the vital nodes in the regulatory network. To elucidate the sensitive node or gene in the progression of yeast, here, we select 8 crucial regulatory factors from the yeast cell cycle to decipher a specific network and propose a simple mixed K2 algorithm to identify effectively the sensitive nodes and genes in the evolution of yeast. RESULTS: Considering the multivariate of cell cycle data, we first utilize the K2 algorithm limited to the stationary interval for the time series segmentation to measure the scores for refining the specific network. After that, we employ the network entropy to effectively screen the obtained specific network, and simulate the gene expression data by a normal distribution approximation and the screened specific network by the partial least squares method. We can conclude that the robustness of the specific network screened by network entropy is better than that of the specific network with the determined relationship by comparing the obtained specific network with the determined relationship. Finally, we can determine that the node CDH1 has the highest score in the specific network through a sensitivity score calculated by network entropy implying the gene CDH1 is the most sensitive regulatory factor. CONCLUSIONS: It is clearly of great potential value to reconstruct and visualize gene regulatory networks according to gene databases for life activities. Here, we present an available algorithm to achieve the network reconstruction by measuring the network entropy and identifying the vital nodes in the specific nodes. The results indicate that inhibiting or enhancing the expression of CDH1 can maximize the inhibition or enhancement of the yeast cell cycle. Although our algorithm is simple, it is also the first step in deciphering the profound mystery of gene regulation.


Subject(s)
Algorithms , Cell Cycle , Entropy , Gene Regulatory Networks , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Cell Cycle/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
18.
EMBO J ; 43(14): 2979-3008, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839991

ABSTRACT

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.


Subject(s)
Cardiolipins , Mitochondrial ADP, ATP Translocases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cardiolipins/metabolism , Binding Sites , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Humans , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial ADP, ATP Translocases/chemistry , Oxidative Phosphorylation , Adenine Nucleotide Translocator 1/metabolism , Adenine Nucleotide Translocator 1/genetics , Molecular Dynamics Simulation , Protein Binding , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mutation , Mutation, Missense
19.
EMBO J ; 43(14): 3027-3043, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839993

ABSTRACT

The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.


Subject(s)
Homologous Recombination , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Checkpoint Kinase 2/metabolism , Checkpoint Kinase 2/genetics , RecQ Helicases/metabolism , RecQ Helicases/genetics , Signal Transduction , Phosphorylation , Chromosome Aberrations , Gene Rearrangement
20.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928012

ABSTRACT

In yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 (Sup45) and eRF3 (Sup35), which are essential for viability. Previous studies have revealed that presence of nonsense mutations in these genes leads to amplification of mutant alleles (sup35-n and sup45-n), which appears to be necessary for the viability of such cells. However, the mechanism of this phenomenon remained unclear. In this study, we used RNA-Seq and proteome analysis to reveal the complete set of gene expression changes that occur during cellular adaptation to the introduction of the sup35-218 nonsense allele. Our analysis demonstrated significant changes in the transcription of genes that control the cell cycle: decreases in the expression of genes of the anaphase promoting complex APC/C (APC9, CDC23) and their activator CDC20, and increases in the expression of the transcription factor FKH1, the main cell cycle kinase CDC28, and cyclins that induce DNA biosynthesis. We propose a model according to which yeast adaptation to nonsense mutations in the translation termination factor genes occurs as a result of a delayed cell cycle progression beyond the G2-M stage, which leads to an extension of the S and G2 phases and an increase in the number of copies of the mutant sup35-n allele.


Subject(s)
Codon, Nonsense , Gene Expression Regulation, Fungal , Peptide Termination Factors , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Codon, Nonsense/genetics , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Adaptation, Physiological/genetics , Cell Cycle/genetics
SELECTION OF CITATIONS
SEARCH DETAIL