Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.651
Filter
1.
Plant Cell Rep ; 43(8): 190, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976088

ABSTRACT

KEY MESSAGE: New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.


Subject(s)
Gene Expression Regulation, Plant , Peptides , Plant Diseases , Prunus dulcis , Xylella , Xylella/pathogenicity , Plant Diseases/microbiology , Plant Diseases/immunology , Prunus dulcis/microbiology , Peptides/pharmacology , Peptides/metabolism , Salicylic Acid/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Disease Resistance , Plant Leaves/microbiology , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Leaves/genetics
2.
Methods Mol Biol ; 2827: 109-143, 2024.
Article in English | MEDLINE | ID: mdl-38985266

ABSTRACT

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Subject(s)
Plant Growth Regulators , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Tissue Culture Techniques/methods , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Plant Development/drug effects , Plants/metabolism , Plants/drug effects , Lactones/pharmacology , Lactones/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Acetates/pharmacology , Acetates/metabolism
3.
J Agric Food Chem ; 72(28): 15601-15612, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950526

ABSTRACT

Peanut southern blight, caused by the soil-borne pathogen Sclerotium rolfsii, is a widespread and devastating epidemic. Frequently, it is laborious to effectively control by labor-intensive foliar sprays of agrochemicals due to untimely find. In the present study, seed treatment with physcion (PHY) at doses of 0.08, 0.16, and 0.32 g AI kg-1 seed significantly improved the growth and photosynthetic activity of peanuts. Furthermore, PHY seed treatment resulted in an elevated enzymatic activity of key enzymes in peanut roots, including peroxidase, superoxide dismutase, polyphenol oxidase, catalase, lipoxygenase, and phenylalanine ammonia-lyase, as well as an increase in callus accumulation and lignin synthesis at the infection site, ultimately enhancing the root activity. This study revealed that PHY seed treatment could promote the accumulation of reactive oxygen species, salicylic acid (SA), and jasmonic acid (JA)/ethylene (ET) in peanut roots, while also decreasing the content of malondialdehyde levels in response to S. rolfsii infection. The results were further confirmed by transcriptome data and metabolomics. These findings suggest that PHY seed treatment activates the plant defense pathways mediated by SA and JA/ET in peanut roots, enhancing the resistance of peanut plants to S. rolfsii. In short, PHY is expected to be developed into a new plant-derived immunostimulant or fungicide to increase the options and means for peanut disease control.


Subject(s)
Arachis , Basidiomycota , Plant Diseases , Arachis/microbiology , Arachis/metabolism , Arachis/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fungicides, Industrial/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Seeds/microbiology , Seeds/growth & development , Seeds/metabolism , Seeds/drug effects , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
4.
Sci Rep ; 14(1): 16564, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019887

ABSTRACT

Bitter gourd is an economically important horticultural crop for its edible and medicinal value. However, the regulatory mechanisms of bitter gourd in response to cold stress are still poorly elucidated. In this study, phytohormone determination and comparative transcriptome analyses in XY (cold-tolerant) and QF (cold-sensitive) after low temperature treatment were conducted. Under cold stress, the endogenous contents of abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) in XY were significantly increased at 24 h after treatment (HAT), indicating that ABA, JA and SA might function in regulating cold resistance. RNA-seq results revealed that more differentially expressed genes were identified at 6 HAT in QF and 24 HAT in XY, respectively. KEGG analysis suggested that the plant hormone signal transduction pathway was significantly enriched in both genotypes at all the time points. In addition, transcription factors showing different expression patterns between XY and QF were identified, including CBF3, ERF2, NAC90, WRKY51 and WRKY70. Weighted gene co-expression network analysis suggested MARK1, ERF17, UGT74E2, GH3.1 and PPR as hub genes. These results will deepen the understanding of molecular mechanism of bitter gourd in response to cold stress and the identified genes may help to facilitate the genetic improvement of cold-resistant cultivars.


Subject(s)
Cold-Shock Response , Gene Expression Profiling , Gene Expression Regulation, Plant , Genotype , Momordica charantia , Plant Growth Regulators , Momordica charantia/genetics , Momordica charantia/metabolism , Cold-Shock Response/genetics , Gene Expression Profiling/methods , Plant Growth Regulators/metabolism , Transcriptome , Oxylipins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Abscisic Acid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cyclopentanes/metabolism
5.
BMC Plant Biol ; 24(1): 687, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026164

ABSTRACT

BACKGROUND: The effect of azelaic acid (Aza) on the response of tomato plants to Alternaria solani was investigated in this study. After being treated with Aza, tomato plants were infected with A. solani, and their antioxidant, biochemical, and molecular responses were analyzed. RESULTS: The results demonstrated that H2O2 and MDA accumulation increased in control plants after pathogen infection. Aza-treated plants exhibited a remarkable rise in peroxidase (POD) and catalase (CAT) activities during the initial stages of A. solani infection. Gene expression analysis revealed that both Aza treatment and pathogen infection altered the expression patterns of the SlNPR1, SlERF2, SlPR1, and SlPDF1.2 genes. The expression of SlPDF1.2, a marker gene for the jasmonic acid/ethylene (JA/ET) signaling pathway, showed a remarkable increase of 4.2-fold upon pathogen infection. In contrast, for the SlNPR1, a key gene in salicylic acid (SA) pathway, this increased expression was recorded with a delay at 96 hpi. Also, the phytohormone analysis showed significantly increased SA accumulation in plant tissues with disease development. It was also revealed that tissue accumulation of JA in Aza-treated plants was increased following pathogen infection, while it was not increased in plants without pathogen inoculation. CONCLUSION: The results suggest that the resistance induced by Aza is mainly a result of modulations in both SA and JA pathways following complex antioxidant and molecular defense responses in tomato plants during A. solani infection. These findings provide novel information regarding inducing mechanisms of azelaic acid which would add to the current body of knowledge of SAR induction in plants as result of Aza application.


Subject(s)
Alternaria , Cyclopentanes , Dicarboxylic Acids , Disease Resistance , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Alternaria/physiology , Dicarboxylic Acids/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Disease Resistance/genetics , Cyclopentanes/metabolism , Oxylipins/metabolism , Gene Expression Regulation, Plant , Salicylic Acid/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Antioxidants/metabolism
6.
Physiol Plant ; 176(4): e14436, 2024.
Article in English | MEDLINE | ID: mdl-39019771

ABSTRACT

Small secreted peptides (SSPs), serving as signaling molecules for intercellular communication, play significant regulatory roles in plant growth, development, pathogen immunity, and responses to abiotic stress. Despite several SSPs, such as PIP, PSK, and PSY having been identified to participate in plant immunity, the majority of SSPs remain understudied, necessitating the exploration and identification of SSPs regulating plant immunity from vast genomic resources. Here we systematically characterized 756 putative SSPs across the genome of Nicotiana tabacum. 173 SSPs were further annotated as established SSPs, such as nsLTP, CAPE, and CEP. Furthermore, we detected the expression of 484 putative SSP genes in five tissues, with 83 SSPs displaying tissue-specific expression. Transcriptomic analysis of tobacco roots under plant defense hormones revealed that 46 SSPs exhibited specific responsiveness to salicylic acid (SA), and such response was antagonistically regulated by methyl jasmonate. It's worth noting that among these 46 SSPs, 16 members belong to nsLTP family, and one of them, NtLTP25, was discovered to enhance tobacco's resistance against Phytophthora nicotianae. Overexpression of NtLTP25 in tobacco enhanced the expression of ICS1, subsequently stimulating the biosynthesis of SA and the expression of NPR1 and pathogenesis-related genes. Concurrently, NtLTP25 overexpression activated genes associated with ROS scavenging, consequently mitigating the accumulation of ROS during the subsequent phases of pathogenesis. These discoveries indicate that these 46 SSPs, especially the 16 nsLTPs, might have a vital role in governing plant immunity that relies on SA signaling. This offers a valuable source for pinpointing SSPs involved in regulating plant immunity.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana , Plant Diseases , Plant Immunity , Plant Proteins , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/metabolism , Nicotiana/microbiology , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Genome, Plant/genetics , Peptides/metabolism , Peptides/genetics , Phytophthora/physiology , Phytophthora/pathogenicity , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Gene Expression Profiling
7.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842600

ABSTRACT

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Subject(s)
Cucumis melo , Cyclopentanes , Fruit , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Leaves , Plant Proteins , Plants, Genetically Modified , Cucumis melo/genetics , Cucumis melo/growth & development , Cucumis melo/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Promoter Regions, Genetic , Oxylipins/pharmacology , Oxylipins/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Acetates/pharmacology , Salicylic Acid/metabolism , Salicylic Acid/pharmacology
8.
J Agric Food Chem ; 72(25): 14419-14432, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869198

ABSTRACT

Rapeseed (Brassica napus L.) is extremely sensitive to excessive NH4+ toxicity. There remains incomplete knowledge of the causal factors behind the growth suppression in NH4+-nourished plants, with limited studies conducted specifically on field crop plants. In this study, we found that NH4+ toxicity significantly increased salicylic acid (SA) accumulation by accelerating the conversion of SA precursors. Moreover, exogenous SA application significantly aggravated NH4+ toxicity symptoms in the rapeseed shoots. Genome-wide differential transcriptomic analysis showed that NH4+ toxicity increased the expression of genes involved in the biosynthesis, transport, signaling transduction, and conversion of SA. SA treatment significantly increased shoot NH4+ concentrations by reducing the activities of glutamine synthase and glutamate synthase in NH4+-treated rapeseed plants. The application of an SA biosynthesis inhibitor, ABT, alleviated NH4+ toxicity symptoms. Furthermore, SA induced putrescine (Put) accumulation, resulting in an elevated ratio of Put to [spermidine (Spd) + spermine (Spm)] in the NH4+-treated plants, while the opposite was true for ABT. The application of exogenous Put and its biosynthesis inhibitor DFMA induced opposite effects on NH4+ toxicity in rapeseed shoots. These results indicated that the increased endogenous SA contributed noticeably to the toxicity caused by the sole NH4+-N supply in rapeseed shoots. This study provided fresh perspectives on the mechanism underlying excessive NH4+-induced toxicity and the corresponding alleviating strategies in plants.


Subject(s)
Ammonium Compounds , Brassica napus , Salicylic Acid , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/metabolism , Brassica napus/drug effects , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Ammonium Compounds/metabolism , Ammonium Compounds/toxicity , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Putrescine/metabolism , Putrescine/pharmacology , Plant Shoots/growth & development , Plant Shoots/drug effects , Plant Shoots/metabolism
9.
Physiol Plant ; 176(3): e14375, 2024.
Article in English | MEDLINE | ID: mdl-38837224

ABSTRACT

MicroRNA(miRNA) is a class of non-coding small RNA that plays an important role in plant growth, development, and response to environmental stresses. Unlike most miRNAs, which usually target homologous genes across a variety of species, miR827 targets different types of genes in different species. Research on miR827 mainly focuses on its role in regulating phosphate (Pi) homeostasis of plants, however, little is known about its function in plant response to virus infection. In the present study, miR827 was significantly upregulated in the recovery tissue of virus-infected Nicotiana tabacum. Overexpression of miR827 could improve plants resistance to the infection of chilli veinal mottle virus (ChiVMV) in Nicotiana benthamiana, whereas interference of miR827 increased the susceptibility of the virus-infected plants. Further experiments indicated that the antiviral defence regulated by miR827 was associated with the reactive oxygen species and salicylic acid signalling pathways. Then, fructose-1,6-bisphosphatase (FBPase) was identified to be a target of miR827, and virus infection could affect the expression of FBPase. Finally, transient expression of FBPase increased the susceptibility to ChiVMV-GFP infection in N. benthamiana. By contrast, silencing of FBPase increased plant resistance. Taken together, our results demonstrate that miR827 plays a positive role in tobacco response to virus infection, thus providing new insights into understanding the role of miR827 in plant-virus interaction.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs , Nicotiana , Plant Diseases , Nicotiana/virology , Nicotiana/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/virology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Salicylic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Tobamovirus/physiology , Tobamovirus/genetics , Plants, Genetically Modified
10.
Sci Rep ; 14(1): 13259, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858574

ABSTRACT

This study investigates Ni phytoremediation and accumulation potential in the presence of salicylic acid (SA) (0, 50 and 200 µM) and jasmonic acid (JA) (0, 5 and 10 µM) in two populations of Alyssum inflatum under various nickel (Ni) doses (0, 100 and 400 µM). By measuring Ni levels in the shoots and roots, values of bioaccumulation coefficient (BAC), biological concentration factor (BCF) and translocation factor (TF) were calculated to quantify Ni accumulation and translocation between plant organs. Additionally, the amounts of histidine (His), citric acid (CA) and malic acid (MA) were explored. The results showed that plant dry weight (DW) [in shoot (29.8%, 8.74%) and in root (21.6%, 24.4%)] and chlorophyll [a (17.1%, 32.5%), b (10.1%, 30.9%)] declined in M and NM populations respectively, when exposed to Ni (400 µM). Conversely, the levels of MA [in shoot (37.0%, 32.0%) and in root (25.5%, 21.2%)], CA [in shoot (17.0%, 10.0%) and in root (47.9%, 37.2%)] and His [in shoot (by 1.59- and 1.34-fold) and in root (by 1.24- and 1.18-fold)] increased. Also, in the presence 400 µM Ni, the highest accumulation of Ni was observed in shoots of M (1392 µg/g DW) and NM (1382 µg/g DW). However, the application of SA and JA (especially in Ni 400 µM + SA 200 µM + JA 5 and 10 µM treatments) mitigated the harmful impact of Ni on physiological parameters. Also, a decreasing trend was observed in the contents of MA, CA, and His. The reduction of these compounds as important chelators of Ni caused a decrease in root-to-shoot Ni transfer and reducing accumulation in the shoots of both populations. The values of phytoremediation indices in both populations exposed to Ni (400 µM) were above one. In presence of the SA and JA, these indices showed a decreasing trend, although the values remained above one (BAC, BCF and TF > 1). Overall, the results indicated that SA and JA can reduce phytoremediation potential of the two populations through different mechanisms.


Subject(s)
Biodegradation, Environmental , Cyclopentanes , Nickel , Oxylipins , Plant Roots , Salicylic Acid , Oxylipins/metabolism , Oxylipins/pharmacology , Nickel/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Salicylic Acid/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Soil Pollutants/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Brassicaceae/metabolism , Bioaccumulation
11.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892338

ABSTRACT

The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA-6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.


Subject(s)
Benzyl Compounds , Gene Expression Regulation, Plant , Plant Growth Regulators , Purines , Salicylic Acid , Zea mays , Zea mays/growth & development , Zea mays/drug effects , Zea mays/genetics , Zea mays/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Purines/pharmacology , Benzyl Compounds/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Oxylipins/pharmacology , Cytokinins/metabolism , Cytokinins/pharmacology , Seeds/drug effects , Seeds/growth & development , Seeds/genetics , Gene Expression Profiling , Signal Transduction/drug effects , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Cyclopentanes/pharmacology
12.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926637

ABSTRACT

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Subject(s)
Brassica napus , Salicylic Acid , Salt Stress , Brassica napus/drug effects , Brassica napus/growth & development , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Salt Stress/drug effects , Chlorophyll/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Sodium Chloride/pharmacology , Antioxidants/metabolism
13.
Pestic Biochem Physiol ; 202: 105896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879345

ABSTRACT

The objective of this study was to investigate the mechanism underlying LW-1-induced resistance to TMV in wild-type and salicylic acid (SA)-deficient NahG transgenic tobacco plants. Our findings revealed that LW-1 failed to induce antivirus infection activity and increase SA content in NahG tobacco, indicating the crucial role of SA in these processes. Meanwhile, LW-1 triggered defense-related early-signaling nitric oxide (NO) generation, as evidenced by the emergence of NO fluorescence in both types of tobacco upon treatment with LW-1, however, NO fluorescence was stronger in NahG compared to wild-type tobacco. Notably, both of them were eliminated by the NO scavenger cPTIO, which also reversed LW-1-induced antivirus activity and the increase of SA content, suggesting that NO participates in LW-1-induced resistance to TMV, and may act upstream of the SA pathway. Defense-related enzymes and genes were detected in tobacco with or without TMV inoculation, and the results showed that LW-1 regulated both enzyme activity (ß-1,3-glucanase [GLU], catalase [CAT] and phenylalanine ammonia-lyase [PAL]) and gene expression (PR1, PAL, WYKY4) through NO signaling in both SA-dependent and SA-independent pathways.


Subject(s)
Disease Resistance , Nicotiana , Nitric Oxide , Plant Diseases , Salicylic Acid , Tobacco Mosaic Virus , Nicotiana/metabolism , Nicotiana/genetics , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Nitric Oxide/metabolism , Plants, Genetically Modified , Plant Proteins/metabolism , Plant Proteins/genetics , Signal Transduction , Gene Expression Regulation, Plant/drug effects
14.
BMC Plant Biol ; 24(1): 599, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918732

ABSTRACT

BACKGROUND: Cowpea wilt is a harmful disease caused by Fusarium oxysporum, leading to substantial losses in cowpea production. Melatonin reportedly regulates plant immunity to pathogens; however the specific regulatory mechanism underlying the protective effect of melatonin pretreated of cowpea against Fusarium oxysporum remains known. Accordingly, the study sought to evaluate changes in the physiological and biochemical indices of cowpea following melatonin treated to facilitate Fusarium oxysporum resistance and elucidate the associated molecular mechanism using a weighted gene coexpression network. RESULTS: Treatment with 100 µM melatonin was effective in increasing cowpea resistance to Fusarium oxysporum. Glutathione peroxidase (GSH-PX), catalase (CAT), and salicylic acid (SA) levels were significantly upregulated, and hydrogen peroxide (H2O2) levels were significantly downregulated in melatonin treated samples in roots. Weighted gene coexpression network analysis of melatonin- and Fusarium oxysporum-treated samples identified six expression modules comprising 2266 genes; the number of genes per module ranged from 9 to 895. In particular, 17 redox genes and 32 transcription factors within the blue module formed a complex interconnected expression network. KEGG analysis revealed that the associated pathways were enriched in secondary metabolism, peroxisomes, phenylalanine metabolism, flavonoids, and flavonol biosynthesis. More specifically, genes involved in lignin synthesis, catalase, superoxide dismutase, and peroxidase were upregulated. Additionally, exogenous melatonin induced activation of transcription factors, such as WRKY and MYB. CONCLUSIONS: The study elucidated changes in the expression of genes associated with the response of cowpea to Fusarium oxysporum under melatonin treated. Specifically, multiple defence mechanisms were initiated to improve cowpea resistance to Fusarium oxysporum.


Subject(s)
Disease Resistance , Fusarium , Gene Regulatory Networks , Melatonin , Plant Diseases , Vigna , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Melatonin/pharmacology , Melatonin/metabolism , Disease Resistance/genetics , Disease Resistance/drug effects , Fusarium/physiology , Vigna/genetics , Vigna/microbiology , Vigna/drug effects , Vigna/metabolism , Gene Expression Regulation, Plant/drug effects , Salicylic Acid/metabolism
15.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928022

ABSTRACT

Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.


Subject(s)
Botrytis , Cyclopentanes , Gene Expression Regulation, Plant , Methionine , Plant Diseases , Plant Growth Regulators , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/genetics , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Methionine/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Pseudomonas syringae/pathogenicity , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Plant Growth Regulators/pharmacology , Oxylipins/pharmacology , Oxylipins/metabolism , Plant Immunity/drug effects , Disease Resistance/drug effects , Disease Resistance/immunology , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Leaves/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Ethylenes/metabolism
16.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928427

ABSTRACT

Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop plants. Salicylic acid (SA) application under drought stress may stimulate PSII function, although the exact mechanism remains essentially unclear. To reveal the PSII response mechanism of celery plants sprayed with water (WA) or SA, we employed chlorophyll fluorescence imaging analysis at 48 h, 96 h, and 192 h after watering. The results showed that up to 96 h after watering, the stroma lamellae of SA-sprayed leaves appeared dilated, and the efficiency of PSII declined, compared to WA-sprayed plants, which displayed a better PSII function. However, 192 h after watering, the stroma lamellae of SA-sprayed leaves was restored, while SA boosted chlorophyll synthesis, and by ameliorating the osmotic potential of celery plants, it resulted in higher relative leaf water content compared to WA-sprayed plants. SA, by acting as an antioxidant under drought stress, suppressed phototoxicity, thereby offering PSII photoprotection, together with enhanced effective quantum yield of PSII photochemistry (ΦPSII) and decreased quantity of singlet oxygen (1O2) generation compared to WA-sprayed plants. The PSII photoprotection mechanism induced by SA under drought stress was triggered by non-photochemical quenching (NPQ), which is a strategy to protect the chloroplast from photo-oxidative damage by dissipating the excess light energy as heat. This photoprotective mechanism, triggered by NPQ under drought stress, was adequate in keeping, especially in high-light conditions, an equal fraction of open PSII reaction centers (qp) as of non-stress conditions. Thus, under water deficit stress, SA activates a regulatory network of stress and light energy partitioning signaling that can mitigate, to an extent, the water deficit stress on PSII functioning.


Subject(s)
Apium , Chlorophyll , Photosystem II Protein Complex , Plant Leaves , Salicylic Acid , Photosystem II Protein Complex/metabolism , Salicylic Acid/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Chlorophyll/metabolism , Apium/metabolism , Droughts , Water/metabolism , Photosynthesis/drug effects , Dehydration/metabolism , Stress, Physiological
17.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892085

ABSTRACT

In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cyclopentanes , Gene Expression Regulation, Plant , Lipoxygenase , Oxylipins , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Lipoxygenase/metabolism , Lipoxygenase/genetics , Oxylipins/metabolism , Cyclopentanes/metabolism , Transcriptome , Salicylic Acid/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Mutation , Gene Expression Profiling , Lipoxygenases
18.
Physiol Plant ; 176(3): e14399, 2024.
Article in English | MEDLINE | ID: mdl-38894599

ABSTRACT

Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.


Subject(s)
Plant Immunity , Salicylic Acid , Signal Transduction , Salicylic Acid/metabolism , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Plant Diseases/immunology , Plant Diseases/genetics , Plant Diseases/microbiology , Plants/immunology , Plants/metabolism , Plants/genetics
19.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822833

ABSTRACT

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Subject(s)
Cyclopentanes , Disease Resistance , Gene Expression Regulation, Plant , Oxylipins , Plant Diseases , Plant Growth Regulators , Plant Proteins , Plants, Genetically Modified , Saccharum , Salicylic Acid , Signal Transduction , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Saccharum/genetics , Saccharum/microbiology , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Reactive Oxygen Species/metabolism , Acetates/pharmacology , Plant Leaves/genetics , Plant Leaves/microbiology , Abscisic Acid/metabolism , Ralstonia solanacearum/physiology , Ralstonia solanacearum/pathogenicity
20.
BMC Plant Biol ; 24(1): 522, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853241

ABSTRACT

BACKGROUND: Several WRKY transcription factors (TFs), including CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 are known to govern the resistance of pepper (Capsicum annuum L.) plants to Ralstonia solanacearum infestation (RSI) and other abiotic stresses. However, the molecular mechanisms underlying these processes remain elusive. METHODS: This study functionally described CaWRKY3 for its role in pepper immunity against RSI. The roles of phytohormones in mediating the expression levels of CaWRKY3 were investigated by subjecting pepper plants to 1 mM salicylic acid (SA), 100 µM methyl jasmonate (MeJA), and 100 µM ethylene (ETH) at 4-leaf stage. A virus-induced gene silencing (VIGS) approach based on the Tobacco Rattle Virus (TRV) was used to silence CaWRKY3 in pepper, and transiently over-expressed to infer its role against RSI. RESULTS: Phytohormones and RSI increased CaWRKY3 transcription. The transcriptions of defense-associated marker genes, including CaNPR1, CaPR1, CaDEF1, and CaHIR1 were decreased in VIGS experiment, which made pepper less resistant to RSI. Significant hypersensitive (HR)-like cell death, H2O2 buildup, and transcriptional up-regulation of immunological marker genes were noticed in pepper when CaWRKY3 was transiently overexpressed. Transcriptional activity of CaWRKY3 was increased with overexpression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40, and vice versa. In contrast, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) was easily repelled by the innate immune system of transgenic Arabidopsis thaliana that overexpressed CaWRKY3. The transcriptions of defense-related marker genes like AtPR1, AtPR2, and AtNPR1 were increased in CaWRKY3-overexpressing transgenic A. thaliana plants. CONCLUSION: It is concluded that CaWRKY3 favorably regulates phytohormone-mediated synergistic signaling, which controls cell death in plant and immunity of pepper plant against bacterial infections.


Subject(s)
Capsicum , Gene Expression Regulation, Plant , Plant Diseases , Plant Growth Regulators , Plant Immunity , Plant Proteins , Ralstonia solanacearum , Transcription Factors , Ralstonia solanacearum/physiology , Capsicum/genetics , Capsicum/immunology , Capsicum/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Cyclopentanes/metabolism , Disease Resistance/genetics , Oxylipins/metabolism , Salicylic Acid/metabolism , Ethylenes/metabolism , Gene Silencing , Acetates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...