Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.042
Filter
1.
Methods Mol Biol ; 2852: 3-17, 2025.
Article in English | MEDLINE | ID: mdl-39235733

ABSTRACT

The use of direct nucleic acid amplification of pathogens from food matrices has the potential to reduce time to results over DNA extraction-based approaches as well as traditional culture-based approaches. Here we describe protocols for assay design and experiments for direct amplification of foodborne pathogens in food sample matrices using loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). The examples provided include the detection of Escherichia coli in milk samples and Salmonella in pork meat samples. This protocol includes relevant reagents and methods including obtaining target sequences, assay design, sample processing, and amplification. These methods, though used for specific example matrices, could be applied to many other foodborne pathogens and sample types.


Subject(s)
DNA, Bacterial , Food Microbiology , Milk , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Salmonella , Nucleic Acid Amplification Techniques/methods , Food Microbiology/methods , Animals , Milk/microbiology , Salmonella/genetics , Salmonella/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Polymerase Chain Reaction/methods , Foodborne Diseases/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Molecular Diagnostic Techniques/methods , Swine
2.
Methods Mol Biol ; 2852: 19-31, 2025.
Article in English | MEDLINE | ID: mdl-39235734

ABSTRACT

Foodborne pathogens continue to be a major health concern worldwide. Culture-dependent methodologies are still considered the gold standard to perform pathogen detection and quantification. These methods present several drawbacks, such as being time-consuming and labor intensive. The implementation of real-time PCR has allowed to overcome these limitations, and even reduce the cost associated with the analyses, due to the possibility of simultaneously and accurately detecting several pathogens in one single assay, with results comparable to those obtained by classical approaches. In this chapter, a protocol for the simultaneous detection of two of the most important foodborne pathogens, Salmonella spp. and Listeria monocytogenes, is described.


Subject(s)
Food Microbiology , Foodborne Diseases , Listeria monocytogenes , Multiplex Polymerase Chain Reaction , Salmonella , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Food Microbiology/methods , Salmonella/genetics , Salmonella/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Foodborne Diseases/microbiology , Foodborne Diseases/diagnosis , Real-Time Polymerase Chain Reaction/methods , Humans , DNA, Bacterial/genetics , DNA, Bacterial/analysis
3.
Proc Natl Acad Sci U S A ; 121(42): e2405983121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39374386

ABSTRACT

The rise of antimicrobial failure is a global emergency, and causes beyond typical genetic resistance must be determined. One probable factor is the existence of subpopulations of transiently growth-arrested bacteria, persisters, that endure antibiotic treatment despite genetic susceptibility to the drug. The presence of persisters in infected hosts has been successfully established, notably through the development of fluorescent reporters. It is proposed that infection relapse is caused by persisters resuming growth after cessation of the antibiotic treatment, but to date, there is no direct evidence for this. This is because no tool or reporter currently exists to track the extent to which infection relapse is initiated by regrowth of persisters in the host. Indeed, once they have transitioned out of the persister state, the progeny of persisters are genetically and phenotypically identical to susceptible bacteria in the population, making it virtually impossible to ascertain the source of relapse. We designed pSCRATCH (plasmid for Selective CRISPR Array expansion To Check Heritage), a molecular tool that functions to record the state of antibiotic persistence in the genome of Salmonella persisters. We show that pSCRATCH successfully marks persisters by adding spacers in their CRISPR arrays and the genomic label is stable in persister progeny after exit from persistence. We further show that in a Salmonella infection model the system enables the discrimination of treatment failure originating from persistence versus resistance. Thus, pSCRATCH provides proof of principle for stable marking of persisters and a prototype for applications to more complex infection models and other pathogens.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Genome, Bacterial/genetics , Plasmids/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Cas Systems/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/drug effects , Drug Resistance, Bacterial/genetics , Genomics/methods , Salmonella/genetics , Salmonella/drug effects , Salmonella Infections/microbiology , Salmonella Infections/drug therapy , Salmonella Infections/genetics
4.
Parasite ; 31: 60, 2024.
Article in English | MEDLINE | ID: mdl-39353100

ABSTRACT

Diarrhea caused by zoonotic pathogens is one of the most common diseases in dairy calves, threatening the health of young animals. Humans are also at risk, in particular children. To explore the pathogens causing diarrhea in dairy calves, the present study applied PCR-based sequencing tools to investigate the occurrence and molecular characteristics of three parasites (Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi) and three bacterial pathogens (Escherichia coli, Clostridium perfringens, and Salmonella spp.) in 343 fecal samples of diarrheic dairy calves from five farms in Lingwu County, Ningxia Hui Autonomous Region, China. The total positive rate of these pathogens in diarrheic dairy calves was 91.0% (312/343; 95% CI, 87.9-94.0), with C. perfringens (61.5%, 211/343; 95% CI, 56.3-66.7) being the dominant one. Co-infection with two to five pathogens was found in 67.3% (231/343; 95% CI, 62.4-72.3) of investigated samples. There were significant differences (p < 0.05) in the positive rates of Cryptosporidium spp. and diarrheagenic E. coli among farms, age groups, and seasons. Two Cryptosporidium species (C. parvum and C. bovis) and five gp60 subtypes of C. parvum (IIdA15G1, IIdA20G1, IIdA19G1, IIdA14G1, and a novel IIdA13G1) were identified. Two assemblages (assemblage E and zoonotic assemblage A) of G. duodenalis and six ITS genotypes of E. bieneusi (J, Henan-IV, EbpC, I, EbpA, and ESH-01) were observed. Four virulence genes (eaeA, stx1, stx2, and st) of diarrheagenic E. coli and one toxin type (type A) of C. perfringens were detected. Our study enriches our knowledge on the characteristics and zoonotic potential of diarrhea-related pathogens in dairy calves.


Title: Caractérisation moléculaire des protozoaires parasites zoonotiques courants et des bactéries responsables de diarrhée chez les veaux laitiers dans la région autonome Hui du Ningxia, en Chine. Abstract: La diarrhée causée par des agents pathogènes zoonotiques est l'une des maladies les plus courantes chez les veaux laitiers, menaçant la santé des jeunes animaux. Ceci est également un risque pour la santé humaine, en particulier les enfants. Pour explorer les agents pathogènes responsables de la diarrhée chez les veaux laitiers, cette étude a utilisé des outils de séquençage basés sur la PCR pour étudier l'occurrence et les caractères moléculaires de trois parasites (Cryptosporidium spp., Giardia duodenalis et Enterocytozoon bieneusi) et de trois agents pathogènes bactériens (Escherichia coli, Clostridium perfringens et Salmonella spp.) dans 343 échantillons fécaux de veaux laitiers diarrhéiques provenant de cinq fermes du comté de Lingwu, région autonome Hui du Ningxia, en Chine. Le taux total positif de ces pathogènes chez les veaux laitiers diarrhéiques était de 91,0 % (312/343; IC à 95 %, 87,9­94,0), et C. perfringens (61,5 %, 211/343; IC à 95 %, 56,3­66,7) était le plus répandu. Une co-infection avec deux à cinq pathogènes a été trouvée dans 67,3 % (231/343; IC à 95 %, 62,4­72,3) des échantillons étudiés. Il y avait des différences significatives (p < 0,05) dans les taux positifs de Cryptosporidium spp. et d'E. coli diarrhéogènes entre les fermes, les groupes d'âge et les saisons. Deux espèces de Cryptosporidium (C. parvum et C. bovis) et cinq sous-types de gp60 de C. parvum (IIdA15G1, IIdA20G1, IIdA19G1, IIdA14G1 et un nouveau, IIdA13G1) ont été identifiés. Deux assemblages (assemblage E et assemblage zoonotique A) de G. duodenalis et six génotypes ITS d'E. bieneusi (J, Henan-IV, EbpC, I, EbpA et ESH-01) ont été observés. Quatre gènes de virulence (eaeA, stx1, stx2 et st) d'E. coli diarrhéogènes et un type de toxine (type A) de C. perfringens ont été détectés. Notre étude enrichit les connaissances sur les caractères et le potentiel zoonotique des agents pathogènes liés à la diarrhée chez les veaux laitiers.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium , Diarrhea , Enterocytozoon , Feces , Giardia lamblia , Zoonoses , Animals , Cattle , Diarrhea/veterinary , Diarrhea/parasitology , Diarrhea/microbiology , Diarrhea/epidemiology , China/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , Giardia lamblia/genetics , Giardia lamblia/isolation & purification , Giardia lamblia/classification , Feces/parasitology , Feces/microbiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/classification , Giardiasis/veterinary , Giardiasis/epidemiology , Giardiasis/parasitology , Coinfection/veterinary , Coinfection/epidemiology , Coinfection/parasitology , Coinfection/microbiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Clostridium perfringens/isolation & purification , Clostridium perfringens/genetics , Clostridium perfringens/classification , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/classification , Humans , Polymerase Chain Reaction/veterinary , Dairying
5.
Curr Microbiol ; 81(11): 355, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278982

ABSTRACT

Chlorine and its derivatives have been used as an antibacterial agent to reduce Salmonella contamination in poultry meat during processing. We evaluated the survival of 4 different Salmonella serotypes (Typhimurium, Enteritidis, Heidelberg, and Gaminara) in the presence of 50 ppm sodium hypochlorite (NaOCl) alone or with the addition of thiourea (radical scavenger) or Dip (iron chelator) to determine the contribution of reactive oxygen species (ROS) in the bactericidal activity of NaOCl. The result showed that for all four serotypes the addition of thiourea or Dip significantly increased the % survival as compared to the respective NaOCl treatment groups, while it was significantly higher with thiourea as compared to Dip (P < 0.05). We also evaluated the survival of 11 deletion mutants of S. Typhimurium, which were demonstrated to increase (∆atpC, ∆cyoA, ∆gnd, ∆nuoG, ∆pta, ∆sdhC, and ∆zwf) or decrease the production of ROS (∆edd, ∆fumB, ∆pykA, and ∆tktB) in Escherichia coli (E. coli), in the presence of 50 ppm. The results showed that only two (∆sdhC and ∆zwf) out of 7 ROS-increasing mutants showed reduced % survival as compared to the wild-type (P < 0.05), while all four deletion ROS-decreasing mutants showed significantly higher % survival as compared to the wild-type (P < 0.05). This work suggests that the production of ROS is a major component of the bactericidal activity of NaOCl against Salmonella serotypes and there might be a significant difference in the metabolic pathways involved in ROS production between Salmonella and E. coli.


Subject(s)
Anti-Bacterial Agents , Reactive Oxygen Species , Salmonella , Reactive Oxygen Species/metabolism , Salmonella/drug effects , Salmonella/genetics , Anti-Bacterial Agents/pharmacology , Sodium Hypochlorite/pharmacology , Chlorine/pharmacology , Disinfectants/pharmacology , Microbial Viability/drug effects , Thiourea/pharmacology , Thiourea/analogs & derivatives , Animals , Escherichia coli/drug effects , Escherichia coli/genetics
6.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(9): 1450-1457, 2024 Sep 06.
Article in Chinese | MEDLINE | ID: mdl-39290030

ABSTRACT

Salmonella is an important foodborne pathogen and one of the main causes of diarrhea. Every year, about 550 million people suffer from diarrhea due to Salmonella infection, of which about 230 000 die. It has become a major global public safety issue. The application fields of Salmonella detection involve food safety, water quality monitoring, animal husbandry, public health monitoring, and medical diagnosis. The detection requirements mainly come from three aspects: pathogen identification, serotype identification, drug resistance and virulence identification. In recent years, the detection technology for Salmonella has made rapid progress, especially the emergence and development of emerging molecular detection technologies, providing new perspectives for Salmonella detection in different scenarios. However, due to the diversity of Salmonella serotypes and the complexity of detection scenarios, existing detection technologies still have some pain points (such as long detection time, cumbersome operation steps, low scene adaptability, etc.). This article will elaborate on the application of several emerging molecular detection technologies with distinct characteristics, such as CRISPR Cas technology, digital PCR technology, sequencing technology, and microfluidic technology, in Salmonella detection. It aims to provide a reference for the development and improvement of Salmonella detection technology and the establishment of infection warning and control systems.


Subject(s)
Salmonella Infections , Salmonella , Humans , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/pathogenicity , Salmonella Infections/microbiology , Salmonella Infections/diagnosis
7.
Acta Microbiol Immunol Hung ; 71(3): 220-227, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39226121

ABSTRACT

This study examined the prevalence and antibiotic resistance pattern of blaCTX-M extended-spectrum ß-lactamase positive Salmonella species isolated from a hospital in Weifang. Salmonella strains were isolated from hospitalized patients from January 2018 to April 2023. Whole-genome sequencing was performed by Illumina platform. CTX-M-producing Salmonella were identified by Comprehensive Antibiotic Research Database (CARD). Strain susceptibility to six antimicrobial agents was assessed by BD Phoenix™ M50 System. MLST analysis confirmed sequence types and additionally, serotypes were determined by SeqSero2. Genetic environments of blaCTX-M genes were analyzed by Isfinder and BLASTn. Single nucleotide polymorphisms were used to construct a phylogenetic tree to analyze homology. A total of 34 CTX-M-producing Salmonella were detected. The most prevalent serotype was Salmonella enterica subsp. enterica 1,4,[5],12:i:- (14/34, 41.18%), belonging to ST34, followed by Salmonella Enteritidis (10/34, 29.41%), belonging to ST11. The highest resistance rate was detected to ampicillin (97.06%), followed by ceftriaxone (94.12%) and ceftazidime (58.83%). In CTX-M-producing Salmonella five types of blaCTX-M genes were identified, the most prevalent was blaCTX-M-55 (47.06%, 16/34), followed by blaCTX-M-14, blaCTX-M-65, blaCTX-M-125, and blaCTX-M-27 at 26.47% (9/34), 11.77% (4/34), 8.82% (3/34), and 5.88% (2/34), respectively. Apart from blaCTX-M, 40 antibiotic resistance genes were also detected, conveying resistance to multiple drugs and the most frequent genes were namely, mcr-1.1, aph(6)-Id, aph(3″)-Ib, oqxAB, qnrB6, qnrS1. According to genetic environment analysis, the insertion sequence ISEcp1 was prevalent upstream of the blaCTX-M gene. Our study demonstrates that multiple resistance genes are carried by clinical isolates of Salmonella spp. however, the dominant ESBL genotype is CTX-M-55, that is associated with ISEcp1.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Salmonella Infections , Salmonella , beta-Lactamases , Humans , China/epidemiology , beta-Lactamases/genetics , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Salmonella/genetics , Salmonella/drug effects , Salmonella/enzymology , Salmonella/isolation & purification , Salmonella/classification , Anti-Bacterial Agents/pharmacology , Prevalence , Phylogeny , Serogroup , Drug Resistance, Multiple, Bacterial , Multilocus Sequence Typing , Whole Genome Sequencing , Salmonella enteritidis/genetics , Salmonella enteritidis/drug effects , Salmonella enteritidis/enzymology , Salmonella enteritidis/isolation & purification
8.
BMC Infect Dis ; 24(1): 994, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289656

ABSTRACT

BACKGROUND: In addition to antibiotic resistance, persistence is another cause of treatment failure in bacterial infections, representing a significant public health concern. Due to a lack of adequate data on clinical isolates, this study was initiated to investigate persistence in clinical isolates in Burkina Faso. METHODS: Eighty (80) clinical isolates, including 32 Pseudomonas aeruginosa, 41 Staphylococcus aureus, and 7 Salmonella sp. obtained from clinical laboratories in Burkina Faso, were analyzed to assess their susceptibility to ciprofloxacin and gentamicin, as well as to determine the presence of persistence genes. The effects of ciprofloxacin and gentamicin on persister formation were evaluated by conducting colony counts at 1, 3, 5, 7, and 20 h after exposing the bacteria to high concentrations of these antibiotics. RESULTS: Results showed high sensitivity to both antibiotics (72.5% for ciprofloxacin and 82.5% for gentamicin). Persister formation occurred in Staphylococcus aureus with gentamicin and in Salmonella sp. with ciprofloxacin, while Pseudomonas aeruginosa did not form persisters. The mazF gene was found in 28.13% of P. aeruginosa and 2.44% of S. aureus isolates, and the hipA gene in 28.57% of Salmonella sp. None of the relE1 or relE2 genes were detected. CONCLUSIONS: The study revealed high sensitivity in clinical bacterial isolates to ciprofloxacin and gentamicin. Staphylococcus aureus and Salmonella sp. showed persister formation under antibiotic stress, with low frequencies of the studied persistence genes. These findings enhance understanding of clinical bacterial behavior and inform strategies against antibiotic-resistant infections.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Gentamicins , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus , Burkina Faso , Humans , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Gentamicins/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Drug Resistance, Bacterial/genetics , Bacterial Infections/microbiology , Bacterial Infections/drug therapy
9.
PLoS One ; 19(9): e0307868, 2024.
Article in English | MEDLINE | ID: mdl-39298421

ABSTRACT

In Myanmar, where backyard, semi-intensive, and intensive pig (Sus scrofa domesticus) farming coexist, there is limited understanding of the zoonotic risks and antimicrobial resistance (AMR) associated with these farming practices. This study was conducted to investigate the prevalence, AMR and genomic features of Salmonella in pig farms in the Yangon region and the impact of farm intensification to provide evidence to support risk-based future management approaches. Twenty-three farms with different production scales were sampled for two periods with three sampling-visit each. Antimicrobial susceptibility tests and whole-genome sequencing were performed on the isolates. The prevalence of Salmonella was 44.5% in samples collected from backyard farms, followed by intensive (39.5%) and semi-intensive farms (19.5%). The prevalence of multi-drug resistant isolates from intensive farms (45/84, 53.6%) was higher than those from backyard (32/171, 18.7%) and semi-intensive farms (25/161, 15.5%). Among 28 different serovars identified, S. Weltevreden (40; 14.5%), S. Kentucky (38; 13.8%), S. Stanley (35, 12.7%), S. Typhimurium (22; 8.0%) and S. Brancaster (20; 7.3%) were the most prevalent serovars and accounted for 56.3% of the genome sequenced strains. The diversity of Salmonella serovars was highest in semi-intensive and backyard farms (21 and 19 different serovars, respectively). The high prevalence of globally emerging S. Kentucky ST198 was detected on backyard farms. The invasive-infection linked typhoid-toxin gene (cdtB) was found in the backyard farm isolated S. Typhimurium, relatively enriched in virulence and AMR genes, presented an important target for future surveillance. While intensification, in terms of semi-intensive versus backyard production, maybe a mitigator for zoonotic risk through a lower prevalence of Salmonella, intensive production appears to enhance AMR-associated risks. Therefore, it remains crucial to closely monitor the AMR and virulence potential of this pathogen at all scales of production. The results underscored the complex relationship between intensification of animal production and the prevalence, diversity and AMR of Salmonella from pig farms in Myanmar.


Subject(s)
Farms , Salmonella Infections, Animal , Salmonella , Swine Diseases , Animals , Swine/microbiology , Myanmar/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Salmonella/genetics , Salmonella/drug effects , Salmonella/isolation & purification , Prevalence , Swine Diseases/microbiology , Swine Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Whole Genome Sequencing , Genome, Bacterial
10.
Bull Exp Biol Med ; 177(4): 465-469, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39264563

ABSTRACT

Two bacteriophages specifically active against to pathogenic strains of the Salmonella genus were isolated. The morphology of phage colonies (size, transparency, and shape of the plaque edge, and halo) and the spectrum of their lytic activity and interaction with microbial cells (adsorption rate, duration of the latency, and reproductive efficiency) were examined. Using genome-wide sequencing, we determined the taxonomic position of bacteriophages and verified the absence of unwanted genes encoding toxins, adhesins, and invasins, as well as pathogenicity islands responsible for antibiotic resistance. In addition, phage stability under different physical conditions and their productivity were studied.


Subject(s)
Phage Therapy , Salmonella Phages , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Humans , Salmonella Infections/microbiology , Salmonella Infections/therapy , Salmonella Infections/drug therapy , Salmonella/virology , Salmonella/drug effects , Salmonella/genetics , Genome, Viral/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genomic Islands/genetics
11.
Epidemiol Infect ; 152: e106, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344903

ABSTRACT

An investigation into an outbreak of Salmonella Newport infections in Canada was initiated in July 2020. Cases were identified across several provinces through whole-genome sequencing (WGS). Exposure data were gathered through case interviews. Traceback investigations were conducted using receipts, invoices, import documentation, and menus. A total of 515 cases were identified in seven provinces, related by 0-6 whole-genome multi-locus sequence typing (wgMLST) allele differences. The median age of cases was 40 (range 1-100), 54% were female, 19% were hospitalized, and three deaths were reported. Forty-eight location-specific case sub-clusters were identified in restaurants, grocery stores, and congregate living facilities. Of the 414 cases with exposure information available, 71% (295) had reported eating onions the week prior to becoming ill, and 80% of those cases who reported eating onions, reported red onion specifically. The traceback investigation identified red onions from Grower A in California, USA, as the likely source of the outbreak, and the first of many food recall warnings was issued on 30 July 2020. Salmonella was not detected in any tested food or environmental samples. This paper summarizes the collaborative efforts undertaken to investigate and control the largest Salmonella outbreak in Canada in over 20 years.


Subject(s)
Disease Outbreaks , Onions , Salmonella Food Poisoning , Humans , Canada/epidemiology , Female , Male , Adult , Middle Aged , Child, Preschool , Adolescent , Young Adult , Child , Aged , Infant , Aged, 80 and over , Salmonella Food Poisoning/epidemiology , Salmonella Food Poisoning/microbiology , Onions/microbiology , Whole Genome Sequencing , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella/genetics , Salmonella/classification , Salmonella/isolation & purification , Multilocus Sequence Typing
12.
Ann Clin Microbiol Antimicrob ; 23(1): 86, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342293

ABSTRACT

This study explored the molecular epidemiology and resistance mechanisms of 271 non-duplicate Salmonella enterica (S. enterica) strains, isolated mainly from adults (209/271) in a tertiary hospital in Hangzhou between 2020 and 2021. Through whole-genome sequencing and bioinformatics, the bacterial strains were classified into 46 serotypes and 54 sequence types (ST), with S. Enteritidis, S. 1,4,[5],12:i:-, and S. Typhimurium being the most prevalent serotypes and ST11, ST34, and ST19 the most common STs. The strains isolated from adults were primarily S. Enteritidis (59/209), while from children were mainly S. 1,4,[5],12:i:- (20/62). Worryingly, 12.55% strains were multi-drug resistant (MDR), with resistance rates to cefepime (FEP), ceftazidime (CAZ), ceftriaxone (CRO) and cefotaxime (CTX) of 7.38%, 9.23%, 15.87% and 16.24%, respectively, and resistance rates to levofloxacin (LEV) and ciprofloxacin (CIP) of 8.49% and 19.19%, respectively. It is worth noting that the resistance rates of CRO and CTX in children reached 30.65%. A total of 34 strains carried extended-spectrum ß-lactamase (ESBL) genes, dominated by blaCTX-M-65 (13/34) and blaCTX-M-55 (12/34); it is notable that one strain of S. Saintpaul carried both blaCTX-M-27 and blaCTX-M-55. The resistance mechanism to cephalosporins was mainly due to ESBL genes (20/43), and other genes included AmpC and ß-lactamase genes. The strains resistant to quinolones mainly carried qnrS1 (27/53), and others included qnrB6, aac(6')-Ib-cr, and mutations in gyrA and parC. One strain did not carry common quinolone resistance genes but had a parC (p.T57S) mutation to cause CIP resistance. This research provides vital insights into the molecular epidemiology and resistance mechanisms of clinical S. enterica, implicating possible infection control strategies.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Salmonella Infections , Whole Genome Sequencing , Humans , China/epidemiology , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Prevalence , Adult , Child , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Serogroup , Genome, Bacterial , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Molecular Epidemiology , beta-Lactamases/genetics
13.
J Agric Food Chem ; 72(39): 21820-21828, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39298407

ABSTRACT

The prevalence of foodborne pathogenic bacteria, especially drug-resistant strains, such as Salmonella enterica, poses serious threats to public health, highlighting the requirement for the development of rapid and precise detection methods. Herein, a CRISPR/Cas12a-triggered visible-light-driven photoelectrochemical (PEC) assay (CasPEC) was developed using a SiO2-quenched BiVO4/MoS2 p/n-type heterojunction as the photoactive material. The CRISPR/Cas12a recognition endowed the CasPEC assay with high specificity capable of resolving single-nucleotide polymorphisms (SNPs) and identifying SNP-involved drug-resistant bacteria. SiO2 was linked to the surface of the BiVO4/MoS2 heterojunction by single-stranded DNA (ssDNA), which would be cleaved by target-activated CRISPR/Cas12a. This cleavage of ssDNA resulted in the detachment of SiO2, thereby achieving a "signal-on" PEC output. Leveraging the multiple-turnover CRISPR cleavage and the outstanding photoactive performance of PEC signaling, the CasPEC assay for S. enterica showed a detection limit of 103 colony-forming units (CFU)/mL and the ability to detect as few as 0.01% drug-resistant strains. The CasPEC assay can accurately sense the S. enterica contamination in complex food matrices, including beef and milk. These findings demonstrated the great potential of the CasPEC assay for detecting pathogenic bacterial contamination in food, particularly concerning food safety related to SNP-involved drug-resistant bacteria.


Subject(s)
CRISPR-Cas Systems , Electrochemical Techniques , Light , Polymorphism, Single Nucleotide , Electrochemical Techniques/methods , Drug Resistance, Bacterial/genetics , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Food Contamination/analysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Salmonella enterica/genetics , Salmonella enterica/radiation effects , Salmonella/genetics , Food Microbiology
14.
PLoS Biol ; 22(8): e3002746, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39110680

ABSTRACT

Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp. genomes covering 2 species, 6 subspecies, and 46 serovars, we uncover distinct integration patterns of pathogenicity-related gene clusters into RGP, challenging traditional views of gene distribution. These RGP exhibit distinct preferences for specific genomic spots, and the presence or absence of such spots across Salmonella lineages profoundly shapes strain pathogenicity. RGP preferences are guided by conserved flanking genes surrounding integration spots, implicating their involvement in regulatory networks and functional synergies with integrated gene clusters. Additionally, we emphasise the multifaceted contributions of plasmids and prophages to the pathogenicity of diverse Salmonella lineages. Overall, this study provides a comprehensive blueprint of the pathogenicity potential of Salmonella. This unique insight identifies genomic spots in nonpathogenic lineages that hold the potential for harbouring pathogenicity genes, providing a foundation for predicting future adaptations and developing targeted strategies against emerging human pathogenic strains.


Subject(s)
Genome, Bacterial , Salmonella , Salmonella/genetics , Salmonella/pathogenicity , Genome, Bacterial/genetics , Virulence/genetics , Humans , Genomics/methods , Multigene Family , Phylogeny , Plasmids/genetics , Salmonella Infections/microbiology , Prophages/genetics , Evolution, Molecular
15.
Nat Commun ; 15(1): 6504, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090110

ABSTRACT

The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.


Subject(s)
O Antigens , O Antigens/genetics , O Antigens/metabolism , O Antigens/biosynthesis , Salmonella/genetics , Salmonella/metabolism , Gene Expression Regulation, Bacterial , Serogroup , Promoter Regions, Genetic , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism
16.
Sci Rep ; 14(1): 19169, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160213

ABSTRACT

The resistance of foodborne pathogens to antimicrobial agents is a potential danger to human health. Hence, establishing the status of good agricultural practices (GAPs) and the antimicrobial susceptibility of major foodborne pathogens has a significant programmatic implication in planning interventions. The objective of this study was to assess the gap in attaining GAP and estimate the prevalence and antimicrobial susceptibility profile of Salmonella in vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 81 vegetable farms from four sub-cities in Addis Ababa were visited, and 1119 samples were collected: soil (n = 271), manure (n = 375), vegetables (n = 398), and dairy cattle feces (n = 75). Additional data were collected using a structured questionnaire. Isolation of Salmonella was done using standard microbiology techniques and antimicrobial susceptibility testing was conducted using disk diffusion assays. Carriage for antimicrobial resistance genes was tested using polymerase chain reaction (PCR). Among the 81 vegetable farms visited, 24.7% used animal manure without any treatment, 27.2% used properly stored animal manure and 80.2% were easily accessible to animals. The prevalence of Salmonella was 2.3% at the sample level, 17.3% at the vegetable farm level, and 2.5% in vegetables. The highest rate of resistance was recorded for streptomycin, 80.7% (21 of 26), followed by kanamycin, 65.4% (17 of 26), and gentamicin, 61.5% (16 of 26). Multidrug resistance was detected in 61.5% of the Salmonella isolates. Vegetable farms have a gap in attaining GAPs, which could contribute to increased contamination and the transfer of antimicrobial resistance to the vegetables. The application of GAPs, including proper preparation of compost and the appropriate use of antimicrobials in veterinary practices, are recommended to reduce the emergence and spread of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Farms , Manure , Salmonella , Vegetables , Ethiopia/epidemiology , Animals , Salmonella/isolation & purification , Salmonella/drug effects , Salmonella/genetics , Vegetables/microbiology , Manure/microbiology , Prevalence , Cattle , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Fertilizers , Soil Microbiology , Drug Resistance, Bacterial , Humans , Feces/microbiology , Agriculture
17.
BMC Infect Dis ; 24(1): 864, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187763

ABSTRACT

BACKGROUND: Foodborne diseases (FBDs) represent a significant risk to public health, with nearly one in ten people falling ill every year globally. The large incidence of foodborne diseases in African low- and middle-income countries (LMIC) shows the immediate need for action, but there is still far to a robust and efficient outbreak detection system. The detection of outbreak heavily relies on clinical diagnosis, which are often delayed or ignored due to resource limitations and inadequate surveillance systems. METHODS: In total, 68 samples of non-typhoidal Salmonella isolates from human, animal and environmental sources collected between November 2021 and January 2023 were analyzed using sequencing methods to infer phylogenetic relationships between the samples. A source attribution model using a machine-learning logit-boost that predicted the likely source of infection for 20 cases of human salmonellosis was also run and compared with the results of the cluster detection. RESULTS: Three clusters of samples with close relation (SNP difference < 30) were identified as non-typhoidal Salmonella in Harar town and Kersa district, Ethiopia. These three clusters were comprised of isolates from different sources, including at least two human isolates. The isolates within each cluster showed identical serovar and sequence type (ST), with few exceptions in cluster 3. The close proximity of the samples suggested the occurrence of three potential outbreaks of non-typhoidal Salmonella in the region. The results of the source attribution model found that human cases of salmonellosis could primarily be attributed to bovine meat, which the results of the phylogenetic analysis corroborated. CONCLUSIONS: The findings of this study suggested the occurrence of three possible outbreaks of non-typhoidal Salmonella in eastern Ethiopia, emphasizing the importance of targeted intervention of food safety protocols in LMICs. It also highlighted the potential of integrated surveillance for detecting outbreak and identifying the most probable source. Source attribution models in combination with other epidemiological methods is recommended as part of a more robust and integrated surveillance system for foodborne diseases.


Subject(s)
Disease Outbreaks , Foodborne Diseases , Phylogeny , Salmonella Infections , Salmonella , Humans , Ethiopia/epidemiology , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology , Animals , Salmonella Infections/epidemiology , Salmonella Infections/microbiology
18.
mSystems ; 9(9): e0058624, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39158311

ABSTRACT

Nontyphoidal Salmonella (NTS) is the main etiological agent of human nontyphoidal salmonellosis. The aim of this study was to analyze the epidemiological characteristics and horizontal transfer mechanisms of antimicrobial resistance (AMR) genes from eight strains of NTS detected in Zhenjiang City, Jiangsu Province, China. Fecal samples from outpatients with food-borne diarrhea were collected in 2022. The NTS isolates were identified, and their susceptibility was tested with the Vitek 2 Compact system. The genomes of the NTS isolates were sequenced with the Illumina NovaSeq platform and Oxford Nanopore Technologies platform. The AMR genes and mobile genetic elements (MGEs) were predicted with the relevant open access resources. Eight strains of NTS were isolated from 153 specimens, and Salmonella Typhimurium ST19 was the most prevalent serotype. The AMR gene with the highest detection rate was AAC(6')-Iaa (10.5%) followed by TEM-1 (7.9%), sul2 (6.6%), and tet(A) (5.3%). Eleven MGEs carrying 34 AMR genes were identified on the chromosomes of 3 of the 8 NTS, including 3 resistance islands, 6 composite transposons (Tns), and 2 integrons. Eighteen plasmids carrying 40 AMR genes were detected in the 8 NTS strains, including 6 mobilizable plasmids, 3 conjugative plasmids, and 9 nontransferable plasmids, 7 of which carried 10 composite Tns and 3 integrons. This study provided a theoretical basis, from a genetic perspective, for the prevention and control of NTS resistance in Zhenjiang City. IMPORTANCE: Human nontyphoidal salmonellosis is one of the common causes of bacterial food-borne illnesses, with significant social and economic impacts, especially those caused by invasive multidrug-resistant nontyphoidal Salmonella, which entails high morbidity and mortality. Antimicrobial resistance is mainly mediated by drug resistance genes, and mobile genetic elements play key roles in the capture, accumulation, and dissemination of antimicrobial resistance genes. Therefore, it is necessary to study the epidemiological characteristics and horizontal transfer mechanisms of antimicrobial resistance genes of nontyphoidal Salmonella to prevent the spread of multidrug-resistant nontyphoidal Salmonella.


Subject(s)
Interspersed Repetitive Sequences , Salmonella Infections , Salmonella , Humans , Salmonella/genetics , Salmonella/drug effects , Salmonella/isolation & purification , Interspersed Repetitive Sequences/genetics , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , China/epidemiology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Gene Transfer, Horizontal , Genome, Bacterial/genetics , Plasmids/genetics , Genomics , Feces/microbiology
19.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125914

ABSTRACT

Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.


Subject(s)
Alleles , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Plasmids , Poultry Diseases , Replicon , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Replicon/genetics , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Poultry Diseases/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Salmonella/genetics , Salmonella/drug effects
20.
Microb Pathog ; 195: 106871, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39163919

ABSTRACT

The H9N2 avian influenza virus (AIV) is spreading worldwide. Presence of H9N2 virus tends to increase the chances of infection with other pathogens which can lead to more serious economic losses. In a previous study, a regulated delayed lysis Salmonella vector was used to deliver a DNA vaccine named pYL233 encoding M1 protein, mosaic HA protein and chicken GM-CSF adjuvant. To further increase its efficiency, chitosan as a natural adjuvant was applied in this study. The purified plasmid pYL233 was coated with chitosan to form a DNA containing nanoparticles (named CS233) by ionic gel method and immunized by intranasal boost immunization in birds primed by oral administration with Salmonella strain. The CS233 DNA nanoparticle has a particle size of about 150 nm, with an encapsulation efficiency of 93.2 ± 0.12 % which protected the DNA plasmid from DNase I digestion and could be stable for a period of time at 37°. After intranasal boost immunization, the CS233 immunized chickens elicited higher antibody response, elevated CD4+ T cells and CD8+ T cells activation and increased T-lymphocyte proliferation, as well as increased productions of IL-4 and IFN-γ. After challenge, chickens immunized with CS233 resulted in the lowest levels of pulmonary virus titer and viral shedding as compared to the other challenge groups. The results showed that the combination of intranasal immunization with chitosan-coated DNA vaccine and oral immunization with regulatory delayed lytic Salmonella strain could enhance the immune response and able to provide protection against H9N2 challenge.


Subject(s)
Administration, Intranasal , Antibodies, Viral , Chickens , Chitosan , Immunity, Cellular , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Plasmids , Vaccines, DNA , Virus Shedding , Animals , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/genetics , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Chickens/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Viral/blood , Plasmids/genetics , Nanoparticles , Immunization, Secondary , CD8-Positive T-Lymphocytes/immunology , Adjuvants, Immunologic/administration & dosage , Interferon-gamma , Interleukin-4 , Adjuvants, Vaccine , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/virology , CD4-Positive T-Lymphocytes/immunology , Salmonella/immunology , Salmonella/genetics
SELECTION OF CITATIONS
SEARCH DETAIL