Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.877
Filter
1.
Sci Rep ; 14(1): 14586, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918457

ABSTRACT

Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.


Subject(s)
Ascariasis , Coinfection , Killer Cells, Natural , Swine Diseases , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ascariasis/immunology , Ascariasis/veterinary , Ascariasis/parasitology , Coinfection/immunology , Coinfection/microbiology , Coinfection/parasitology , Swine , Swine Diseases/parasitology , Swine Diseases/immunology , Swine Diseases/microbiology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Ascaris suum/immunology , Interferon-gamma/metabolism , Perforin/metabolism , Interleukin-12/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Interleukin-18/metabolism
2.
Front Immunol ; 15: 1368545, 2024.
Article in English | MEDLINE | ID: mdl-38835764

ABSTRACT

There is a rapidly growing interest in how the avian intestine is affected by dietary components and feed additives. The paucity of physiologically relevant models has limited research in this field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The development of complex 3D intestinal organoids or "mini-guts" has created ample opportunities for poultry research in this field. A major advantage of the floating chicken intestinal organoids is the combination of a complex cell system with an easily accessible apical-out orientation grown in a simple culture medium without an extracellular matrix. The objective was to investigate the impact of a commercial proprietary blend of organic acids and essential oils (OA+EO) on the innate immune responses and kinome of chicken intestinal organoids in a Salmonella challenge model. To mimic the in vivo prolonged exposure of the intestine to the product, the intestinal organoids were treated for 2 days with 0.5 or 0.25 mg/mL OA+EO and either uninfected or infected with Salmonella and bacterial load in the organoids was quantified at 3 hours post infection. The bacteria were also treated with OA+EO for 1 day prior to challenge of the organoids to mimic intestinal exposure. The treatment of the organoids with OA+EO resulted in a significant decrease in the bacterial load compared to untreated infected organoids. The expression of 88 innate immune genes was investigated using a high throughput qPCR array, measuring the expression of 88 innate immune genes. Salmonella invasion of the untreated intestinal organoids resulted in a significant increase in the expression of inflammatory cytokine and chemokines as well as genes involved in intracellular signaling. In contrast, when the organoids were treated with OA+EO and challenged with Salmonella, the inflammatory responses were significantly downregulated. The kinome array data suggested decreased phosphorylation elicited by the OA+EO with Salmonella in agreement with the gene expression data sets. This study demonstrates that the in vitro chicken intestinal organoids are a new tool to measure the effect of the feed additives in a bacterial challenge model by measuring innate immune and protein kinases responses.


Subject(s)
Animal Feed , Chickens , Intestines , Organoids , Animals , Intestines/immunology , Intestines/drug effects , Intestines/microbiology , Immunity, Innate , Oils, Volatile/pharmacology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology , Poultry Diseases/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects
3.
Vet Microbiol ; 294: 110131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805917

ABSTRACT

Outer membrane vesicles (OMVs) are membranous structures frequently observed in Gram-negative bacteria that contain bioactive substances. These vesicles are rich in bacterial antigens that can activate the host's immune system, making them a promising candidate vaccine to prevent and manage bacterial infections. The aim of this study was to assess the immunogenicity and protective efficacy of OMVs derived from Salmonella enterica serovar Typhimurium and S. Choleraesuis, while also focusing on enhancing OMV production. Initial experiments showed that OMVs from wild-type strains did not provide complete protection against homologous Salmonella challenge, possible due to the presence of flagella in the purified OMVs samples, which may elicit an unnecessary immune response. To address this, flagellin-deficient mutants of S. Typhimurium and S. Choleraesuis were constructed, designated rSC0196 and rSC0199, respectively. These mutants exhibited reduced cell motility and their OMVs were found to be flagellin-free. Immunization with non-flagellin OMVs derived from rSC0196 induced robust antibody responses and improved survival rates in mice, as compared to the OMVs derived from the wild-type UK-1. In order to enhance OMV production, deletions of ompA or tolR were introduced into rSC0196. The deletion of tolR not only increase the yield of OMVs, but also conferred complete protection against homologous S. Typhimurium challenge in mice. Collectively, these findings indicate that the flagellin-deficient OMVs with a tolR mutation have the potential to serve as a versatile vaccine platform, capable of inducing broad-spectrum protection against significant pathogens.


Subject(s)
Bacterial Outer Membrane Proteins , Mice, Inbred BALB C , Salmonella Vaccines , Salmonella typhimurium , Animals , Salmonella typhimurium/immunology , Salmonella typhimurium/genetics , Mice , Salmonella Vaccines/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Female , Flagellin/immunology , Flagellin/genetics , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Outer Membrane/immunology , Salmonella/immunology , Salmonella/genetics , Immunogenicity, Vaccine , Antigens, Bacterial/immunology
4.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767707

ABSTRACT

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Subject(s)
Complement System Proteins , Disease Models, Animal , Lipopolysaccharides , O Antigens , Salmonella enteritidis , Salmonella enteritidis/immunology , Salmonella enteritidis/pathogenicity , Animals , O Antigens/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Lipopolysaccharides/immunology , Immune Evasion , Microbial Viability , Moths/microbiology , Moths/immunology , Virulence , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Complement Activation , Lepidoptera/immunology , Lepidoptera/microbiology
5.
Genes (Basel) ; 15(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38674370

ABSTRACT

Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.


Subject(s)
Lactobacillus plantarum , Mice, Inbred BALB C , Probiotics , Salmonella typhimurium , Transcriptome , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Mice , Lactobacillus acidophilus , Metabolome , Metabolomics/methods , Salmonella Infections/immunology , Salmonella Infections/genetics , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/metabolism , Female , Gastrointestinal Microbiome/drug effects
6.
Poult Sci ; 103(5): 103569, 2024 May.
Article in English | MEDLINE | ID: mdl-38447310

ABSTRACT

Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.


Subject(s)
Chickens , Chitosan , Cross Protection , Nanoparticles , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Salmonella enteritidis , Salmonella typhimurium , Animals , Chickens/immunology , Salmonella enteritidis/immunology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/immunology , Chitosan/administration & dosage , Chitosan/pharmacology , Salmonella Vaccines/immunology , Salmonella Vaccines/administration & dosage , Nanoparticles/administration & dosage , Salmonella typhimurium/immunology , Administration, Oral , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
7.
Sci Rep ; 13(1): 595, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631563

ABSTRACT

Salmonella spp. is one of the major foodborne pathogens responsible for causing economic losses to the poultry industry and bringing consequences for public health as well. Both the pathogen survival ability in the intestinal environment during inflammation as well as their relationship with the host immune system, play a key role during infections in poultry. The objective of this study was to quantify the presence of the macrophages and CD4+/CD8+ cells populations using the immunohistochemistry technique, in commercial lineages of chickens experimentally infected by wild-type and mutant strains of Salmonella Enteritidis and Salmonella Typhimurium lacking ttrA and pduA genes. Salmonella Enteritidis ∆ttrA∆pduA triggered a higher percentage of the stained area than the wild-type, with exception of light laying hens. Salmonella Typhimurium wild-type strain and Salmonella Typhimurium ∆ttrA∆pduA infections lead to a similar pattern in which, at 1 and 14 dpi, the caecal tonsils and ileum of birds showed a more expressive stained area compared to 3 and 7 dpi. In all lineages studied, prominent infiltration of macrophages in comparison with CD4+ and CD8+ cells was observed. Overall, animals infected by the mutant strain displayed a positively stained area higher than the wild-type. Deletions in both ttrA and pduA genes resulted in a more intense infiltration of macrophages and CD4+ and CD8+ cells in the host birds, suggesting no pathogen attenuation, even in different strains of Salmonella.


Subject(s)
Chickens , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Animals , Female , Immunity, Cellular , Poultry Diseases/genetics , Poultry Diseases/immunology , Salmonella enterica/genetics , Salmonella enteritidis/genetics , Salmonella Infections, Animal/immunology , Salmonella typhimurium/genetics , Serogroup
8.
PLoS One ; 16(11): e0260280, 2021.
Article in English | MEDLINE | ID: mdl-34843525

ABSTRACT

Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 µg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1ß, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1ß, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.


Subject(s)
Avian Proteins/immunology , CD4 Antigens/immunology , Chickens/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Poultry Diseases/immunology , Salmonella Infections, Animal/immunology , Salmonella enteritidis/immunology , Animals , Chickens/microbiology , Host-Pathogen Interactions , Immunity , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Salmonella enteritidis/physiology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/microbiology
9.
PLoS Pathog ; 17(10): e1010004, 2021 10.
Article in English | MEDLINE | ID: mdl-34695149

ABSTRACT

While Salmonella enterica is seen as an archetypal facultative intracellular bacterial pathogen where protection is mediated by CD4+ T cells, identifying circulating protective cells has proved very difficult, inhibiting steps to identify key antigen specificities. Exploiting a mouse model of vaccination, we show that the spleens of C57BL/6 mice vaccinated with live-attenuated Salmonella serovar Typhimurium (S. Typhimurium) strains carried a pool of IFN-γ+ CD4+ T cells that could adoptively transfer protection, but only transiently. Circulating Salmonella-reactive CD4+ T cells expressed the liver-homing chemokine receptor CXCR6, accumulated over time in the liver and assumed phenotypic characteristics associated with tissue-associated T cells. Liver memory CD4+ T cells showed TCR selection bias and their accumulation in the liver could be inhibited by blocking CXCL16. These data showed that the circulation of CD4+ T cells mediating immunity to Salmonella is limited to a brief window after which Salmonella-specific CD4+ T cells migrate to peripheral tissues. Our observations highlight the importance of triggering tissue-specific immunity against systemic infections.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Liver/immunology , Salmonella Infections, Animal/immunology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Salmonella typhimurium/immunology
10.
Int Immunopharmacol ; 101(Pt A): 108185, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607234

ABSTRACT

Typically, the killed form of microorganisms in combination with alum does not produce strong cellular immune responses. A recent investigation has indicated the role of dopamine D2 receptor antagonists like metoclopramide in reducing the polarization of immune responses toward Th2 immunity. This study was performed to evaluate the effects of a combination of alum and metoclopramide on the induction of cellular and humoral immunity in response to a heat-killed preparation ofSalmonella typhimurium(HKST). Wistar rats were immunized with the HKST vaccine alone or in combination with alum, metoclopramide, or the alum-metoclopramide mixture twice with a two-week interval. Fourteen days after the last vaccination, immune responses against S. typhimurium and the protective potential of the vaccines were assessed. The combination of alum and metoclopramide as an adjuvant augmented the potential of the HKST vaccine to enhance lymphocyte proliferation, delayed-type hypersensitivity reaction, and antibody titer. These results were concurrent with the polarization of immune response towards the Th1 response and improving protective immunity against S. typhimurium. Overall, the combination of alum and metoclopramide as an adjuvant synergistically enhanced cellular and humoral immunity after immunization with the HKST vaccine.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Alum Compounds/therapeutic use , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Metoclopramide/therapeutic use , Salmonella typhimurium/immunology , Typhoid-Paratyphoid Vaccines/therapeutic use , Adjuvants, Immunologic/administration & dosage , Alum Compounds/adverse effects , Animals , Drug Synergism , Hypersensitivity, Delayed/immunology , Male , Metoclopramide/administration & dosage , Rats , Rats, Wistar , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/prevention & control , Vaccines, Inactivated/therapeutic use
11.
Science ; 373(6561): eabf9232, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34529485

ABSTRACT

Vitamin A and its derivative retinol are essential for the development of intestinal adaptive immunity. Retinoic acid (RA)­producing myeloid cells are central to this process, but how myeloid cells acquire retinol for conversion to RA is unknown. Here, we show that serum amyloid A (SAA) proteins­retinol-binding proteins induced in intestinal epithelial cells by the microbiota­deliver retinol to myeloid cells. We identify low-density lipoprotein (LDL) receptor­related protein 1 (LRP1) as an SAA receptor that endocytoses SAA-retinol complexes and promotes retinol acquisition by RA-producing intestinal myeloid cells. Consequently, SAA and LRP1 are essential for vitamin A­dependent immunity, including B and T cell homing to the intestine and immunoglobulin A production. Our findings identify a key mechanism by which vitamin A promotes intestinal immunity.


Subject(s)
Adaptive Immunity , Intestinal Mucosa/immunology , Intestine, Small/immunology , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Myeloid Cells/metabolism , Serum Amyloid A Protein/metabolism , Vitamin A/metabolism , Animals , B-Lymphocytes/immunology , CD11c Antigen/analysis , CD4-Positive T-Lymphocytes/immunology , Cell Line , Endocytosis , Gene Deletion , Humans , Immunoglobulin A/biosynthesis , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestine, Small/cytology , Intestine, Small/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Protein Binding , Retinol-Binding Proteins/metabolism , Salmonella Infections, Animal/immunology , Salmonella typhimurium , Serum Amyloid A Protein/genetics , Th17 Cells/immunology
12.
Emerg Microbes Infect ; 10(1): 1849-1861, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34461813

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a food-borne bacterium that causes acute gastroenteritis in humans and typhoid fever in mice. Salmonella pathogenicity island II (SPI-2) is an important virulence gene cluster responsible for Salmonella survival and replication within host cells, leading to systemic infection. Previous studies have suggested that SPI-2 function to modulate host vesicle trafficking and immune response to promote systemic infection. However, the molecular mechanism and the host responses triggered by SPI-2 remain largely unknown. To assess the roles of SPI-2, we used a differential proteomic approach to analyse host proteins levels during systemic infections in mice. Our results showed that infection by WT S. Typhimurium triggered the reprogramming of host cell metabolism and inflammatory response. Salmonella systemic infection induces an up-regulation of glycolytic process and a repression of the tricarboxylic acid (TCA) cycle. WT-infected tissues prefer to produce adenosine 5'-triphosphate (ATP) through aerobic glycolysis rather than relying on oxidative phosphorylation to generate energy. Moreover, our data also revealed that infected macrophages may undergo both M1 and M2 polarization. In addition, our results further suggest that SPI-2 is involved in altering actin cytoskeleton to facilitate the Salmonella-containing vacuole (SCV) biogenesis and perhaps even the release of bacteria later in the infection process. Results from our study provide valuable insights into the roles of SPI-2 during systemic Salmonella infection and will guide future studies to dissect the molecular mechanisms of how SPI-2 functions in vivo.


Subject(s)
Bacterial Proteins/genetics , Citric Acid Cycle/physiology , Glycolysis/physiology , Macrophages/immunology , Membrane Proteins/genetics , Salmonella Infections, Animal/pathology , Salmonella typhimurium/pathogenicity , Actin Cytoskeleton/metabolism , Adenosine Triphosphate/metabolism , Animals , Bacterial Proteins/immunology , Disease Models, Animal , Female , Gene Expression Regulation, Bacterial/genetics , Liver/immunology , Liver/metabolism , Liver/microbiology , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Protein Interaction Mapping , Proteomics , Salmonella Infections, Animal/immunology , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology , Spleen/immunology , Spleen/metabolism , Spleen/microbiology , Virulence/genetics
13.
PLoS Pathog ; 17(8): e1009719, 2021 08.
Article in English | MEDLINE | ID: mdl-34352037

ABSTRACT

Reducing food intake is a common host response to infection, yet it remains unclear whether fasting is detrimental or beneficial to an infected host. Despite the gastrointestinal tract being the primary site of nutrient uptake and a common route for infection, studies have yet to examine how fasting alters the host's response to an enteric infection. To test this, mice were fasted before and during oral infection with the invasive bacterium Salmonella enterica serovar Typhimurium. Fasting dramatically interrupted infection and subsequent gastroenteritis by suppressing Salmonella's SPI-1 virulence program, preventing invasion of the gut epithelium. Virulence suppression depended on the gut microbiota, as Salmonella's invasion of the epithelium proceeded in fasting gnotobiotic mice. Despite Salmonella's restored virulence within the intestines of gnotobiotic mice, fasting downregulated pro-inflammatory signaling, greatly reducing intestinal pathology. Our study highlights how food intake controls the complex relationship between host, pathogen and gut microbiota during an enteric infection.


Subject(s)
Bacteria/growth & development , Fasting , Gastroenteritis/prevention & control , Inflammation/prevention & control , Intestines/immunology , NF-kappa B/antagonists & inhibitors , Salmonella Infections, Animal/immunology , Salmonella typhimurium/physiology , Animals , Bacteria/immunology , Bacteria/metabolism , Female , Gastroenteritis/immunology , Gastroenteritis/microbiology , Gastrointestinal Microbiome , Inflammation/immunology , Inflammation/microbiology , Intestines/microbiology , Mice , Mice, Inbred C57BL , Salmonella Infections, Animal/complications , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology
14.
Infect Immun ; 89(11): e0027321, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34370511

ABSTRACT

Nutritional immunity involves cellular and physiological responses to invading pathogens, such as limiting iron, increasing exposure to bactericidal copper, and altering zinc to restrict the growth of pathogens. Here, we examine infection of bone marrow-derived macrophages from 129S6/SvEvTac mice by Salmonella enterica serovar Typhimurium. The 129S6/SvEvTac mice possess a functional Slc11a1 (Nramp-1), a phagosomal transporter of divalent cations that plays an important role in modulating metal availability to the pathogen. We carried out global RNA sequencing upon treatment with live or heat-killed Salmonella at 2 h and 18 h postinfection and observed widespread changes in metal transport, metal-dependent genes, and metal homeostasis genes, suggesting significant remodeling of iron, copper, and zinc availability by host cells. Changes in host cell gene expression suggest infection increases cytosolic zinc while simultaneously limiting zinc within the phagosome. Using a genetically encoded sensor, we demonstrate that cytosolic labile zinc increases 45-fold at 12 h postinfection. Further, manipulation of zinc in the medium alters bacterial clearance and replication, with zinc depletion inhibiting both processes. Comparing the transcriptomic changes to published data on infection of C57BL/6 macrophages revealed notable differences in metal regulation and the global immune response. Our results reveal that 129S6 macrophages represent a distinct model system compared to C57BL/6 macrophages. Further, our results indicate that manipulation of zinc at the host-pathogen interface is more nuanced than that of iron or copper. The 129S6 macrophages leverage intricate means of manipulating zinc availability and distribution to limit the pathogen's access to zinc, while simultaneously ensuring sufficient zinc to support the immune response.


Subject(s)
Macrophages/immunology , Metals/metabolism , Salmonella Infections, Animal/immunology , Animals , Complement System Proteins/immunology , Female , Gene Expression , Host-Pathogen Interactions , Mice , Mice, Inbred C57BL , Salmonella typhimurium , Zinc/metabolism
15.
Vet Res ; 52(1): 109, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34404469

ABSTRACT

Salmonella enterica serotype Enteritidis (SE) is a zoonotic pathogen which causes foodborne diseases in humans as well as severe disease symptoms in young chickens. More insight in innate and adaptive immune responses of chickens to SE infection is needed to understand elimination of SE. Seven-day-old broiler chickens were experimentally challenged with SE and numbers and responsiveness of innate and adaptive immune cells as well as antibody titers were assessed. SE was observed in the ileum and spleen of SE-infected chickens at 7 days post-infection (dpi). At 1 dpi numbers of intraepithelial cytotoxic CD8+ T cells were significantly increased alongside numerically increased intraepithelial IL-2Rα+ and 20E5+ natural killer (NK) cells at 1 and 3 dpi. At both time points, activation of intraepithelial and splenic NK cells was significantly enhanced. At 7 dpi in the spleen, presence of macrophages and expression of activation markers on dendritic cells were significantly increased. At 21 dpi, SE-induced proliferation of splenic CD4+ and CD8+ T cells was observed and SE-specific antibodies were detected in sera of all SE-infected chickens. In conclusion, SE results in enhanced numbers and activation of innate cells and we hypothesized that in concert with subsequent specific T cell and antibody responses, reduction of SE is achieved. A better understanding of innate and adaptive immune responses important in the elimination of SE will aid in developing immune-modulation strategies, which may increase resistance to SE in young broiler chickens.


Subject(s)
Adaptive Immunity , Chickens , Immunity, Innate , Poultry Diseases/immunology , Salmonella Infections, Animal/immunology , Salmonella enteritidis/physiology , Animals , Female , Male , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology
16.
Science ; 373(6558)2021 08 27.
Article in English | MEDLINE | ID: mdl-34446580

ABSTRACT

The immune system has evolved in the face of microbial exposure. How maternal infection experienced at distinct developmental stages shapes the offspring immune system remains poorly understood. Here, we show that during pregnancy, maternally restricted infection can have permanent and tissue-specific impacts on offspring immunity. Mechanistically, maternal interleukin-6 produced in response to infection can directly impose epigenetic changes on fetal intestinal epithelial stem cells, leading to long-lasting impacts on intestinal immune homeostasis. As a result, offspring of previously infected dams develop enhanced protective immunity to gut infection and increased inflammation in the context of colitis. Thus, maternal infection can be coopted by the fetus to promote long-term, tissue-specific fitness, a phenomenon that may come at the cost of predisposition to inflammatory disorders.


Subject(s)
Colitis/immunology , Immunity , Interleukin-6/immunology , Intestines/immunology , Pregnancy Complications, Infectious/immunology , Th17 Cells/immunology , Yersinia pseudotuberculosis Infections/immunology , Animals , Candidiasis/immunology , Chromatin/metabolism , Epigenesis, Genetic , Epigenome , Female , Fetal Development , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Interleukin-6/blood , Interleukin-6/pharmacology , Intestinal Mucosa/cytology , Intestinal Mucosa/embryology , Intestinal Mucosa/immunology , Intestines/embryology , Intestines/microbiology , Mice , Pregnancy , Prenatal Exposure Delayed Effects , Salmonella Infections, Animal/immunology , Stem Cells/immunology , Stem Cells/physiology , T-Lymphocyte Subsets/immunology
17.
Infect Immun ; 89(10): e0008721, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34310885

ABSTRACT

Salmonella Typhimurium is a common cause of foodborne gastroenteritis and a less frequent but important cause of invasive disease, especially in developing countries. In our previous work, we showed that a live-attenuated S. Typhimurium vaccine (CVD 1921) was safe and immunogenic in rhesus macaques, although shed for an unacceptably long period (10 days) postimmunization. Consequently, we engineered a new strain, CVD 1926, which was shown to be safe and immunogenic in mice, as well as less reactogenic in mice and human cell-derived organoids than CVD 1921. In this study, we assessed the reactogenicity and efficacy of CVD 1926 in rhesus macaques. Animals were given two doses of either CVD 1926 or saline perorally. The vaccine was well-tolerated, with shedding in stool limited to a mean of 5 days. All CVD 1926-immunized animals had both a serological and a T cell response to vaccination. At 4 weeks postimmunization, animals were challenged with wild-type S. Typhimurium I77. Unvaccinated (saline) animals had severe diarrhea, with two animals succumbing to infection. Animals receiving CVD 1926 were largely protected, with only one animal having moderate diarrhea. Vaccine efficacy in this gastroenteritis model was 80%. S. Typhimurium vaccine strain CVD 1926 was safe and effective in rhesus macaques and shed for a shorter period than other previously tested live-attenuated vaccine strains. This strain could be combined with other live-attenuated Salmonella vaccine strains to create a pan-Salmonella vaccine.


Subject(s)
Gastroenteritis/immunology , Immunogenicity, Vaccine/immunology , Macaca mulatta/immunology , Salmonella Infections, Animal/immunology , Salmonella Vaccines/immunology , Salmonella typhimurium/immunology , Administration, Oral , Animals , Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Cells, Cultured , Disease Models, Animal , Female , Leukocytes, Mononuclear/immunology , Vaccination/methods
18.
Sci Rep ; 11(1): 10910, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035347

ABSTRACT

Salmonella serotype (ser.) Enteritidis infection in broilers is a main foodborne illness that substantially threatens food security. This study aimed to examine the effects of a novel polysaccharide isolated from alfalfa (APS) on the intestinal microbiome and systemic health of S. ser. Enteritidis-infected broilers. The results indicated that broilers receiving the APS-supplemented diet had the improved (P < 0.05) growth performance and gut health than those fed no APS-supplemented diet. Supplementation with APS enhanced (P < 0.05) the richness of gut beneficial microbes such as Bacteroidetes, Barnesiella, Parabacteroides, Butyricimonas, and Prevotellaceae, while decreased (P < 0.05) the abundance of facultative anaerobic bacteria including Proteobacteria, Actinobacteria, Ruminococcaceae, Lachnospiraceae, and Burkholderiaceae in the S. ser. Enteritidis-infected broilers. The Bacteroides and Odoribacter were identified as the two core microbes across all treatments and combined with their syntrophic microbes formed the hub in co-occurrence networks linking microbiome structure to performance of broilers. Taken together, dietary APS supplementation improved the systemic health of broilers by reshaping the intestinal microbiome regardless of whether S. ser. Enteritidis infection was present. Therefore, APS can be employed as a potential functional additives to inhibit the S. ser. Enteritidis and enhance the food safety in poultry farming.


Subject(s)
Bacteria/classification , Chickens/microbiology , Medicago sativa/metabolism , Polysaccharides/administration & dosage , Salmonella Infections, Animal/diet therapy , Salmonella enteritidis/growth & development , Animal Feed , Animals , Bacteria/drug effects , Bacteria/isolation & purification , Chickens/immunology , Cytokines/metabolism , Functional Food , Gastrointestinal Microbiome/drug effects , High-Throughput Nucleotide Sequencing , Phylogeny , Polysaccharides/pharmacology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella enteritidis/drug effects , Sequence Analysis, DNA , Treatment Outcome
19.
J Therm Biol ; 98: 102945, 2021 May.
Article in English | MEDLINE | ID: mdl-34016362

ABSTRACT

High ambient temperature has potential influence on oxidative stress, or systemic inflammation affecting poultry production and immune status of chickens. Heat stress (HS) induces intestinal inflammation and increases susceptibility of harmful pathogens, such as Salmonella and Escherichia coli. Intestinal inflammation is a common result of body immune dysfunction. Therefore, we designed an experiment to analyze the effects of 35 ± 2 °C HS on salmonella infection in chickens through regulation of the immune responses. 40 broiler chickens were randomly divided into 4 groups: control group, heat stress (HS) group, salmonella typhimurium (ST) group and model group (heat stress + salmonella typhimurium, HS + ST). Birds in HS and model group were treated with 35 ± 2 °C heat stress 6 h a day and for 14 continuous days. Then, ST and model group birds were orally administrated with 1 mL ST inoculum (109 cfu/mL). Chickens were sacrificed at the 4th day after ST administration and ileum tissues were measured. We observed that heat stress decreased ileum TNF-α and IL-1ß protein expressions. Concomitantly heat stress decreased NLRP3 and Caspase-1 protein levels. The protein expressions of p-NF-κB-p65 and p-IκB-α in ileum. Heat stress also inhibited IFN-α, p-IRF3 and p-TBK1, showing a deficiency in the HS + ST group birds. Together, the present data suggested that heat stress suppressed intestinal immune activity in chickens infected by salmonella typhimurium, as observed by the decrease of immune cytokines levels, which regulated by NF-κB-NLRP3 signaling pathway.


Subject(s)
Chickens/immunology , Heat Stress Disorders/immunology , Poultry Diseases/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium , Animals , Avian Proteins/immunology , Chickens/microbiology , Cytokines/immunology , Heat Stress Disorders/pathology , Heat Stress Disorders/veterinary , Heat-Shock Response , Ileum/immunology , Ileum/pathology , NF-kappa B/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Poultry Diseases/pathology , Protein Serine-Threonine Kinases/immunology , Salmonella Infections, Animal/pathology , Signal Transduction
20.
Infect Immun ; 89(8): e0073620, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34031125

ABSTRACT

Long-term survival and the persistence of bacteria in the host suggest either host unresponsiveness or induction of an immunological tolerant response to the pathogen. The role of the host immunological response to persistent colonization of Salmonella Enteritidis (SE) in chickens remains poorly understood. In the current study, we performed a cecal tonsil transcriptome analysis in a model of SE persistent infection in 2-week-old chickens to comprehensively examine the dynamics of host immunological responses in the chicken gastrointestinal tract. Our results revealed overall host tolerogenic adaptive immune regulation in a major gut-associated lymphoid tissue, the cecal tonsil, during SE infection. Specifically, we observed consistent downregulation of the metallothionein 4 gene at all four postinfection time points (3, 7, 14, and 21 days postinfection [dpi]), which suggested potential pathogen-associated manipulation of the host zinc regulation as well as a possible immune modulatory effect. Furthermore, delayed activation in the B cell receptor signaling pathway and failure to sustain its active state during the lag phase of infection were further supported by an insignificant production of both intestinal and circulatory antibodies. Tug-of-war for interleukin 2 (IL-2) regulation between effector T cells and regulatory T cells appears to have consequences for upregulation in the transducer of ERBB2 (TOB) pathway, a negative regulator of T cell proliferation. In conclusion, this work highlights the overall host tolerogenic immune response that promotes persistent colonization by SE in young layer chicks.


Subject(s)
Host-Pathogen Interactions/immunology , Immune Tolerance , Poultry Diseases/immunology , Poultry Diseases/microbiology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella enteritidis/immunology , Adaptive Immunity , Animals , Biomarkers , Chickens , Gene Expression Profiling , Immunomodulation , Poultry Diseases/genetics , Salmonella Infections, Animal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...